
OpenRules, Inc.

www.openrules.com

December-2013

OPENRULES
®

Open Source Business
Decision Management System

Release 6.2.6

User Manual

http://www.openrules.com/

OpenRules, Inc. OpenRules® User Manual

2

Table of Contents

Introduction .. 6

Brief History ...6

OpenRules® Components ..7

Document Conventions...7

Core Concepts ... 8

Spreadsheet Organization and Management .. 9

Workbooks, Worksheets, and Tables ...9

How OpenRules® Tables Are Recognized .. 10

OpenRules® Rule Table Example .. 12

Business and Technical Views ... 13

Decision Modeling and Execution .. 14

Starting with Decision ... 15

Defining Decision Tables ... 18

Decision Table Execution Logic .. 20

AND/OR Conditions .. 20

Decision Table Operators ... 21

Using Regular Expressions in Decision Table Conditions ... 24

Conditions and Conclusions without Operators .. 24

Using Decision Variable Names inside Decision Table Cells 25

Using Formulas inside Decision Tables .. 26

Direct References to Decision Variables .. 27

Defining Business Glossary .. 28

Defining Test Data .. 29

Connecting the Decisions with Business Objects .. 31

Decision Execution .. 32

Decision Analysis .. 33

Decision Testing ... 33

Decision Syntax Validation ... 34

Decision Execution Reports .. 35

Decision Tracing ... 38

Rules Repository Search ... 39

Consistency Checking ... 40

Advanced Decision Tables ... 40

Specialized Conditions and Conclusions ... 40

Specialized Decision Tables ... 41

DecisionTable1 ... 41

OpenRules, Inc. OpenRules® User Manual

3

DecisionTable2 ... 43

Business Rules Defined on Collections of Objects ... 44

Decision Tables for Comparing Ranking Lists ... 46

Rule Tables ... 47

Simple Rule Table ... 48

How Rule Tables Are Organized .. 50

Separating Business and Technical Information ... 53

How Rule Tables Are Executed .. 56

Relationships between Rules inside Rule Tables ... 56

Multi-Hit Rule Tables .. 57

Rules Overrides in Multi-Hit Rule Tables ... 58

Single-Hit Rule Tables ... 60

Rule Sequences .. 61

Relationships among Rule Tables ... 62

Simple AND / OR Conditions in Rule Tables ... 63

Horizontal and Vertical Rule Tables ... 64

Merging Cells .. 64

Sub-Columns and Sub-Rows for Dynamic Arrays .. 65

Using Expressions inside Rule Tables ... 66

Integer and Real Intervals .. 66

Comparing Integer and Real Numbers ... 68

Using Comparison Operators inside Rule Tables ... 69

Comparing Dates .. 70

Comparing Boolean Values .. 71

Representing String Domains ... 72

Representing Domains of Numbers ... 73

Using Java Expressions ... 73

Expanding and Customizing Predefined Types .. 75

Performance Considerations .. 75

Rule Templates ... 75

Simple Rules Templates .. 76

Defining Rules based on Templates ... 77

Templates for Single-Hit Rule Tables ... 77

Templates for Multi-Hit Rule Tables .. 78

Partial Template Implementation ... 79

Templates with Optional Conditions and Actions ... 81

Templates for the Default Decision Tables ... 82

Decision Templates .. 85

OpenRules, Inc. OpenRules® User Manual

4

Three Major Decision Table Templates ... 85

Customization... 86

OpenRules® API ... 88

OpenRulesEngine API.. 88

Engine Constructors ... 88

Engine Runs .. 90

Undefined Methods ... 91

Accessing Password Protected Excel Files ... 92

Engine Attachments ... 93

Engine Version .. 93

Dynamic Rules Updates .. 93

Decision API ... 93

Decision Example ... 93

Decision Constructors .. 94

Decision Parameters .. 95

Decision Runs ... 95

Executing Decision Methods From Excel ... 97

Decision Glossary ... 97

Business Concepts and Decision Objects ... 98

Changing Decision Variables Types between Decision Runs 100

Decision Execution Modes ... 100

Generating Excel Files with Decision Tables ... 101

Example with Explanations .. 101

Formal API .. 103

Logging API ... 104

JSR-94 Implementation ... 105

Multi-Threading.. 105

Integration with Java and XML .. 106

Java Classes .. 106

XML Files... 107

Data Modeling .. 109

Datatype and Data Tables ... 110

How Datatype Tables Are Organized ... 113

How Data Tables Are Organized .. 115

Predefined Datatypes ... 117

Accessing Excel Data from Java - Dynamic Objects ... 119

How to Define Data for Aggregated Datatypes .. 120

Finding Data Elements Using Primary Keys .. 121

OpenRules, Inc. OpenRules® User Manual

5

Cross-References Between Data Tables ... 121

OpenRules® Repository .. 123

Logical and Physical Repositories .. 123

Hierarchies of Rule Workbooks ... 125

Included Workbooks .. 125

Include Path and Common Libraries of Rule Workbooks .. 126

Using Regular Expressions in the Names of Included Files 126

Imports from Java .. 127

Imports from XML .. 127

Parameterized Rule Repositories... 128

Rules Version Control ... 129

Rules Authoring and Maintenance Tools ... 130

Database Integration .. 131

External Rules ... 131

OpenRules® Projects .. 132

Pre-Requisites .. 132

Sample Projects .. 132

Main Configuration Project ... 133

Supporting Libraries ... 133

Predefined Types and Templates ... 134

Technical Support ... 134

OpenRules, Inc. OpenRules® User Manual

6

INTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source

Business Rules Management System (BRMS) and since then has become one of

the most popular BRMS on the market. Over these years OpenRules® has been

naturally transformed in a Business Decision Management System (BDMS) with

proven records of delivering and maintaining reliable decision support software.

OpenRules® is a winner of several software awards for innovation and is used

worldwide by multi-billion dollar corporations, major banks, insurers, health

care providers, government agencies, online stores, universities, and many other

institutions.

Brief History
From the very beginning, OpenRules® was oriented to subject matter experts

(business analysts) allowing them to work in concert with software developers to

create, maintain, and efficiently execute business rules housed in enterprise-

class rules repositories. OpenRules® avoided the introduction of yet another “rule

language” as well as another proprietary rules management GUI. Instead,

OpenRules® relied on commonly used tools such as MS Excel, Google Docs and

Eclipse integrated with the standard Java. This approach enabled OpenRules®

users to create and maintain inter-related decision tables directly in Excel.

Initially each rules table included several additional rows, in which a software

developer could place Java snippets to specify the exact semantics of rule

conditions and actions.

In March of 2008, OpenRules® Release 5 introduced Rule Templates. Templates

allowed a business analyst to create hundreds and thousands of business rules

based on a small number of templates supported by software developers. Rule

templates minimized the use of Java snippets and hid them from business users.

Rule templates were a significant step in minimizing rule repositories and

clearly separating the roles of business analysts and software specialists in

maintaining the rules.

In March of 2011 OpenRules® introduced Release 6, which finally moved control

over business logic to business users. OpenRules® 6 effectively removed any

Java coding from rules representation allowing business analysts themselves to

specify their decisions and supporting decision tables directly and completely in

Excel. Business users can also create business glossaries and test cases in Excel

tables. They may then test the accuracy of execute their decisions without the

need for any coding at all.

Once a decision has been tested it can be easily incorporated into any Java or

.NET environment. This process may involve IT specialists but only to integrate

the business glossary with a specific business object model. The business logic

remains the complete prerogative of subject matter experts.

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm

OpenRules, Inc. OpenRules® User Manual

7

OpenRules® Components

OpenRules® offers the following decision management components:

 Rule Repository for management of enterprise-level decision rules

 Rule Engine for execution of decisions and different business rules

 Rule Dialog for building rules-based Web questionnaires

 Rule Learner for rules discovery and predictive analytics

 Rule Solver for solving constraint satisfaction and optimization problems

 Finite State Machines for event processing and “connecting the dots”.

Integration of these components with executable decisions has effectively

converted OpenRules® from a BRMS to a BDMS, Business Decision

Management System, oriented to “decision-centric” application development.

OpenRules, Inc. is a professional open source company that provides software,

product documentation and technical support and other services that are highly

praised by our customers. You may start learning about product with the

document “Getting Started” which describes how to install OpenRules® and

includes simple examples. Then you may look at a more complex example in the

tutorial “Calculating Tax Return”. This user manual covers the core OpenRules®

concepts in greater depth. Additional OpenRules® components are described in

separate user manuals: see Rule Learner, Rule Solver, and Rule Dialog.

Document Conventions

- The regular Century Schoolbook font is used for descriptive information.

- The italic Century Schoolbook font is used for notes and fragments

clarifying the text.

- The Courier New font is used for code examples.

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/company.htm
http://openrules.com/services.htm
http://openrules.com/what_they_say.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/ORD.htm

OpenRules, Inc. OpenRules® User Manual

8

CORE CONCEPTS

OpenRules® is a BDMS, Business Decision Management System, oriented to

“decision-centric” application development. OpenRules® utilizes the well-

established spreadsheet concepts of workbooks, worksheets, and tables to build

enterprise-level rule repositories. Each OpenRules® workbook is comprised of

one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel-files you can use any

standard spreadsheet editor such as:

 MS Excel™

 OpenOffice™

 Google Docs™

Google Docs™ is especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their

keywords. Here is the list of OpenRules® tables along with brief description of

each:

Table Type

(Keyword)
Comment

Decision

Defines a decision that may consist of multiple

sub-decisions associated with different decision

tables

DecisionTable or DT or

DecisionTableSingleHit or

RuleFamily

This is a single-hit decision table that uses

multiple conditions on different defined on

variables to reach conclusions about the

decision variables

Glossary

For each decision variable used in the decision

tables, the glossary defines related business

concepts, as well as related implementation

attributes and their possible domain

DecisionObject

Associates business concepts specified in the

glossary with concrete objects defined outside

the decision (i.e. as Java objects or Excel Data

OpenRules, Inc. OpenRules® User Manual

9

tables)

Rules

Defines a decision table that includes Java

snippets that specify custom logic for

conditions and actions. Read more. Some Rules

tables may refer to templates that hide those

Java snippets.

Datatype
Defines a new data type directly in Excel that

can be used for testing

Data Creates an array of test objects

Variable Creates one test object

Environment

This table defines the structure of a rules

repository by listing all included workbooks,

XML files, and Java packages

Method
Defines expressions using snippets of Java

code and known decision variables and objects

DecisionTable1 or DT1 or

DecisionTableMultiHit

A multi-hit decision table that allows rule

overrides

DecisionTable2 or DT2

A multi-hit decision table that like

DecisionTable2 executes all rules in top-down

order but results of the execution of previous

rules may affect the conditions of rules that

follow

Layout
A special table type used by OpenRules

®

Forms and OpenRules
®

Dialog

The following section will provide a detailed description of these concepts.

SPREADSHEET ORGANIZATION AND MANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,

web forms, and other information that can be organized using a tabular format.

Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.

These can be represented and maintained in multiple Excel files. Each

OpenRules® workbook is comprised of one or more worksheets that can be used

to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules® tables and

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRules® User Manual

10

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules® parser splits spreadsheets into “parsed tables”. Each logical

table should be separated by at least one empty row or column at the start of

the table. Table parsing is performed from left to right and from top to

bottom. The first non-empty cell (i.e. cell with some text in it) that does not

belong to a previously parsed table becomes the top-left corner of a new

parsed table.

2. The parser determines the width/height of the table using non-empty cells as

its clues. Merged cells are important and are considered as one cell. If the

top-left cell of a table starts with a predefined keyword (see the table below),

then such a table is parsed into an OpenRules® table.

3. All other "tables," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each with their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a

black background with a white foreground for the very first row. All cells in this

row should be merged, so that the first row explicitly specifies the table width.

We call this row the "table signature". The text inside this row (consisting of

one or more merged cells) is the table signature that starts with a keyword. The

information after the keyword usually contains a unique table name and

additional information that depends on the table type.

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

OpenRules, Inc. OpenRules® User Manual

11

empty row after the last table row. Here are examples of some typical tables

recognized by OpenRules®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something Something Something

Something Something Something

OpenRules® table with 3 columns and still 2 rows:

Keyword Something Something

Something Something Something

Something Something Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Keyword <some text>

Something Something

 Something Something

 Something

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Keyword <some text>

Something Something Something

Something Something Something

Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd column of

the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword Something

Something

Something Something Something Something

Something Something Something Something

OpenRules® will not recognize this table (there is no empty row before the

signature row):

OpenRules, Inc. OpenRules® User Manual

12

Table Title

Keyword <some text>

Something Something

 Something Something

 Something

Fonts and coloring schema are a matter of the table designer's taste. The

designer has at his/her disposal the entire presentation power of Excel (including

comments) to make the OpenRules® tables more self-explanatory.

OpenRules® Rule Table Example

Here is an example of a worksheet with two rules tables:

This workbook is comprised of three worksheets:

1. Worksheet "Decision Tables" - includes rule tables

2. Worksheet "Launcher" - includes a method that defines an order and

conditions under which rules will be executed

OpenRules, Inc. OpenRules® User Manual

13

3. Worksheet "Environment" - defines the structure of a rules repository by

listing all included workbooks, XML files, and Java packages (if any).

The worksheet "Decision Tables" is comprised of two rule tables "defineGreeting"

and "defineSalutation". Rule tables are a traditional way to represent business

decision tables. Rule tables are decision tables that usually describe

combinations of conditions and actions that should be taken when all of the

conditions have been satisfied. In the table "defineGreeting", the action "Set

Greeting" will be executed when an "hour," passed to this table as a parameter,

is between "Hour From" and "Hour To". In the table "defineSalutation", an action

"Set Salutation" will be executed when a customer's Gender and Marital Status

correspond to the proper row.

These tables start with signature rows that are determined by a keyword in the

first cell of the table. A table signature in general has the following format:

Keyword return-type table-name(type1 par1, type2 par2,..)

where table-name is a one-word function name and return-type, type1, and type

2 are types defined in the current OpenRules® configuration. For example, type

may be any basic Java type such as int, double, Date, or String.

The rule tables above are recognized by the keyword "Rules". All of the columns

have been merged into a single cell in the signature rows. Merging cells B3, C3,

and D3 specifies that table "defineGreeting" has 3 columns. A table includes all

those rows under its signature that contain non empty cells: in the example

above, an empty row 12 indicates the end of the table "defineGreeting".

Limitation. Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

Business and Technical Views

OpenRules® tables such as “Rules” and “Data” may have two views:

[1] Business View

OpenRules, Inc. OpenRules® User Manual

14

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at the

top left corner of every worksheet - see the figure below. This figure represents a

business view - no technical details about the implementation are provided. For

example, from this view it is hard to tell for sure what greeting will be generated

at 11 o'clock: "Good Morning" or "Good Afternoon"? If you push the Technical

View button [2] (or the button "+" on the left), you will see the hidden rows with

the technical details of this rules table:

The technical view opens hidden rows 4-6 that contain the implementation

details. In particular, you can see that both "Hour From" and "Hour To" are

included in the definition of the time intervals. Different types of tables have

different technical views.

Note. Using Rules Templates you may completely split business and technical

information between different Excel tables. Decisions do not use technical views

at all because they do not require any coding and rely on predefined templates.

DECISION MODELING AND EXECUTION

OpenRules® methodological approach allows business analysts to develop their

executable decisions with underlying decision tables without (or only with a

limited) help from software developers. You may become familiar with the major

OpenRules, Inc. OpenRules® User Manual

15

decision modeling concepts from simple examples provided in the document

“Getting Started” and several associated tutorials. First we will consider the

simple implementation options for decision modeling, and later on we will

describe more advanced OpenRules® concepts.

Starting with Decision

From the OpenRules® perspective a decision contains:

- a set of decision variables that can take specific values from domains of

values

- a set of decision rules (frequently expressed as decision tables) that

specify relationships between decision variables.

Some decision variables are known (decision input) and some of them are

unknown (decision output). A decision may consist of other decisions (sub-

decisions). To execute a decision means to assign values to unknown decision

variables in such a way that satisfies the decision rules. This approach

corresponds to the OMG standard known as “DMN”.

 OpenRules® applies a top-down approach to decision modeling. This means that

we usually start with the definition of a Decision and not with rules or data.

Only then we will define decision tables, a glossary, and then data. Here is an

example of a Decision:

Here the decision “DeterminePatientTherapy” consists of four sub-decisions:

http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Decision1040EZ.pdf
http://openrules.com/dmn_primer.htm

OpenRules, Inc. OpenRules® User Manual

16

 “Define Medication” that is implemented using a decision table

“DefineMedication”

 “Define Creatinine Clearance” that is implemented using a decision table

“DefineCreatinineClearance”

 “Define Dosing” that is implemented using a decision table

“DefineDosing”

 “Check Drug Interaction” that is implemented using a decision table

“WarnAboutDrugInteraction”.

The table “Decision” has two columns “Decisions” and “Execute Decision Tables”

(those are not keywords and you can use any other titles for these columns). The

first column contains the names of all our sub-decisions - here we can use any

combinations of words as decision names. The second column contains exact

names of decision tables that implement these sub-decisions. The decision table

names cannot contain spaces or special characters (except for “underscore”).

OpenRules® allows you to use multiple (embedded) tables of the type “Decision”

to define more complex decisions. For example, a top-level decision, that defines

the main decision variable, may be defined through several sub-decisions about

related variables:

 Decision DecisionMain

 Decisions Execute Rules / Sub-Decisions

Define Variable 1 DecisionTableVariable1

Define Variable 2 DecisionTableVariable21

Define Variable 2 DecisionTableVariable22

Define Variable 3 DecisionVariable3

Define Variable 4 DecisionTableVariable4

In order to Define Variable 2 it is necessary to execute two decision tables. Some

decisions, like "Define Variable 3", may require their own separate sub-decisions

such as described in the following table:

OpenRules, Inc. OpenRules® User Manual

17

 Decision DecisionVariable3

Decisions Execute Rules

Define Variable 3.1 DecisionTableVariable31

Define Variable 3.2 DecisionTableVariable32

Define Variable 3.3 DecisionTableVariable33

These tables can be kept in different files and can be considered as building

blocks for your decisions. This top-down approach with Decision Tables and

dependencies between them allows you to represent even quite complex decision

logic in an intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described

sequence of sub-decisions. You can even use conditions inside decision tables. For

example, consider a situation when the first sub-decision validates your data and

a second sub-decision executes complex calculations but only if the preceding

validation was successful. Here is an example of such a decision from the tax

calculation tutorial:

Since this table “Decision Apply1040EZ” uses an optional column “Condition”, we

have to add a second row. The keywords “Condition”, “ActionPrint”, and

“ActionExecute” are defined in the standard OpenRules® template

“DecisionTemplate” – see the configuration file “DecisionTemplates.xls” in the

folder “openrules.config”. This table uses a decision variable “1040EZ Eligible”

that is defined by the first (unconditional) sub-decision “Validate”. We assume

that the decision “ValidateTaxReturn” should set this decision variable to TRUE

or FALSE. Then the second sub-decision “Calculate” will be executed only when

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

18

“1040EZ Eligible” is TRUE. When it is FALSE, this decision, “Apply1040EZ”,

will simply print “Do Not Calculate”. In our example the reason will be printed

by the decision table “ValidateTaxReturn”.

Note. You may use many conditions of the type “Condition” defined on different

decision variables. Similarly, you may use an optional condition “ConditionAny”

which instead of decision variables can use any formulas defined on any known

objects. It is also possible to add custom actions using an optional action

“ActionAny” – see “DecisionTemplates.xls” in the folder “openrules.config”.

When you have completed defining all decision and sub-decisions, you may define

decision tables.

Defining Decision Tables

OpenRules® decision modeling approach utilizes the classical decision tables that

were in the heart of OpenRules® BDMS from its introduction in 2003.

OpenRules® uses the keyword “Rules” to represent different types of classical

decision tables. Rules tables rely on Java snippets to specify execution logic of

multiple conditions and actions. In 2011 OpenRules® version 6 introduced a

special type of decision tables with the keyword “DecisionTable” (or “DT”) that

do not need Java snippets and rely on the predefined business logic for its

conditions and conclusions defined on already known decision variables. For

example, let’s consider a very simple decision “DetermineCustomerGreeting”:

Decision DetermineCustomerGreeting

Decisions Execute Rules

Define Greeting Word DefineGreeting

Define Salutation Word DefineSalutation

It refers to two decision tables. Here is an example of the first decision table:

OpenRules, Inc. OpenRules® User Manual

19

DecisionTable DefineGreeting

Condition Condition Conclusion

Current Hour Current Hour Greeting

>= 0 <= 11 Is Good Morning

>= 11 <= 17 Is Good Afternoon

>= 17 <= 22 Is Good Evening

>= 22 <= 24 Is Good Night

Its first row contains a keyword “DecisionTable” and a unique name (no spaces

allowed). The second row uses keywords “Condition” and “Conclusion” to specify

the types of the decision table columns. The third row contains decision variables

expressed in plain English (spaces are allowed but the variable names should be

unique).

The columns of a decision table define conditions and conclusions using different

operators and operands appropriate to the decision variable specified in the

column headings. The rows of a decision table specify multiple rules. For

instance, in the above decision table “DefineGreeting” the second rule can be

read as:

“IF Current Hour is more than or equal to 11 AND Current Hour is less

than or equal to 17 THEN Greeting is Good Afternoon”.

Similarly, we may define the second decision table “DefineSalutation” that

determines a salutation word (it uses the keyword “DT” that is a synonym for

“DecisionTable”):

DT DefineSalutation

Condition Condition Conclusion

Gender Marital Status Salutation

Is Male Is Mr.

Is Female Is Married Is Mrs.

Is Female Is Single Is Ms.

OpenRules, Inc. OpenRules® User Manual

20

If some cells in the rule conditions are empty, it is assumed that this condition is

satisfied. A decision table may have no conditions but it always should contain

at least one conclusion.

Decision Table Execution Logic

OpenRules® executes all rules within DecisionTable in a top-down order. When

all conditions inside one rule (row) are satisfied the proper conclusion(s) from the

same row will be executed, and all other rules will be ignored.

Note. OpenRules® decision tables can be used to implement a methodological

approach described in the book “The Decision Model”. It relies on a special type

of decision tables called “Rule Families” that require that the order of rules

inside a decision table should not matter. It means that to comply with the

Decision Model principles, you should not rely on the default top-down rules

execution order of OpenRules® decision tables. Instead, you should design your

decision table (you even may use the keyword “RuleFamily” instead of “DT”) in

such a way that all rules are mutually exclusive and cover all possible

combinations of conditions. The advantage of this approach is that when you

decide to add new rules to your rule family you may place them in any rows

without jeopardizing the execution logic. However, in some cases, this approach

may lead to much more complex organization of rule families to compare with

the standard decision tables.

AND/OR Conditions

The conditions in a decision table are always connected by a logical operator

“AND”. When you need to use “OR”, you may add another rule (row) that is an

alternative to the previous rule(s). However, some conditions may have a

decision variable defined as an array, and within such array-conditions “ORs”

are allowed. Consider for example the following, more complex decision table:

http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8

OpenRules, Inc. OpenRules® User Manual

21

Here the decision variables “Customer Profile”, “Customer Product”, and

“Offered Products” are arrays of strings. In this case, the second rule can be read

as:

IF Customer Profile Is One Of New or Bronze or Silver

AND Customer Products Include Checking Account and

Overdraft Protection

AND Customer Products Do Not Include CD with 25 basis point

increase, Money Market Mutual Fund, and Credit Card

THEN Offered Products ARE CD with 25 basis point increase,

Money Market Mutual Fund, and Credit Card

Decision Table Operators

OpenRules® supports multiple ways to define operators within decision table

conditions and conclusions. When you use a text form of operators you can freely

use upper and lower cases and spaces. The following operators can be used inside

decision table conditions:

Operator Synonyms Comment

Is =, ==

When you use “=” or “==”

inside Excel write”’=” or”’==”

to avoid confusion with

Excel’s own formulas

Is Not
!=, isnot, Is Not Equal To, Not, Not

Equal., Not Equal To
Defines an inequality operator

>
Is More, More, Is More Than, Is

Greater, Greater, Is Greater Than

For integers and real numbers,

and Dates

OpenRules, Inc. OpenRules® User Manual

22

>=

Is More Or Equal. Is More Or Equal

To, Is More Than Or Equal To, Is

Greater Or Equal To, Is Greater Than

Or Equal To

For integers and real numbers,

and Dates

<=

Is Less Or Equal, Is Less Than Or

Equal To, Is Less Than Or Equal To, Is

Smaller Or Equal To, Is Smaller Than

Or Equal To, Is Smaller Than Or Equal

To,

For integers and real numbers,

and Dates

<
Is Less, Less, Is Less Than, Is Smaller,

Smaller, Is Smaller Than

For integers and real numbers,

and Dates

Is True For booleans

Is False For booleans

Is Empty

A string is considered “empty”

if it is either “null” or contains

only zero or more whitespaces

Contains Contain

For strings only, e.g. “House”

contains “use”. The

comparison is not case-

sensitive

Starts

With
Start with, Start

For strings only, e.g. “House”

starts with “ho”. The

comparison is not case-

sensitive

Match Matches, Is Like, Like
Compares if the string matches

a regular expression

No

Match

NotMatch, Does Not Match, Not Like,

Is Not Like, Different, Different From

Compares if a string does not

match a regular expression

Within Inside, Inside Interval, Interval

For integers and real numbers.

The interval can be defined as:

[0;9], (1;20], 5–10, between 5

and 10, more than 5 and less or

equals 10 – see more

Is One Of
Is One, Is One of Many, Is Among,

Among

For integer and real numbers,

and for strings. Checks if a

value is among elements of the

domain of values listed

through comma

Is Not

One Of
Is not among, Not among

For integer and real numbers,

and for strings. Checks if a

value is NOT among elements

of the domain of values listed

through comma

Include Include All

To compare two arrays.

Returns true when the first

array (decision variable)

include all elements of the

second array (value within

decision table cell)

OpenRules, Inc. OpenRules® User Manual

23

Exclude Do Not Include, Exclude One Of
To compare an array or value

with an array

Does Not

Include
Include Not All

To compare two arrays.

Returns true when the first

array (decision variable) does

not include all elements of the

second array (value within

decision table cell)

Intersect Intersect With, Intersects
To compare an array with an

array

If the decision variables do not have an expected type for a particular operator,

the proper syntax error will be diagnosed.

The following operators can be used inside decision table conclusions:

Operator Synonyms Comment

Is =, ==

Assigns one value to the conclusion

decision variable. When you use “=” or

“==” inside Excel write”’=” or”’==” to

avoid confusion with Excel’s own

formulas.

Are

Assigns one or more values listed

through commas to the conclusion

variable that is expected to be an array

Add

Adds one or more values listed through

commas to the conclusion variable that is

expected to be an array

Assign

Plus
+=

Takes the conclusion decision variable,

adds to it a value from the rule cell, and

saves the result in the same decision

variable.

Assign

Minus
-=

Takes the conclusion decision variable,

subtracts from it a value from the rule

cell, and saves the result in the same

decision variable.

Assign

Multiply
*=

Takes the conclusion decision variable,

multiplies it by a value from the rule cell,

and saves the result in the same decision

variable.

Assign

Divide
/=

Takes the conclusion decision variable,

divides it by a value from the rule cell,

and saves the result in the same decision

variable.

OpenRules, Inc. OpenRules® User Manual

24

Using Regular Expressions in Decision Table Conditions

OpenRules® allows you to use standard regular expressions. Operators "Match"

and "No Match" (and their synonyms from the above table) allow you to match

the content of your text decision variables with custom patterns such as phone

number or Social Security Number (SSN). Here is an example of a decision table

that validates SSN:

DecisionTable testSSN

Condition Message

SSN Message

No
Match

\d{3}-\d{2}-\d{4} Invalid SSN

Match \d{3}-\d{2}-\d{4} Valid SSN

The use of this decision table is described in the sample project

“DecisionHelloJava”.

Conditions and Conclusions without Operators

Sometimes the creation of special columns for operators seems unnecessary,

especially for the operators “Is” and “Within”. OpenRules® allows you to use a

simpler format as in this decision table:

DT DefineGreeting

If Then

Current
Hour

Greeting

0-11 Good Morning

11-17 Good Afternoon

17-22 Good Evening

22-24 Good Night

As you can see, instead of keywords “Condition” and “Conclusion” we use the

keywords “If” and “Then” respectively. While this decision table looks much

simpler in comparison with the functionally identical decision table defined

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® User Manual

25

above, we need to make an implicit assumption that the lower and upper bounds

for the intervals “0-11”, “11-17”, etc. are included.

Using Decision Variable Names inside Decision Table Cells

When your decision table contains too many columns it may become too wide and

unmanageable. In practice large decision tables have many empty cells because

not all decision variables participate in all rule conditions even if the proper

columns are reserved or all rules. To make your decision table more compact,

OpenRules® allows you to move a variable name from the column title to the rule

cells. To do that, instead of the standard column’s structure with two sub-

columns

you may use another column representation with 3 sub-columns:

This way you may replace a wide table with many condition columns like the one

below:

to a much more compact table that may look as follows:

OpenRules, Inc. OpenRules® User Manual

26

You simply replace a column of the type “Condition” to the one that has the

standard type “ConditionVarOperValue”. Similarly, instead of a column of the

type “Conclusion” you may use a column of the type “ConclusionVarOperValue”

with 3 sub-columns that represent:

- Decision variable name

- Operator

- Value.

Using Formulas inside Decision Tables

OpenRules® allows you to use formulas in the rule cells instead of constants. The

formulas usually have the following format:

::= (expression)

where an “expression” can be written using standard Java expressions. Here is

an example:

This decision table has only one conclusion that simply calculates a value for the

decision variable “Adjusted Gross Income” as a sum of values for the decision

variables “Wages”, “Taxable Interest”, and “Unemployment Compensation”. This

example also demonstrates how to gain access to different decision variables –

you may write getReal(“VARIABLE_NAME”) for real decision variables.

Similarly, you may use methods getInt(…), getBool(…), getDate(…), and

getString(…).

OpenRules, Inc. OpenRules® User Manual

27

You may also put your formula in a specially defined Method and then refer to

this method from the decision table – observe how it is done in the following

example:

Here we defined a new method “taxableIncome()” that returns a real value using

the standard Java type “double”. Then we used this method inside both

conditions and one conclusion of this decision table.

Note. Actually the formula format ::= (expression) is a shortcut for a more

standard OpenRules® formula format := “” +(expression) that also can be used

inside decision tables.

Direct References to Decision Variables

You may want to refer to values of some decision variables inside cells for

different tables. To do that, you may simply put a dollar sign (“$”) in front

of the variable name. For example, in the following table

the conclusion-column contains references $Vendor and $Provider to

the values of decision variables Vendor and Provider. The reference

$Vendor is similar to the formula ::= getString(“Vendor”). You may

also use similar references inside arrays. For example, to express a

OpenRules, Inc. OpenRules® User Manual

28

condition that a Vendor should not be among providers, you may use the

operator “Is Not One Of” with an array “ABC, $Vendor, XYZ”.

Defining Business Glossary

While defining decision tables, we freely introduced different decision variables

assuming that they are somehow defined. The business glossary is a special

OpenRules® table that actually defines all decision variables. The Glossary table

has the following structure:

Glossary glossary

Variable Business Concept Attribute Domain

The first column will simply list all of the decision variables using exactly the

same names that were used inside the decision tables. The second column

associates different decision variables with the business concepts to which they

belong. Usually you want to keep decision variables that belong to the same

business concept together and merge all rows in the column “Business Concept”

that share the same concept. Here is an example of a glossary from the standard

OpenRules® example “DecisionLoan”:

OpenRules, Inc. OpenRules® User Manual

29

All rows for the concepts such as “Customer” and “Request” are merged.

The third column “Attribute” contains “technical” names of the decision variables

– these names will be used to connect our decision variables with attributes of

objects used by the actual applications, for which a decision has been defined.

The application objects could be defined in Java, in Excel tables, in XML, etc.

The decision does not have to know about it: the only requirement is that the

attribute names should follow the usual naming convention for identifiers in

languages like Java: it basically means no spaces allowed. The last column,

“Domain”, is optional, but it can be useful to specify which values are allowed to

be used for different decision variables. Decision variable domains can be

specified using the naming convention for the intervals and domains described

below. The above glossary provides a few intuitive examples of such domains.

These domains can be used during the validation of a decision.

Defining Test Data

OpenRules, Inc. OpenRules® User Manual

30

OpenRules® provides a convenient way to define test data for decisions directly

in Excel without the necessity of writing any Java code. A non-technical user

can define all business concepts in the Glossary table using Datatype tables. For

example, here is a Datatype table for the business concept “Customer” defined

above:

The first column defines the type of the attribute using standard Java types such

as “int”, “double”, “Boolean”, “String”, or “Date”. The second column contains the

same attribute names that were defined in the Glossary. To create an array of

objects of the type “Customer” we may use a special “Data” table like the one

below:

This table is too wide (and difficult to read), so we could actually transpose it to a

more convenient but equivalent format:

OpenRules, Inc. OpenRules® User Manual

31

Now, whenever we need to reference the first customer we can refer to him as

customers[0]. Similarly, if you want to define a doubled monthly income for the

second custromer, “Mary K. Brown”, you may simply write

::= (customers[1].monthlyIncome * 2)

You can find many additional details about data modeling in this section.

Connecting the Decisions with Business Objects

To tell OpenRules® that we want to associate the object customers[0] with our

business concept “Customer” defined in the Glossary, we need to use a special

table “DecisionObject” that may look as follows:

Here we also associate other business concepts namely Request and Internal

with the proper business objects – see how they are defined in the standard

example “DecisionLoan”.

OpenRules, Inc. OpenRules® User Manual

32

The above table connects a decision with test data defined by business users

directly in Excel. This allows the decision to be tested. However, after the

decision is tested, it will be integrated into a real application that may use

objects defined in Java, in XML, or in a database, etc. For example, if there are

instances of Java classes Customer and LoanRequest, they may be put in the

object “decision” that is used to execute the decision. In this case, the proper

table “decisionObjects” may look like:

It is important that Decision does not “know” about a particular object

implementation: the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Note. You cannot use the predefined function “decision()” within the table

“decisionObjects” because its content is be not defined yet. You need to use the

internal variable “decision” directly.

Decision Execution

OpenRules® provides a template for Java launchers that may be used to execute

different decisions. There are OpenRules® API classes OpenRulesEngine and

Decision. Here is an example of a decision launcher for the sample project

“DecisionLoan”:

OpenRules, Inc. OpenRules® User Manual

33

Actually, it just creates an instance of the class Decision. It has only two

parameters:

1) a path to the main Excel file “Decision.xls”

2) a name of the main Decision inside this Excel file.

When you execute this Java launcher using the provided batch file “run.bat” or

execute it from your Eclipse IDE, it will produce output that may look like the

following:

*** Decision DetermineLoanPreQualificationResults ***

Decision has been initialized

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DetermineLoanPreQualificationResults: Validate Income

Conclusion: Income Validation Result Is SUFFICIENT

Decision DetermineLoanPreQualificationResults: Debt Research

Conclusion: Debt Research Result Is Low

Decision DetermineLoanPreQualificationResults: Summarize

Conclusion: Loan Qualification Result Is NOT QUALIFIED

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

This output shows all sub-decisions and conclusion results for the corresponding

decision tables.

Decision Analysis

Decision Testing

OpenRules® provides an ability to create a test harness comprised of an

executable set of different test cases. It is important that the same people who

design rules (usually business analysts) are able to design tests for them.

OpenRules, Inc. OpenRules® User Manual

34

Usually they create test cases directly in Excel by specifying their own

data/object types and creating instances of test objects of these types. Read more

at the section Defining Test Data.

Decision Syntax Validation

OpenRules® allows you to validate your decision by checking that:

- there are no syntax error in the organization of all decision tables

- values inside decision variable cells correspond to the associated domains

defined in the glossary.

The validation template is described in the standard file

“DecisionTableValidateTemplates.xls”.

If you use the Eclipse Plugin, it will display…

OpenRules® also provides a special plugin for Eclipse IDE, a de-facto

standard project management tools for software developers within a Java-based

development environment. Eclipse is used for code editing, debugging, and

testing of rule projects within a single commonly known integrated development

environment. OpenRules® has been designed to catch as many errors as possible

in design-rime vs. run-time when it is too late. OpenRules® Plugin automatically

diagnoses errors in the Excel-files and displays the proper error messages inside

Eclipse views like at the picture below:

http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

35

Eclipse Plugin diagnoses any errors in Excel-files before you even deploy or run

your OpenRules-based application. To make sure that Eclipse controls your

OpenRules® project, you have first to right-click to your project folder and "Add

OpenRules Nature". You always can similarly "Remove OpenRules Nature". To

be validated, your main xls-files should be placed into an Eclipse source folder

while all included files should be kept in regular (non-source) folders.

OpenRules® Plugin displays a diagnostic log with possible errors inside the

Eclipse Console view. The error messages include hyperlinks that will open the

proper Excel file with a cursor located in a cell where the error occurred.

Decision Execution Reports

OpenRules® provides an ability to generate decision execution reports in the

HTML-format. To generate an execution report, you should add the following

setting to the decision’s Java launcher:

decision.put("report", "On");

OpenRules, Inc. OpenRules® User Manual

36

before calling decision.execute(). By default, execution reports are not

generated as they are needed mainly for decision analysis. Reports are

regenerated for every decision run.

During decision execution, OpenRules® automatically creates a sub-directory

“report” in your main project directory and generates a report inside this sub-

directory. For every decision table, including single-hit, multi-hit, and rule

sequencing tables, OpenRules® generates a separate html-file with the name

Report<n>.<DecisionTableName>.html, where n is an execution order

number for this particular decision table. For example, for the sample project

“DecisionLoan” OpenRules® will generate the following files:

The first file contains a list of links to all executed decision tables:

OpenRules, Inc. OpenRules® User Manual

37

Below are other generated files (one per decision table) with lists of rules (rows)

that were actually executed:

OpenRules, Inc. OpenRules® User Manual

38

These reports help a rule designer to analyze which rules were actually executed

and in which order. The “Executed Rule #” corresponds to the sequential number

of a rule inside its decision table.

Note. Execution reports are intended to explain the behavior of certain decision

tables and are used mainly for analysis and not for production. If you turn on

report generation mode in a multi-threaded environment that shares the same

instance of OpenRulesEngine, the reports will be produced only for the first

thread.

Decision Tracing

OpenRules® relies on the standard Java logging facilities for the decision output.

They can be controlled by the standard file “log4j.properties” that by default

looks like below:

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n
#log4j.logger.org.openl=DEBUG

You may replace INFO to DEBUG and uncomment the last line to see OpenRules

debugging information. To redirect all logs into a file “results.txt” you may

change the file “log4j.properties” as follows:

log4j.rootLogger=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout=org.apache.log4j.FileAppender
log4j.appender.stdout.File=results.txt
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n
uncomment the next line to see OpenRules debug messages
#log4j.logger.org.openl=DEBUG

OpenRules, Inc. OpenRules® User Manual

39

You may control how “talkative” your decision is by setting decision’s parameter

“Trace”. For example, if you add the following setting to the above Java launcher

decision.put("trace", "Off");

just before calling decision.execute(), then your output will be much more

compact:

*** Decision DetermineLoanPreQualificationResults ***

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Decision DetermineLoanPreQualificationResults: Validate Income

Decision DetermineLoanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper

decision templates in the configuration files “DecisionTemplates.xls” and

“DecisionTableExecuteTemplates.xls”.

Rules Repository Search

To analyze rules within one Excel files you may effectively use familiar Search

and Replace features provided by Excel or Google Docs.

When you want to search across multiple Excel files and folders, you may use a

free while powerful tool called “IceTeaReplacer” that can be very useful for doing

search & replace in OpenRules repositories. The following options are available:

 Perform search before replacing

 Match whole word only

 Ignore word case

 Do backup before replace

 Deselect files on which you don’t want to perform replace.

Here is an example of its graphical interface:

http://www.icetear.com/

OpenRules, Inc. OpenRules® User Manual

40

Consistency Checking

OpenRules® provides a special component Rule Solver™ that along with powerful

optimization features allow a user to check consistency of the decision models

and find possible conflicts within decision tables and across multiple decision

tables. The detail description of the product can be found at

http://openrules.com/pdf/RulesSolver.UserManual.pdf.

ADVANCED DECISION TABLES

In real-world project you may need more complex representations of rule sets

and the relationships between them than those allowed by the default decision

tables. OpenRules® allows you to use advanced decision tables and to define

your own rule sets with your own logic.

Specialized Conditions and Conclusions

The standard columns of the types “Condition” and “Conclusion” always have

two sub-columns: one for operators and another for values. OpenRules® allows

you to specify columns of the types “If” and “Then” that do not require sub-

columns. Instead, they allow you to use operators or even natural language

expressions together with values to represent different intervals and domains of

http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.com/rulesolver.htm
http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRules® User Manual

41

values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are not related to a particular decision

variable and can be calculated using formulas. For example, a condition can be

defined based on combination of several decision variables, and you would not

want to artificially add an intermediate decision variable to your glossary in

order to accommodate each needed combination of existing decision variables. In

such a case, you may use a special type “ConditionAny” like in the example

below:

Here the word “Condition” does not represent any decision variable and instead

you may insert any text, i.e. “Compare Adjusted Gross Income with Dependent

Amount”. When your conclusion, does not set a value for a single decision

variable but rather does something that is expressed in the formulas within the

cells of this column, you should use a column of type “ActionAny”. It does not

have sub-columns because there is no need for an operator.

Note. There is also a column of type “Action” that is equivalent to type “Then”.

Specialized Decision Tables

Sometimes the default behavior of a DecisionTable (as single-hit rules tables) is

not sufficient. OpenRules® provide two additional types of decision tables

DecisionTable1 (or DT1) and DecisionTable2 (or DT2). While we recommend

avoiding these types of decision tables, in certain situations they provide a

convenient way around the limitations imposed by the standard DecisionTable.

DecisionTable1

OpenRules, Inc. OpenRules® User Manual

42

Contrary to the standard DecisionTable that is implemented as a single-hit rules

table, decision tables of type “DecisionTable1” or “DecisionTableMultiHit” are

implemented as multi-hit decision tables. “DecisionTable1” supports the

following rules execution logic:

1. All rules are evaluated and if their conditions are satisfied, they will be

marked as “to be executed”

2. All actions columns (of the types “Conclusion”, “Then”, “Action”,

“ActionAny”, or “Message”) for the “to be executed” rules will be executed

in top-down order.

Thus, we can make two important observations about the behavior of the

“DecisionTable1”:

 Rule actions cannot affect the conditions of any other rules in the decision

table – there will be no re-evaluation of any conditions

 Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Let’s consider an example of a rule that states: “A person of age 17 or older is

eligible to drive. However, in Florida 16 year olds can also drive”. If we try to

present this rule using the standard DecisionTable, it may look as follows:

Using a non-standard DecisionTable1 we may present the same rule as:

OpenRules, Inc. OpenRules® User Manual

43

In the DecisionTable1 the first unconditional rule will set “Driving Eligibility” to

“Eligible”. The second rule will reset it to “Not Eligible” for all people younger

than 17. But for 16 year olds living in Florida, the third rule will override the

variable again to “Eligible”.

DecisionTable2

There is one more type of decision table, “DecisionTable2,” that is similar to

“DecisionTable1” but allows the actions of already executed rules to affect the

conditions of rules specified below them. “DecisionTable2” supports the following

rules execution logic:

1. Rules are evaluated in top-down order and if a rule condition is satisfied,

then the rule actions are immediately executed.

2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Thus, we can make two important observations about the behavior of the

“DecisionTable2”:

 Rule actions can affect the conditions of other rules

 There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Let’s consider the following example:

OpenRules, Inc. OpenRules® User Manual

44

Here the first (unconditional) rule will calculate and set the value of the decision

variable “Taxable Income”. The second rule will check if the calculated value is

less than 0. If it is true, this rule will reset this decision variable to 0.

Business Rules Defined on Collections of Objects

Previously, when OpenRules® users needed to run decisions against collections

(arrays) of business objects, they needed to use Java loops. This release adds

an ability to execute one decision against a collection of objects and to calculate

values defined on the entire collection within single decision run.

Let's consider an example "DecisionManyCustomers" added to the standard

OpenRules® installation. There is a standard Java bean Customer with

different customer attributes such as name, age, gender, salary, etc. There is

also a Java class "CollectionOfCustomers":

public class CollectionOfCustomers {

Customer[] customers;

int minSalary;

int maxSalary;

int numberOfRichCustomers;

int totalSalary;

...

}

We want to pass this collection to a decision that will process all customers

from this collection in one run and will calculate such attributes as

OpenRules, Inc. OpenRules® User Manual

45

"minSalary", "totalSalary", "numberOfRichCustomers", and similar attributes,

which are specified for the entire collection. Each customer within this

collection can be processed by the following rules:

Pay attention that we use here a multi-hit table (DecsionTable1), so both rules

will be executed. The first one unconditionally calculate the total. max, and

min salaries. The second rule defines a number of "rich" customers inside the

collection. To accumulate the proper values, we use the existing operator "+="

and newly introduced operators "Min" and "Max".

To execute the above decision table for all customers, we will utilize a new

action "ActionRulesOnArray" within the following decision table:

Here the first 3 actions (conclusions) simply define initial values of collection

attributes. The last action has 3 sub-columns:

- The name of the array of objects as it is defined in the glossary

("Customers")

- The type of those objects ("Customer")

- The name of the decision table ("EvaluateOneCustomer") that will be

used to processes each objects form this collection.

Thus, a combination of the two decisions tables (similar to the above ones)

provides business users with a quite intuitive way to apply rules over

collections of business objects without necessity to deal with programming

constructions.

OpenRules, Inc. OpenRules® User Manual

46

Decision Tables for Comparing Ranking Lists

In many real-world situations decisions are made based on comparison of

attributes that belong to different predefined lists of values while the values

inside these lists are ordered (ranked). For example, a business rule may

sound as follows:

"If Diagnostic Need is Stronger Than Sensitivity Level

 Then Document Access should be Allowed"

Here the Diagnostic Need could belong to the ranking list:

1. Immediately Life-Threatening

2. Life-Threatening

3. Acute

4. Chronic.

Similarly the Sensitivity Level could belong to this ranking list:

1. High

2. Mid

3. Low.

Newly defined custom templates allow us to present the relations between

these two ranking lists in the following decision table of the new type

"DecisionTableCompareRanks":

Then the above rule may be expressed using the following decision table of the

new type "DecisionTableRanking":

OpenRules, Inc. OpenRules® User Manual

47

To define "Stronger/Weaker" relations between these ranks, this decision table

will automatically invoke the decision table with the dynamically defined

name "Compare<rank1>With<rank2>" (after removing all spaces).

The benefits of these new types of decision tables become clear when you think

about supporting hundreds of similar ranking lists. These tables may cover

complex relationships between multiple ranking lists and at the same time

they remain easy to understand and to be maintained by business users.

The complete working example "DecisionRankingLists" with the proper

custom templates (see file "RankTemplates.xls") is included into the standard

OpenRules® installation.

RULE TABLES

OpenRules® supports several ways to represent business rules inside Excel

tables. Default decision table is the most popular way to present sets of related

business rules because they do not require any coding. However, there classical

decision tables can represent more complex execution logic that is frequently

custom for different conditions and actions.

Actually, standard DecisionTable is a special case of an OpenRules® single-hit

decision table that is based on a predefined template (see below). Since 2003,

OpenRules® allows its users to configure different types of custom decision tables

directly in Excel. In spite of the necessity to use Java snippets to specify custom

logic, these tables are successfully used by major corporations in real-world

decision support applications. This chapter describes different decision tables

that go beyond the default decision tables. It will also describe how to use simple

IF-THEN-ELSE statements within Excel-based tables of type "Method".

OpenRules, Inc. OpenRules® User Manual

48

Simple Rule Table

Let's consider a simple set of HelloWorld rules that can be used to generate a

string like "Good Morning, World!" based on the actual time of the day. How one

understands such concepts as "morning", "afternoon", "evening", and "night" is

defined in this simple rules table:

Hopefully, this rule table is not much more difficult to compare with the default

DecisonTable. It states that if the current hour is between 0 and 11, the greeting

should be "Good Morning", etc. You may change Hour From or Hour To if you

want to customize the definition of "morning" or "evening". This table is also

oriented to a business user. However, its first row already includes some

technical information (a table signature):

 Rules void helloWorld(int hour)

Here "Rules" is an OpenRules® keyword for this type of tables. "helloWorld" is

the name of this particular rules table. It tells to an external program or to other

rules how to launch this rules table. Actually, this is a typical description of a

programming method (its signature) that has one integer parameter and returns

nothing (the type "void"). The integer parameter "hour" is expected to contain the

current time of the day. While you can always hide this information from a

business user, it is an important specification of this rule table.

You may ask: where is the implementation logic for this rule table? All rule

tables include additional hidden rows (frequently password protected) that you

can see if you click on the buttons "+" to open the Technical View below:

OpenRules, Inc. OpenRules® User Manual

49

This part of the rule table is oriented to a technical user, who is not expected to

be a programming guru but rather a person with a basic knowledge of the "C"

family of languages which includes Java. Let's walk through these rows step by

step:

- Row "Condition and Action Headers" (see row 4 in the table above). The

initial columns with conditions should start with the letter "C", for example

"C1", "Condition 1". The columns with actions should start with the letter

"A", for example "A1", "Action 1".

- Row "Code" (see row 5 in the table above). The cells in this row specify the

semantics of the condition or action associated with the corresponding

columns. For example, the cell B5 contains the code min <= hour. This

means that condition C1 will be true whenever the value for min in any cell

in the column below in this row is less than or equals to the parameter hour.

If hour is 15, then the C1-conditions from rows 8 and 9 will be satisfied.

The code in the Action-columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the code:

 System.out.println(greeting + ", World!")

This code will print a string composed of the variable greeting and ", World!",

where greeting will be chosen from a row where all of the conditions are

OpenRules, Inc. OpenRules® User Manual

50

satisfied. Again, if hour is 15, then both conditions C1 and C2 will be

satisfied only for row 9 (because 9 <= 15 <= 17). As a result, the words "Good

Afternoon, World!" will be printed. If the rule table does not contain a row

where all conditions have been satisfied, then no actions will be executed.

Such a situation can be diagnosed automatically.

- Row "Parameters" (see row 6 in the table above). The cells in this row specify

the types and names of the parameters used in the previous row.

- Row "Display Values" (see row 7 in the table above). The cells in this row

contain a natural language description of the column content.

The same table can be defined a little bit differently using one condition code for

both columns "min" and "max":

How Rule Tables Are Organized

As you have seen in the previous section, rule tables have the following

structure:

Row 1: Signature

Rules void tableName(Type1 par1, Type2 par2, ..) - Multi-Hit Rule Table

Rules <JavaClass> tableName(Type1 par1, Type2 par2, ..) - Single-Hit Rule

Table

Row 2: Condition/Action Indicators

OpenRules, Inc. OpenRules® User Manual

51

The condition column indicator is a word starting with “C”.

The action column indicator is a word starting with “A”.

All other starting characters are ignored and the whole column is considered

as a comment

Row 3: Code

The cells in each column (or merged cells for several columns) contain Java

Snippets.

Condition codes should contain expressions that return Boolean values.

If an action code contains any correct Java snippet, the return type is

irrelevant.

Row 4: Parameters

Each condition/action may have from 0 to N parameters. Usually there is

only one parameter description and it consists of two words:

 parameterType parameterName

Example: int min

parameterName is a standard one word name that corresponds to Java

identification rules.

parameterType can be represented using the following Java types:

- Basic Java types: boolean, char, int, long, double,

String, Date

- Standard Java classes: java.lang.Boolean,

java.lang.Integer, java.lang.Long, java.lang.Double,

java.lang.Character, java.lang.String, java.util.Date

- Any custom Java class with a public constructor that has a String

parameter

- One-dimensional arrays of the above types.

Multiple parameters can be used in the situations when one code is used for

several columns. See the standard example “Loan1.xls”.

OpenRules, Inc. OpenRules® User Manual

52

Row 5: Columns Display Values

Text is used to give the column a definition that would be meaningful to

another reader (there are no restrictions on what text may be used).

Row 6 and below: Rules with concrete values in cells

Text cells in these rows usually contain literals that correspond to the

parameter types.

For Boolean parameters you may enter the values "TRUE" or "FALSE" (or

equally "Yes" or "No") without quotations.

Cells with Dates can be specified using java.util.Date. OpenRules® uses

java.text.DateFormat.SHORT to convert a text defined inside a cell into

java.util.Date. Before OpenRules® 4.1 we recommended our

customers not to use Excel's Date format and define Date fields in Excel as

Text fields. The reason was the notorious Excel problem inherited from a

wrong assumption that 1900 was a leap year. As a result, a date entered in

Excel as 02/15/2004 could be interpreted by OpenRules® as 02/16/2004.

Starting with release 4.1 OpenRules® correctly interprets both Date and Text

Excel Date formats.

Valid Java expression (Java snippets) may be put inside table cells by one

of two ways:

- by surrounding the expression in curly brackets, for example: {

driver.age+1; }

- by putting ":=" in front of your Java expression, for example:

:=driver.age+1

Make sure that the expression's type corresponds to the parameter

type.

Empty cells inside rules means "whatever" and the proper condition is

automatically considered satisfied. An action with an empty value will be

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRules® User Manual

53

ignored. If the parameter has type String and you want to enter a space

character, you must explicitly enter one of the following expressions:

:= " "

'= " "

{ " "; }

Note. Excel is always trying to "guess" the type of text inside its cells and

automatically converts the internal representation to something that may not be

exactly what you see. For example, Excel may use a scientific format for certain

numbers. To avoid a "strange" behavior try to explicitly define the format "text"

for the proper Excel cells.

Separating Business and Technical Information

During rules harvesting, business specialists initially create rule tables using

regular Excel tables. They put a table name in the first row and column names in

the second row. They start with Conditions columns and end with Action

columns. For example, they can create a table with 5 columns [C1,C2,C3,A1,A2]

assuming the following logic:

 IF conditions C1 and C2 and C3 are satisfied

 THEN execute actions A1 and A2

Then, a business specialist provides content for concrete rules in the rows below

the title rows.

As an example, let's consider the rule table "defineSalutation" with the rules that

define how to greet a customer (Mr., Ms, or Mrs.) based on his/her gender and

marital status. Here is the initial business view (it is not yet syntactically

correct):

OpenRules, Inc. OpenRules® User Manual

54

A business analyst has initially created only five rows:

- A signature "Rules defineSalutation" (it is not a real signature yet)

- A row with column titles: two conditions "Gender", "Marital Status" and one

action "Set Salutation"

- Rows with three rules that can be read as:

1) IF Gender is “Male” THEN Set Salutation “Mr."

2) IF Gender is “Female” and Marital Status is “Married” THEN Set Salutation “Mrs.”

3) IF Gender is “Female” and Marital Status is “Single” THEN Set Salutation “Ms.”

While business specialists continue to define such rule tables, at some point a

technical specialist should take over and add to these tables the actual

implementation. The technical specialist (familiar with the software

environment into which these rules are going to be embedded) talks to the

business specialist (author of the rule table) about how the rules should be used.

In the case of the "defineSalutation" rule table, they agree that the table will be

used to generate a salutation to a customer. So, the technical specialist decides

that the table will have two parameters:

1) a customer of the type Customer

2) a response of the type Response

The technical specialist will modify the signature row of the table to look like

this:

Rules void defineSalutation(Customer customer, Response response)

Then she/he inserts three more rows just after the first (signature) row:

OpenRules, Inc. OpenRules® User Manual

55

- Row 2 with Condition/Action indicators

- Row 3 with Condition/Action implementation

- Row 4 with the type and name of the parameters entered in the proper column.

Here is a complete implementation of this rule table:

The rules implementer will decide that to support this rule table, type Customer

should have at least two attributes, "gender" and "maritalStatus", and the type

Response should be able somehow to save different pairs (names,value)

like("salutation","Mr."). Knowing the development environment, s/he will decide

on the types of attributes. Let's assume that both types Customer and Response

correspond to Java classes, and the attributes have the basic Java type of String.

In this case, the column "Gender" will be marked with a parameter "String

gender" and the condition will be implemented as a simple boolean expression:

 customer.gender.equals(gender)

The second column "C2" is implemented similarly with a String attribute and a

parameter maritalStatus. Finally (to make it a little bit more complicated), we

will assume that the class Response contains an attribute map of the predefined

Java type HashMap, in which we can put/get pairs of Strings. So, the

implementation of the action "Set Salutation" will look like:

 response.map.put("salutation",salutation)

OpenRules, Inc. OpenRules® User Manual

56

How Rule Tables Are Executed

The rules inside rule tables are executed one-by-one in the order they are placed

in the table. The execution logic of one rule (row in the vertical table) is the

following:

 IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all

other conditions in the same rule (row) are ignored and are not evaluated. The

absence of a parameter in a condition cell means the condition is always

true. Actions are evaluated only if all conditions in the same row are evaluated

to be true and the action has non-empty parameters. Action columns with no

parameters are ignored.

For the default vertical rule tables, all rules are executed in top-down order.

There could be situations when all conditions in two or more rules (rows) are

satisfied. In that case, the actions of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.

For horizontal rule tables, all rules (columns) are executed in left-to-right order.

Relationships between Rules inside Rule Tables

OpenRules® does not assume any implicit ("magic") execution logic, and executes

rules in the order specified by the rule designer. All rules are executed one-by-

one in the order they are placed in the rule table. There is a simple rule that

governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports the following types of rule tables that offer different

execution logic to satisfy different practical needs:

- Multi-hit rule tables

- Single-hit rule tables

- Rule Sequences.

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

57

Multi-Hit Rule Tables

A multi-hit rule table evaluates conditions in ALL rows before any action is

executed. Thus, actions are executed only AFTER all conditions for all rules

have already been evaluated. From this point of view, the execution logic is

different from traditional programming if-then logic. Let us consider a simple

example. We want to write a program "swap" that will do the following:

 If x is equal to 1 then make x to be equal to 2.

 If x is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

 void swapX(App app) {

 if (app.x == 1) app.x = 2;

 if (app.x == 2) app.x = 1;

 }

Obviously, this method will produce an incorrect result because of the missing

"else". This is “obvious” to a software developer, but may not be at all obvious to

a business analyst. However, in a properly formatted rule table the following

representation would be a completely legitimate:

It will also match our plain English description above. Here is the same table

with an extended technical view:

OpenRules, Inc. OpenRules® User Manual

58

Rules Overrides in Multi-Hit Rule Tables

There could be situations when all conditions in two or more rules (rows) are

satisfied at the same time (multiple hits). In that case, the actions of all rules

(rows) will be executed, but the actions in the rows below can override the

actions of the rows above. This approach also allows a designer to specify a very

natural requirement:

 More specific rules should override more generic rules!

The only thing a designer needs to guarantee is that "more specific" rules are

placed in the same rule table after "more generic" rules. For example, you may

want to execute Action-1 every time that Condition-1 and Condition-2 are

satisfied. However, if additionally, Condition-3 is also satisfied, you want to

execute Action-2. To do this, you could arrange your rule table in the following

way:

Condition-1 Condition-2 Condition-3 Action-1 Action-2

X X

X

X X X

X

In this table the second rule may override the first one (as you might naturally

expect).

OpenRules, Inc. OpenRules® User Manual

59

Let's consider the execution logic of the following multi-hit rule table that defines

a salutation "Mr.", "Mrs.", or "Ms." based on a customer's gender and marital

status:

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

If a customer is a married female, the conditions of the second rules are satisfied

and the salutation "Mrs." will be selected. This is only a business view of the

rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)

C1 C2 A1

customer.gender.
equals(gender)

customer.maritalStatus.
equals(status)

response.map.put("salutation",s
alutation);

String gender String status String salutation

Gender Marital Status Set Salutation

Male

Mr.

Female Married Mrs.

Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.

For each row if conditions C1 and C2 are satisfied then the action A1 will be

executed with the selected "salutation". We may add one more rule at the very

end of this table:

Rules void defineSalutation(Customer customer, Response
response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

OpenRules, Inc. OpenRules® User Manual

60

In this case, after executing the second rule OpenRules® will also execute the

new, 4th rule and will override a salutation "Mrs." with "???". Obviously this is

not a desirable result. However, sometimes it may have a positive effect by

avoiding undefined values in cases when the previous rules did not cover all

possible situations. What if our customer is a Divorced Female?! How can this

multi-hit effect be avoided? What if we want to produce "???" only when no other

rules have been satisfied?

Single-Hit Rule Tables

To achieve this you may use a so-called "single-hit" rule table, which is specified

by putting any return type except "void" after the keyword "Rules". The

following is an example of a single-hit rule table that will do exactly what we

need:

Rules String defineSalutation(Customer customer, Response
response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

Another positive effect of such "single-hitness" may be observed in connection

with large tables with say 1000 rows. If OpenRules® obtains a hit on rule #10 it

would not bother to check the validity of the remaining 990 rules.

Having rule tables with a return value may also simplify your interface. For

example, we do not really need the special object Response which we used to

write our defined salutation. Our simplified rule table produces a salutation

without an additional special object:

OpenRules, Inc. OpenRules® User Manual

61

Rules String defineSalutation(Customer customer)

C1 C2 A1

customer.gender.
equals(gender)

customer.maritalStatus
.equals(status)

return salutation;

String gender String status String salutation

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

Please note that the last action in this table should return a value that has the

same type as the entire single-hit table. The single-hit table may return any

standard or custom Java class such as String or Customer. Instead of basic Java

types such as "int" you should use the proper Java classes such as Integer in the

table signature.

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args) {

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine =

 new OpenRulesEngine(fileName);

 Customer customer = new Customer();

 customer.setName("Robinson");

 customer.setGender("Female");

 customer.setMaritalStatus("Married");

 String salutation =

 (String)engine.run("defineSalutation", customer);

 System.out.println(salutation);

}

Rule Sequences

There is one more type of rule tables called “Rule Sequence” that is used mainly

internally within templates. Rule Sequence can be considered as a multi-hit rule

table with only one difference in the execution logic, conditions are not evaluated

before execution of the actions. So, all rules will be executed in top-down order

with possible rules overrides. Rule actions are permitted to affect the conditions

of any rules that follow the action. The keyword “Rules” should be replaced with

OpenRules, Inc. OpenRules® User Manual

62

another keyword “RuleSequence”. Let’s get back to our “swapX” example. The

following multi-hit table will correctly solve this problem:

However, a similar rule sequence

will fail because when x is equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships among Rule Tables

In most practical cases, business rules are not located in one file or in a single

rule set, but rather are represented as a hierarchy of inter-related rule tables

located in different files and directories - see Business Rules Repository.

Frequently, the main Excel-file contains a main method that specifies the

execution logic of multiple decision tables. You may use the table “Decision” for

the same purposes. In many cases, the rule engine can execute decision tables

directly from a Java program – see API.

OpenRules, Inc. OpenRules® User Manual

63

Because OpenRules® interprets rule tables as regular methods, designers of rules

frequently create special "processing flow" decision tables to specify the

conditions under which different rules should be executed. See examples of

processing flow rules in such sample projects as Loan2 and LoanDynamics.

Simple AND / OR Conditions in Rule Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

 if (A>5 && B >10) {do something}

you may use the rule table:

Rules void testAND(int a, int b)

C1 C2 A1

a > 5 b>10 System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X X Something

To express the OR logic

 if (A>5 || B >10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

C1 C2 A1

a > 5 b>10 System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X
Something

 X

Sometimes instead of creating a decision table it is more convenient to represent

rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

OpenRules, Inc. OpenRules® User Manual

64

Method void testOR(int a, int b)

 if (a > 5 || b>10) System.out.println("Something");

Horizontal and Vertical Rule Tables

Rule tables can be created in one of two possible formats:

- Vertical Format (default)

- Horizontal Format.

Based on the nature of the rule table, a rules creator can decide to use a vertical

format (as in the examples above where concrete rules go vertically one after

another) or a horizontal format where Condition and Action are located in the

rows and the rules themselves go into columns. Here is an example of the proper

horizontal format for the same rule table "helloWorld":

OpenRules® automatically recognizes that a table has a vertical or a horizontal

format. You can use Excel's Copy and Paste Special feature to transpose a rule

table from one format to another.

Note. When a rule table has too many rules (more than you can see on one page)

it is better to use the vertical format to avoid Excel's limitations: a worksheet has

a maximum of 65,536 rows but it is limited to 256 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by

Excel and other standard table editing tools. Here is an example of a rule table

with merged cells:

OpenRules, Inc. OpenRules® User Manual

65

Rules void testMerge(String value1, String value2)

Rule C1 C2 A1 A2

 value1.equals(val) value2.equals(val) out("A1: " + text);
out("A2: " +

text);

 String val String val String text String text

Name Value Text 1 Text 2

1

B

One
11+21

12

2 Two 22

3
Three

31 32

4 D 41 42

The semantics of this table is intuitive and described in the following table:

Value

1

Value

2

Applied

Rules

Printed

Results

B One 1
A1: 11+21

A2: 12

B Two 2
A1: 11+21

A2: 22

B Three 3
A1: 31

A2: 32

D Three 4
A1: 41

A2: 42

A Two none

D Two none

Restriction. We added the first column with rules numbers to avoid the known

implementation restriction that the very first column (the first row for horizontal

rule tables) cannot contain merged rows. More examples can be found in the

standard rule project "Merge" - click here to analyze more rules. When you use

the standard decision tables, you may put the standard condition “C#” in the

very first column and use numbers to mark each table’s row.

Sub-Columns and Sub-Rows for Dynamic Arrays

One table column can consist of several sub-columns (see sub-columns "Min" and

"Max" in the example above). You may efficiently use the Excel merge

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRules® User Manual

66

mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub-columns:

As you can see, condition C6 contains 4 sub-columns for different combinations of

rates. The cells in the Condition, code, parameters and display values, rows are

merged. You can insert more sub-columns (use Excel's menu "Insert") to handle

more rate combinations if necessary without any changes in the code. The

parameter row is defined as a String array, String[] rates. The actual values

of the parameters should go from left to right and the first empty value in a sub-

column should indicate the end of the array "rates". You can see the complete

example in the rule table "Rule Family 212" in the file Loan1.xls.

If your rule table has a horizontal format, you may use multiple sub-rows in a

similar way (see the example in file UpSell.xls).

Using Expressions inside Rule Tables

OpenRules® allows a rules designer to use “almost” natural language expressions

inside rule tables to represent intervals of numbers, strings, dates, etc. You also

may use Java expressions whenever necessary.

Integer and Real Intervals

You may use plain English expressions to define different intervals for integer

and real decision variables inside rule tables. Instead of creating multiple

columns for defining different ranges for integer and real values, a business user

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRules® User Manual

67

may define from-to intervals in practically unlimited English using such phrases

as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",

"17 and older", "< 50", ">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by

specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5, 6, 7, 8, 9, and 10

5;10 contains 5, 6, 7, 8, 9, and 10

[5,10) contains 5 but not 10

5 - 10 contains 5 and 10

5-10 contains 5 and 10

5- 10 contains 5 and 10

-5 - 20 contains -5 and 20

-5 - -20
 error: left bound is greater than the right

one

-5 - -2 contains -5 , -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5 does not contain 5

more 10 does not contain 10

more than 10 does not contain 10

10+ more than 10

>10 does not contain 10

>=10 contains 10

between 5 and 10 contains 5 and 10

no less than 10 contains 10

no more than 5 contains 5

OpenRules, Inc. OpenRules® User Manual

68

equals to 5 equals to 5

greater or equal than 5

and less than 10
 contains 5 but not 10

more than 5 less or

equal than 10
 does not contain 5 and contains 10

more than 5,111,111

and less or equal than

10,222,222

 does not contain 5,111,111 and contains

10,222,222

[5'000;10'000'000) contains 5,000 but not 10,000,000

[5,000;10,000,000) contains 5,000 but not 10,000,000

(5;100,000,000] contains 5,000 and 10,000,000

You may use many other ways to represent integer intervals as you usually do in

plain English. The only limitation is the following: min should always go

before max!

Similarly to integer intervals, one may use the predefined

type FromToDouble to represent intervals of real numbers. The bounds of

double intervals could be integer or real numbers such as [2.7; 3.14).

Comparing Integer and Real Numbers

You may use the predefined type CompareToInt to compare a decision variable

with an integer number that is preceded by a comparison operator. Examples of

acceptable operators:

Cell Expression Comment

<= 5 less or equals to 5

< 5 strictly less than 5

> 5 strictly more than 5

>= 5 more or equals to 5

!= not equal to 5

5

equals to 5.

Note that absence of a comparison operator means

equality. You cannot use an explicit operator "=" (not to

be confused with Excel's formulas).

OpenRules, Inc. OpenRules® User Manual

69

Similarly to CompareToInt one may use the predefined type CompareToDouble

to represent comparisons with real numbers. The comparison values may be

presented as integer or real numbers, e.g. "<= 25.4" and "> 0.5".

Using Comparison Operators inside Rule Tables

A user can employ a comparison operators such as "<" for "less" or ">" for "more"

directly inside the rules. There are several ways to accomplish this. Here is an

example from the rule table "Rule Family 212" (Loan1.xls):

You may use the Excel Data Validation menu to limit the choice of the operators:

http://openrules.com/docs/xls/Loan1.xls

OpenRules, Inc. OpenRules® User Manual

70

Here the sign "==" has an apostrophe in front to differentiate it from an Excel

formula. The actual implementation of possible comparison operators is

provided as an example in the project "com.openrules.tools"

(see com.openrules.tools.Operator.java). You may change them or add

other operators. In addition to values of the type "int" you may also use Operator

to compare long, double, and String types.

Comparing Dates

You may use the standard java.util.Date or any other Java Comparable type.

Here is an example of comparing Dates:

C1

op.compare(visit.date,date)

Operator op Date date

Operator Date

== 2/15/2007

!= 1/1/2007

<= 2/15/2007

> 2/15/2007

< 2/15/2007

OpenRules, Inc. OpenRules® User Manual

71

Please note that the current implementation compares dates without time.

Another way to use operators directly inside a table is to use expressions. In the

example above, instead of having two sub-columns "Operator" and "Value" we

could use one column and put an expression inside the cell:

{ c.creditCardBalance <= 0; }

The use of expressions is very convenient when you do not know ahead of time

which operator will be required for which columns.

Comparing Boolean Values

If a parameter type is defined as "boolean", you are allowed to use the following

values inside rule cells:

- True, TRUE, Yes, YES

- False, FALSE, No, NO

You also may use formulas that produces a Boolean, .e.g.

{ loan.additionalIncomeValidationNeeded; }

Sometimes, you want to indicate that a condition is satisfied or an action should

be executed. You may use any character like X or * without checking its actual

value – the fact that the cell is not empty indicates that the condition is true. For

example, in the following table (from the standard project VacationDays)

http://openrules.com/docs/man_rules.html#Using Expressions Inside Decision Tables

OpenRules, Inc. OpenRules® User Manual

72

only actions marked with "X" will be executed. You can use any other character

instead of "X".

Representing String Domains

Let's express a condition that validates if a customer's internal credit score is one

of several acceptable rates such as "A B C" and "D F". To avoid the necessity to

create multiple sub-columns for similar conditions, we may put all possible string

values inside the same cell and separate them by spaces or commas. Here is an

example of such a condition:

Condition

domain.contains(customer.internalCreditRating)

DomainString domain

Internal Credit Rating

A B C

D F

D F

A B C

Here we use the predefined type DomainString that defines a domain of strings

(words) separated by whitespaces. The method "contains(String string)" of

the class DomainString checks if the parameter "string" is found among all

strings listed in the current "domain". You also may use the method

OpenRules, Inc. OpenRules® User Manual

73

"containsIgnoreCase(String string)" that allows you to ignore case

during the comparison.

If possible values may contain several words, one may use the predefined

type DomainStringC where "C" indicates that commas will be used as a string

separator. For example, we may use DomainStringC to specify a domain such

as "Very Hot, Hot, Warm, Cold, Very Cold".

Representing Domains of Numbers

If you need to represent domains of integer or double values, there are several

predefined types similar to DomainString:

 DomainInt

 DomainIntC

 DomainDouble

 DomainDoubleC

For example, here is a condition column with eligible loan terms:

Condition

domain.contains(c.loanTerm)

DomainIntC domain

Eligible Loan Terms

24,36,72

36,72

72

Using Java Expressions

The use of Java expressions provides the powerful ability to perform calculations

and test for complex logical conditions. While the writing of expressions requires

some technical knowledge, it does not require the skills of a programmer. Real-

world experience shows that business analysts frequently have a need to write

these expressions themselves. It is up to the rule table designer to decide

OpenRules, Inc. OpenRules® User Manual

74

whether to show the expressions to business people or to hide them from view.

Let's consider a decision table for "Income Validation" from the provided

standard example “Loan1”:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 A1

customer.monthlyIncome * 0.8 -
customer.monthlyDebt > loan.amount/loan.term

loan.incomeValidationResult
= result;

boolean condition String result

IF
Income is Sufficient for the Loan

THEN
Set Income Vaidation

Result

 No UNSUFFICIENT

Yes SUFFICIENT

Here the actual income validation expression is hidden from business people inside "gray"

technical rows, and a business person would only be able to choose between "Yes" or "No".

However, the same table could be presented in this way:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 A1

condition == true
loan.incomeValidationResult

= result;

boolean condition String result

IF
Condition is True

THEN
Set Income Validation

Result

 UNSUFFICIENT

:= customer.monthlyIncome * 0.8 -
customer.monthlyDebt > loan.amount/loan.term

SUFFICIENT

Now, a user can both see and change the actual income validation condition.

OpenRules, Inc. OpenRules® User Manual

75

Notes: Do not use Excel's formulas if you want the content to be recognized by

the OpenRules® engine: use OpenRules® expressions instead.

If you want to start your cell with "=" you have to put an apostrophe in front of it

i.e. '= to direct Excel not to attempt to interpret it as a formula.

Expanding and Customizing Predefined Types

All the predefined types mentioned above are implemented in the Java

package com.openrules.types. You may get the source code of this package

and expand and/or customize the proper classes. In particular, for

internationalization purposes you may translate the English key words into your

preferred language. You may change the default assumptions about

inclusion/exclusion of bounds inside integer and real intervals. You may add

new types of intervals and domains.

Performance Considerations

The use of expressions inside OpenRules® tables comes with some price - mainly

in performance, for large rule tables. This is understandable because for every

cell with an expression OpenRules® will create a separate instance of the proper

Java class during rules execution. However, having multiple representation

options allows a rule designer to find a reasonable compromise between

performance and expressiveness.

RULE TEMPLATES

OpenRules® provides a powerful yet intuitive mechanism for compactly

organizing enterprise-level business rules repositories. Rule templates allow

rule designers to write the rules logic once and use it many times. With rule

templates you may completely hide rules implementation details from business

users. OpenRules® supports several rule templatization mechanisms from simple

rule tables that inherit the exact structure of templates to partial template

implementations.

OpenRules, Inc. OpenRules® User Manual

76

Simple Rules Templates

Rule templates are regular rule tables that serve as structural prototypes for

many other rule tables with the same structure but different content (rules). A

simple rule template usually does not have rules at all but only specifies the

table structure and implementation details for conditions and actions. Thus, a

simple rule template contains the first 5 rows of a regular decision table as in the

following example:

Rules void defineGreeting(App app, int hour)
Signature with

parameters

C1 A1
Conditions and Actions

identifiers

min <= hour && hour <=

max
app.greeting =

greeting;

Java snippets describe

condition/action

semantics

int min int max String greeting
Parameter types and

names

Hour From Hour To Set Greeting
Business names for

conditions and actions

We may use this rule table as a template to define different greeting rules for

summer and winter time. The actual decision tables

will implement (or extend) the template table with particular rules:

Rules summerGreeting template defineGreeting

Hour

From
Hour To Set Greeting

0 10 Good Morning

11 18 Good Afternoon

19 22 Good Evening

23 24 Good Night

and

Rules winterGreeting template defineGreeting

Hour

From
Hour To Set Greeting

0 11 Good Morning

12 17 Good Afternoon

OpenRules, Inc. OpenRules® User Manual

77

18 22 Good Evening

23 24 Good Night

Note that rule tables "summerGreeting" and "winterGreeting" do not have

technical information at all - Java snippets and a signature are defined only once

and reside in the template-table "defineGreeting".

Along with the keyword "template" you may use other keywords:

 implements

 implement

 extends

 extend

We will refer to these rule tables created based on a template as "template

implementations".

Simple templates require that the extended tables should have exactly the same

condition and action columns.

Defining Rules based on Templates

When many rule tables are created based on the same rule template, it could be

inconvenient to keep the same default rules in all extended tables. As an

alternative you may add the rules tables based on the same template. The

location of the default rules depends on the types of your rules tables.

Templates for Single-Hit Rule Tables

Single-hit rule tables usually end their execution when at least one rules is

satisfied. However, when conditions in all specified rules are not satisfied then a

single-hit table usually uses the last rule(s) to specify the default action(s). The

rules from the template will be executed after the actual rules defined inside

the template implementation.

OpenRules, Inc. OpenRules® User Manual

78

Let's consider an example. We have shown that without modification, the rule

tables above would not produce any greeting if the parameter "hour" is outside of

the interval [0;24]. Instead of adding the same error message in both "summer"

and "winter" rules, we could do the following:

- make our "defineGreeting" template a single-hit table by changing a return

type from "void" to "String"

- - add the default reaction to the error in "hour" directly to the template:

Rules String defineGreeting(App app, int hour)
Signature now returns

String

C1 A1
Conditions and Actions

identifiers

min <= hour &&

hour <= max
app.greeting =

greeting; return greeting;
"return greeting;" has been

added

int min int max String greeting Parameter types and names

Hour

From
Hour To Set Greeting Business names for

conditions and actions

 ERROR: Invalid Hour

This rule will be added at

the end of all template

implementations tables. The

error message will be return

instead of a greeting when

all other rules fail.

A template for single-hit tables could include more than one rule with different

conditions - they all will be added at the end of the template

implementation tables to execute different default actions.

Templates for Multi-Hit Rule Tables

Multi-hit rule tables execute all their rules that are satisfied, allowing rules

overrides. However, when conditions in all specified rules are not satisfied then a

multi-hit table usually uses the first (!) rules to specify the default action. The

rules from the template will be executed before the actual rules defined inside

the extended tables.

Let's consider an example. You may notice that the rules tables above would not

produce any greeting if the parameter "hour" is outside of the interval [0;24].

http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables
http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables

OpenRules, Inc. OpenRules® User Manual

79

Let's assume that in this case we want to always produce the default greeting

"How are you". To do this, simply add one default rule directly to the template:

Rules void defineGreeting(App app, int hour)

C1 A1

min <= hour &&

hour <= max
app.greeting = greeting;

int min int max String greeting

 How are you

This rule will be added at
the beginning of all
template implementations.
This greeting will be
produced if all other rules
in the rule tables fail

A template for multi-hit tables could include more than one default rule each

with different conditions - they all will be added to the beginning of the template

implementation tables and will execute different default actions.

Partial Template Implementation

Usually template implementation tables have exactly the same structure as the

rule templates they extend. However, sometimes it is more convenient to build

your own rule table that contains only some conditions and actions from already

predefined rule templates. This is especially important when a library of rule

templates for a certain type of business is used to create a concrete rules-based

application. How can this be achieved?

The template implementation table uses its second row to specify the names of

the used conditions and actions from the template. Let's consider an example.

The DebtResearchRules from the standard OpenRules® example "Loan

Origination" may be used as the following template:

OpenRules, Inc. OpenRules® User Manual

80

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1 C2 C3 C4 C5 C6 C7 A1

c.mortgag
eHolder.eq
uals(YN)

c.outsideCredit
Score>min &&
c.outsideCredit
Score<=max

c.loanHol
der.equal
s(YN)

op.compare(c.
creditCardBala

nce,value)

op.compare(c.e
ducationLoanBa

lance,value)

contains(r
ates,c.inte
rnalCredit
Rating)

c.internalA
nalystOpin
ion.equals
(level)

loan.debt
Research
Result =
level;

String YN int min
int

max
String YN

Opera
tor op

int
value

Operat
or op

int value
String[]
rates

String
level

String
level

IF
Mortgage

Holder

AND
Outside

Credit Score
AND
Loan

Holder

AND
Credit Card

Balance

AND
Education

Loan
Balance

AND
Internal
Credit
Rating

AND
Internal
Analyst
Opinion

THEN
Debt

Research
Recomme
ndations Min Max Oper Value Oper Value

We may create a rule table that implements this template using only conditions

C1, C2, C5, C6 and the action A1:

Rules MyDebtResearchRules template DebtResearchRules

C1 C2 C5 C6 A1

IF
Mortgage

Holder

AND
Outside Credit

Score

AND
Education Loan

Balance
AND

Internal Credit Rating

THEN
Debt

Research
Recommen

dations
Min Max Oper Value

Yes High

No 100 550 High

No 550 900 Mid

No 550 900 > 0 High

No 550 900 <= 0 A B C High

No 550 900 <= 0 D F Mid

No 550 900 Low

No 550 900 <= 0 Low

No 550 900 > 0 D F High

No 550 900 > 0 A B C Low

The additional second row specifies which conditions and actions from the

original template are selected by this rule table. The order of conditions and

actions may be different from the one defined in the template. Only names like

"C2", "C6", and "A1" should be the same in the template and in its

implementation. It is preferable to use unique names for conditions and actions

inside templates. If there are duplicate names inside templates the first one

OpenRules, Inc. OpenRules® User Manual

81

(from left to right) will be selected. You may create several columns using the

same condition and/or action names.

Templates with Optional Conditions and Actions

There is another way to use optional conditions and actions from the templates.

If the majority of the template implementations do not use a certain condition

from the template, then this condition may be explicitly marked as optional by

putting the condition name in brackets, e.g. "[C3]" or "[Conditon-5]". In this

case it is not necessary to use the second row to specify the selected conditions in

the majority of the extended tables. For example, let's modify the

DebtResearchRules template making the conditions C3, C4, and C7 optional:

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1

C2 [C3] [C4] C5 C6 [C7] A1

Now we can implement this template as the following rule table without the

necessity to name all of the conditions and actions in the second row:

Rules MyDebtResearchRules template DebtResearchRules

IF
Mortgag
e Holder

AND
Outside
Credit
Score

AND
Education Loan

Balance
AND

Internal Credit Rating

THEN
Debt

Research
Recommend

ations Min Max Oper Value

Yes High

No 100 550 High

No 550 900 Mid

No 550 900 > 0 High

No 550 900 <= 0 A B C High

No 550 900 <= 0 D F Mid

No 550 900 Low

No 550 900 <= 0 Low

No 550 900 > 0 D F High

No
55
0

90
0

> 0 A B C Low

OpenRules, Inc. OpenRules® User Manual

82

However, a template implementation that does want to use optional conditions

will have to specify them explicitly using the second row:

Rules MyDebtResearchRules template DebtResearchRules

C1 C2 C3 C4 C5 C6 A1

IF
Mortgag
e Holder

AND
Outside

Credit Score

AND
Loan

Holder

AND
Credit Card

Balance

AND
Education

Loan Balance

AND
Internal Credit

Rating

THEN
Debt

Research
Recomm
endations Min Max Oper Value Oper Value

Yes High

No 100 550 High

No 550 900 Yes <= 0 Mid

No 550 900 Yes > 0 > 0 High

No 550 900 Yes > 0 <= 0 A B C High

No 550 900 Yes > 0 <= 0 D F Mid

No 550 900 No > 0 Low

Similarly, optional actions may be marked as [A1]" or "[Action3]".

Implementation Notes:

o Rule templates are supported for both vertical and horizontal rule tables.

o The keywords "extends" or "implements" may be used instead of the

keyword "template"

o Template implementations cannot be used as templates themselves.

Templates for the Default Decision Tables

The rule tables of the type “DecisionTable” are implemented using several

templates located in the following files inside the configuration project

“openrules.config”:

- DecisionTemlates.xls: contains the following rule templates and

methods for the decision tables:

o DecisionTemplate(Decision decision): a template for the

tables of type “Decision”

o initializeDecision(): the method that initializes the current decision

o decision(): the method that returns the current decision

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

83

o getGlossary(): the method that returns the glossary

o getDecisionObject(String nameofBusinessConcept): the

method that returns a business object associated with the

BusinessConcept

o isTraceOn(): returns true if the tracing of the decision is on

o DecisionObjectTemplate(Decision decision): a template for

the table of the type “DecisionObject”

o GlossaryTemplate(Decision decision): a template for the table

of type “Glossary”

o Methods that return values of decision variables based on their names:

 int getInt(String name)

 double getReal(String name)

 String getString(String name)

 Date getDate(String name)

 boolean getBool(String name)

o Methods that set values of decision variables based on their names:

 void getInt(String name, int value)

 void getReal(String name, double value)

 void getString(String name, String value)

 void getDate(String name, Date value)

 void getBool(String name, Boolean value)

o Comparison methods that compare a decision variable with a given “name”,

against a given “value”, or another decision variable using a given operator,

“op”:

 boolean compareInt(String name, String op, int

value)

 boolean compareInt(String name1, String op,

String name2)

 boolean compareReal(String name, String op,

double value)

 boolean compareReal(String name1, String op,

String name2)

OpenRules, Inc. OpenRules® User Manual

84

 boolean compareBool(String name, String op,

boolean value)

 boolean compareBool(String name1, String op,

String name2)

 boolean compareDate(String name, String op,

Date date)

 boolean compareDate(String name1, String op,

String name2)

 boolean compareString(String name, String op,

String value)

 boolean compareDomain(String name, String op,

String domain)

o the Environment table that includes the following references:

 DecisionTable${OPENRULES_MODE}Templates.xls:

where ${OPENRULES_MODE} is an environment variable that has

one of the following values:

 Execute – the default value for Decision Table execution

templates

 Validate –for Decision Table validation templates

 Solve – for execution of decision models using Rule

Solver.

 DecisionTableExecuteTemplates.xls: templates for

execution

 DecisionTableValidateTemplates.xls: templates for

validation

- DecisionTableExecuteTemplates.xls: contains the following rule templates:

o DecisionTableTemplate(): a template for execution of the single-hit

tables of the type “DecisionTable”

o DecisionTable1Template(): a template for execution of the multi-hit

tables of the type “DecisionTable1”

o DecisionTable2Template(): a template for execution of the rule

sequence tables of the type “DecisionTable2”

OpenRules, Inc. OpenRules® User Manual

85

o customInitializeDecision(): the method that can be used for

initialization of custom objects

- DecisionTableValidateTemplates.xls: contains the following rule templates:

o DecisionTableTemplate(): a template for validation of the tables of

type “DecisionTable” against the domains defined in the glossary

o customInitializeDecision(): the method that can be used for the

initialization of custom objects.

Decision Templates

The template “DecisionTemplate” contains two mandatory action columns with

names “ActionPrint” and “ActionExecute” and three optional columns with the

names “Condition”, “ConditionAny”, and “ActionAny”. Here is an example of this

template:

Because you can use the same column “Condition” or “ConditionAny” many times

in your own decision and sub-decision tables, you may create tables of type

“Decision” that are based on this template with virtually unlimited complexity.

Three Major Decision Table Templates

The template “DecisionTableTemplate” serves as a template for all standard

decision tables. All columns in this template are conditional meaning their

names are always required. Here is an example of the first two rows of this

template:

OpenRules, Inc. OpenRules® User Manual

86

Rules String DecisionTableTemplate()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

The actual DecisionTable template is being upgraded with new OpenRules

release and is much larger. Please look at the latest this and other decision table

templates in the file “openrules.config/ DecisionTableExecuteTemplates.xls”.

The template “DecisionTable1Template” serves as a template for all decision

tables of type “DecisionTable1”. Here is an example the first two rows of this

template:

Rules void DecisionTable1Template()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

The template “DecisionTable2Template” serves as a template for all decision

tables of type “DecisionTable2”. Here is an example the first two rows of this

template:

RuleSequence void DecisionTable2Template()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

You can use all these columns as many times as you wish when you may create

concrete decision tables based on these templates. Please check the file

“DecisionTableExecuteTemplates.xls” in your standard configuration project

“openrules.config” to see the latest version of the decision table templates.

Customization

Customizing Default Decision Tables

A user may move the above files from “openrules.config” to different locations

and modify the decision table templates (and possible other templates). For

example, to have different types of messaging inside a custom decision, a user

may add two more columns to the template “DecisionTableTemplate”:

- Warning: similar to Message but can use a different log for warning only

- Errors: similar to Message but can use a different log for errors only.

OpenRules, Inc. OpenRules® User Manual

87

Adding Custom Decision Tables

Users may add their own decision tables with conditions and actions specific to

their applications by defining their own keywords by simply extending the

keyword "DecisionTable" with they own identifier. For example, a user may add

a new decision table type called "DecisionTableMy" by defining the proper

custom conditions and actions inside a template with the name

"DecisionTableMyTemplate". The standard installation includes a project

"DecisionCustom" that demonstrates a custom decision table called

"DecisionTableCustom" created based on a project-specific template

"DecisionTableCustomTemplate". This template is placed in the project file

"DecisionTableCustomTemplates.xls".

Adding Custom Methods to Decision and Decision Runs

The file "DecisionTemplates.xls" contains the default methods:

- customInitializeDecision

- customInitializeDecisionRun

that may be replaced by your own methods. For example, rewriting the method

“customInitializeDecision“ allows a user to initialize custom objects.

These and other methods are described below. For a good example of

customization look at the file "DecisionTableSolveTemplates.xls" that is used by

Rule Solver instead of the file "DecisionTableExecuteTemplates.xls". Contact

support@openrules.com if you need help with more complex customization of the

decision templates.

mailto:support@openrules.com

OpenRules, Inc. OpenRules® User Manual

88

OPENRULES® API

OpenRules® provides an Application Programming Interface (API) that defines a

set of commonly-used functions:

- Creating a rule engine associated with a set of Excel-based rules

- Creating a decision associated with a set of Excel-based rules

- Executing different rule sets using application specific business objects

- Creating a web session and controlling client-server interaction.

OpenRulesEngine API

OpenRulesEngine is a Java class provide by OpenRule® to execute different rule

sets and methods specified in Excel files using application-specific business

objects. OpenRulesEngine can be invoked from any Java application using a

simple Java API or a standard JSR-94 interface.

Engine Constructors

OpenRulesEngine provides an interface to execute rules and methods defined in

Excel tables. You can see examples of how OpenRulesEngine is used in basic rule

projects such as HelloJava, DecisionHellJava, HelloJsr94 and web applications

such as HelloJsp, HelloForms, and HelloWS. To use OpenRulesEngine inside

your Java code you need to add an import statement for

com.openrules.ruleengine.OpenRulesEngine and make sure

that openrules.all.jar is in the classpath of your application. This jar and

all 3rd party jar-files needed for OpenRules® execution can be found in the

subdirectory openrules.config/lib of the standard OpenRules® installation.

You may create an instance of OpenRulesEngine inside of your Java program

using the following constructor:

 public OpenRulesEngine(String xlsMainFileName)

http://openrules.com/docs/man_api.html#OpenRules Implementation of JSR-94 API

OpenRules, Inc. OpenRules® User Manual

89

where xlsMainFileName parameter defines the location for the main xls-file. To

specify a file location, OpenRules® uses an URL pseudo-protocol

notation with prefixes such as "file:", "classpath:", "http://",

"ftp://", "db:", etc. Typically, your main xls-file Main.xls is located in the

subdirectory "rules/main" of your Java project. In this case, its location may be

defined as "file:rules/main/Main.xls". If your main xls-file is located

directly in the project classpath, you may define its location as

"classpath:Main.xls". Use a URL like

 http://www.example.com/rules/Main.xls

when Main.xls is located at a website. All other xls-files that can be invoked

from this main file are described in the table "Environment" using include-

statements.

You may also use other forms of the OpenRulesEngine constructor. For example,

the constructor

 OpenRulesEngine(String xlsMainFileName, String methodName)

allows you to also define the main method from the file xlsMainFileName that

will be executed during the consecutive runs of this engine.

Here is a complete example of a Java module that creates and executes a rule

engine (see HelloJava project):

package hello;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunHelloCustomer {

 public static void main(String[] args) {

 String fileName = "file:rules/main/HelloCustomer.xls";

 String methodName = "helloCustomer";

 OpenRulesEngine engine = new OpenRulesEngine(fileName);

 Customer customer = new Customer();

 customer.setName("Robinson");

 customer.setGender("Female");

OpenRules, Inc. OpenRules® User Manual

90

 customer.setMaritalStatus("Married");

 Response response = new Response();

 Object[] objects = new Object[] { customer, response };

 engine.run(methodName,objects);

 System.out.println("Response: " +

 response.getMap().get("greeting") + ", " +

 response.getMap().get("salutation") +

 customer.getName() + "!");

 }

}

As you can see, when an instance "engine" of OpenRulesEngine is created, you

can create an array of Java objects and pass it as a parameter of the method

"run".

 Engine Runs

The same engine can run different rules and methods defined in its Excel-files.

You may also specify the running method using

 setMethod(String methodName);

or use it directly in the engine run:

 engine.run(methodName,businessObjects);

If you want to pass to OpenRulesEngine only one object such as "customer", you

may write something like this:

 engine.run("helloCustomer",customer);

If you do not want to pass any object to OpenRulesEngine but expect to receive

some results from the engine's run, you may use this version of the method

"run":

 String[] reasons = (String[]) engine.run("getReasons");

OpenRules, Inc. OpenRules® User Manual

91

Undefined Methods

OpenRulesEngine checks to validate if all Excel-based tables and methods are

actually defined. It produces a syntax error if a method is missing. Sometimes,

you want to execute a rule method/table from an Excel file but only if this

method is actually present. To do this, you may use this version of the method

"run":

 boolean mayNotDefined = true;

 engine.run(methodName, businessObjects, mayNotDefined);

In this case, if the method "methodName" is not defined, the engine would not

throw a usual runtime exception "The method <name> is not defined" but rather

will produce a warning and will continue to work. The parameter

"mayNotDefined" may be used similarly with the method "run" with one

parameter or with no parameters, e.g.

 engine.run("validateCustomer", customer, true);

How to invoke rules from other rules if you do not know if these rules are

defined? It may be especially important when you use some predefined rule

names in templates. Instead of creating an empty rules table with the needed

name, you want to use the above parameter "mayNotDefined" directly in Excel.

Let's say you need to execute rules tables with names such as "NJ_Rules" or

"NY_Rules" from another Excel rules table but only if the proper state rules are

actually defined. You may do it by calling the following method from your rules:

Method void runStateRules(OpenRulesEngine engine, Customer customer, Response

response)

String methodName = customer.state + "_Rules";

Object[] params = new Object[2];

params[0] = customer;

params[1] = response;

engine.run(methodName, params, true);

OpenRules, Inc. OpenRules® User Manual

92

We assume here that all state-specific rules ("NJ_Rules", "NY_Rules", etc.) have

two parameters, "customer" and "response". To use this method you need to pass

the current instance of OpenRulesEngine from your Java code to your main

Excel file as a parameter "engine". If you write an OpenRules Forms application,

this instance of the OpenRulesEngine is always available

as dialog().getEngine(), otherwise you have to provide access to it, e.g. by

attaching it to one of your own business objects such as Customer.

By default OpenRules will produce a warning when the required Excel rules

table or method is not available. You may suppress such warnings by calling:

 engine.turnOffNotDefinedWarning();

Accessing Password Protected Excel Files

Some Excel workbooks might be encrypted (protected by a password) to prevent

other people from opening or modifying these workbooks. Usually it's done using

Excel Button and then Prepare plus Encrypt Document. OpenRules

Engine may access password-protected workbooks by calling the following

method just before creating an engine instance:

 OpenRulesEngine.setCurrentUserPassword("password");

Instead of "password" you should use the actual password that protects your

main and/or other Excel files. Only one password may be used by all protected

Excel files that will be processed by one instance of the OpenRulesEngine

created after this call. This call does not affect access to unprotected files. The

standard project "HelloJavaProtected" provides an example of the protected

Excel file - use the word "password" to access the file "HelloCustomer.xls".

Note. The static method "setCurrentUserPassword" of the class

OpenRulesEngine actually sets the BIFF8 encryption/decryption password for

the current thread. The use of a "null" string will clear the password.

OpenRules, Inc. OpenRules® User Manual

93

Engine Attachments

You may attach any Java object to the OpenRulesEngine using

methods setAttachment(Object attachment) and getAttachment().

Engine Version

You may receive a string with the current version number of the

OpenRulesEngine using the method getVersion().

Dynamic Rules Updates

If a business rule is changed, OpenRulesEngine automatically reloads the rule

when necessary. Before any engine's run, OpenRulesEngine checks to determine

if the main Excel file associated with this instance of the engine has been

changed. Actually, OpenRulesEngine looks at the latest modification dates of

the file xlsMainFileName. If it has been modified, OpenRulesEngine re-

initializes itself and reloads all related Excel files. You can shut down this

feature by executing the following method:

 engine.setCheckRuleUpdates(false);

Decision API

Decision Example

OpenRules® provides a special API for decision execution using the Java class

“Decision”. The following example from the standard project “Decision1040EZ”

demonstrates the use of this API.

public class Main {

 public static void main(String[] args) {

 String fileName = "file:rules/main/Decision.xls";

 OpenRulesEngine engine =

 new OpenRulesEngine(fileName);

 Decision decision =

 new Decision("Apply1040EZ",engine);

 DynamicObject taxReturn =

 (DynamicObject) engine.run("getTaxReturn");

OpenRules, Inc. OpenRules® User Manual

94

 engine.log("=== INPUT:\n" + taxReturn);

 decision.put("taxReturn",taxReturn);

 decision.execute();

 engine.log("=== OUTPUT:\n" + taxReturn);

 }

}

Here we first created an instance engine of the class OpenRulesEngine and used

it to create an instance decision of the class Decision. We used the engine to get

an example of the object taxReturn that was described in Excel data tables:

DynamicObject taxReturn =

 (DynamicObject) engine.run("getTaxReturn");

Then we added this object to the decision:

decision.put("taxReturn",taxReturn);

and simply executed decision:

decision.execute();

The Decision described in “Decision.xls” is supposed to modify certain attributes

inside the object decision and objects which were put inside the decision after its

execution.

Decision Constructors

The class Decision provides the following constructor:

 public Decision(String decisionName, String xlsMainFileName)

where “decisionName” is the name of the main table of the type “Decision” and

“xlsMainFileName” is the same parameter as in the OpenRulesEngine’s

constructor that defines a location for the main xls-file.

There is also another constructor:

 public Decision(String decisionName, OpenRulesEngine engine)

OpenRules, Inc. OpenRules® User Manual

95

where the parameter OpenRulesEngine engine refers to an already created

instance of the OpenRulesEngine as in the above example.

Each decision has an associated object of type Glossary. When a decision is created, it

first executes the table “glossary” that must be defined in our rules repository. It fills out the

glossary, a step that applies to all consecutive decision executions. You may always access

the glossary by using the method

Glossary glossary = decision.getGlossary();

Decision Parameters

The class Decision is implemented as a subclass of the standard Java class

HashMap. Thus, you can put any object into the decision similarly as we did

above:

decision.put("taxReturn",taxReturn);

You may access any object previously put into the decision by calling the method

get(name) as in the following example:

TaxReturn taxReturn = (TaxReturn)decision.get("taxReturn");

You may set a special parameter

decision.put("trace",”Off”);

to tell your decision to turn off the tracing . You may use “On” to turn it on again.

Decision Runs

After defining decision parameters, you may execute the decision as follows:

decision.execute();

This method will execute your decision starting from the table of type “Decision”

whose name was specified as the first parameter of the decision’s constructor.

OpenRules, Inc. OpenRules® User Manual

96

You may reset the parameters of your decision and execute it again without the

necessity of constructing a new decision. This is very convenient for multi-

transactional systems where you create a decision once by instantiating its

glossary, and then you execute the same decision multiple times but with

different parameters. To make sure that it is possible, the Decision’s method

execute() calls Excel’s method “decisionObjects” each time before actually

executing the decision.

If you know that the types of decision parameters are changed between different

decision runs you may use the following variation of the method “execute”:

decision.execute(true);

The actual execution of “this” decision involves engine runs for the following

Excel methods (in this order):

- engine.run("decisionObjects",this);

- engine.run("initializeDecision",this);

- engine.run("initializeDecisionRun",this);

- engine.run(this); // run the main decision

- engine.run("finalizeDecision",this);

All these methods are described in the standard file “DecisionTemplates.xls”.

The method "initializeDecision" is executed only during the first decision run. It

calls the method "customInitializeDecision" that may include an application

specific decision initialization.

The method "initializeDecisionRun" is executed during every decision run. It

calls the method "customInitializeDecisionRun" that may include a code that is

specific for every decision run, e.g. it may analyze the parameters of this run and

redefine some decision variables.

The method "finalizeDecision" is executed after the main Excel table of the type

“Decision” that was specified in the decision’s constructor.

OpenRules, Inc. OpenRules® User Manual

97

Executing Decision Methods From Excel

There is one more form of this method:

decision.execute(String methodName);

It is used within Excel when you want to execute another Excel method. It is

implemented as follows:

 public Object execute(String methodName) {

 return getEngine().run(methodName);

}

Decision Glossary

Every decision has an associated business glossary – see above. Glossaries are

usually presented in Excel tables that may look like this table "glossary":

In large, real-world projects the actual content of business concepts such as the

above "Customer" can be defined in external applications using Java-based

Business Object Models or they may come from XML files, a database table, etc.

The list of attributes inside business objects can be very large and/or to be

defined dynamically. In such cases, you do not want to repeat all attributes in

your Excel-based glossary and then worry about keeping the glossary

synchronized with an IT implementation.

OpenRules, Inc. OpenRules® User Manual

98

It is possible to programmatically define/extend the definition of the Glossary.

For example, we may leave in the Excel's glossary only statically defined

business concepts and their variables, e.g. in the above table we may keep only

the variables of the concept "Response" and remove all rows related to the

concept "Customer". Then in the Java module that creates an object "decision" of

the predefined type Decision we may add the following code:

Decision decision = new Decision(fileName);

String[] attributes = getCustomerAttributes();

String businessConcept = "Customer";

for (int i = 0; i < attributes.length; i++) {

 String varName = attributes[i].getName();

 decision.getGlossary().put(varName,businessConcept,varName);

}

...

decision.put("customer", customer);

decision.execute();

Here we assume that the method getCustomerAttributes() returns the

names of attributes defined in the class Customer. The variable name and the

attribute name are the same for simplicity - of course you may define them

differently.

You may add multiple concepts to the Glossary in a similar way. In all cases

keep in mind that the table "Glossary glossary" always has to be present in your

Excel repository even when it contain no rows. You also may find that the same

method put(variableName, businessConcept, attributeName) of the

class Glossary is used in the Glossary Template definition in the standard file

"DecisionTemplates.xls".

Business Concepts and Decision Objects

OpenRules® Glossary specifies names of business concepts that contain decision

variables. The connection (mapping) between business concepts and actual

OpenRules, Inc. OpenRules® User Manual

99

objects that implement these concepts (decision objects) is usually specified in

the Excel table “decisionObjects” that may look like:

The standard mapping is implemented in the DecisionObjectTemplate using the

following Glossary’s method:

 void useBusinessObject(String businessConcept, Object object)

What if you want to change actual business objects on the fly during the decision

execution? You can do it by using the same method inside your Excel rules. For

example, you may want to apply the following decision table “EvaluateAssets” for

all elements of an array “assets” of a given customer:

DecisionTable EvaluateAsset

Condition Condition Conclusion

Asset Name Asset Status
Customer's Assets

Status

Is One
Of

Asset12, Asset21, Asset23 Is Active Is Sufficient

In this case you still may specify the business concept “Asset” in your glossary

only once, but you may associate different elements of an array “assets” with the

concept Asset multiple times in the loop similar to the one below:

OpenRules, Inc. OpenRules® User Manual

100

Method void evaluateCustomerAssets(Customer customer)

Asset[] assets = customer.getAssets();
customer.customerAssetsStatus = "Insufficient";
for(int i=0; i<assets.length; i++) {
 getGlossary().useBusinessObject("Asset",customer.assets[i]);
 EvaluateAsset();
 if ("Sufficient".equals(customer.customerAssetsStatus))
 return;
}

Changing Decision Variables Types between Decision Runs

OpenRules® Glossary does not require a user to specify actual types of the

variables - they are automatically defined from the actual types of decision

parameters. It allows you to change types of decision parameters between

decision runs without necessity to download all rules again. If you know that

some attributes corresponding to your decision variables may change their types

between different runs of the same decision, you may use the following Decision's

method:

 execute(boolean objectTypesVary)

If the parameter "objectTypesVary" is true then before executing the

decision, the OpenRulesEngine will re-evaluate the decision's glossary and will

reset types of all object attributes based on the actual type of objects passed to

the decision as parameters. By default, the parameter "objectTypesVary" is

false.

Decision Execution Modes

Before executing a decision you may validate it by setting a special “validation”

mode. Here is a code example:

String fileName = "file:rules/main/Decision.xls";

System.setProperty("OPENRULES_MODE", "Validate");

Decision decision = new

Decision("DetermineDecisionVariable",fileName);

OpenRules, Inc. OpenRules® User Manual

101

During the validation along with regular syntax check OpenRules® will validate

if the values for conditions and actions inside all decision tables correspond to

their glossary domains (if they are defined).

As you can see, the system property "OPENRULES_MODE" defines which mode

to use. By default this property is set to "Execute". If you create an

OpenRulesEngine before creation a Decision, you need to set this property first.

Generating Excel Files with Decision Tables

OpenRules® allows you to generate xls-files with multiple decision tables

programmatically by providing the proper Java API. The Java class

DecisionBook that corresponds to one Excel workbook (or an xls-file) allows you

to add OpenRules® decision tables defined in Java. Multiple decision tables can

be added to a preliminary created instance of the DecisionBook class. Each new

decision table will be placed in a new worksheet of the same workbook. Then you

may simply save this decision book as an Excel file.

Example with Explanations

Let’s first consider an example provided in the standard OpenRules® installation

as the “DecisionWithGeneratedRules” project. In this project we want to run a

Java application (GenerateRules.java) to generate the following decision tables

in Excel:

OpenRules, Inc. OpenRules® User Manual

102

Here is the proper Java class GenerateRules.java:

import com.openrules.table.external.DecisionBook;

public class GenerateRules {

 public static void main(String[] args) {

 DecisionBook decisionBook = new DecisionBook();

 decisionBook.addDecisionTable(
 "DefineGreeting", //table
 "DecisionTableTemplate", //template
 new String[] { "If", "If", "Then" }, // labels
 new String[] { "Current Hour","Current Hour","Result" }, //variables
 new String[][] { //rules
 new String[] {">=0","<=11","Good Morning"},
 new String[] {">=12","<=17","Good Afternoon"},
 new String[] {">=18","<=21","Good Evening"},
 new String[] {">=22","<=24","Good Night"}
 }
);

 decisionBook.addDecisionTable(
 "CheckGreeting", //table name
 "DecisionTableTemplate", //template name
 new String[] { "ConditionVarOperValue", "Message" },// labels
 new String[] { "<Var> <Oper> <Value>", "Message" }, //titles
 new String[][] { //rules
 new String[] {"Result","Is Not","Good Afternoon",
 "Error: Expected Good Afternoon"},
 new String[] {"Result","Is","Good Afternoon", "Good Result"}
 }
);

 decisionBook.saveToFile("./rules/include/Rules.xls");

 }
}

The first statement DecisionBook decisionBook = new DecisionBook(); simply

creates an instance of the class DecisionBook. Then we add two rule tables to

this decision book by using decisionBook.addDecisionTable(…);

Then you may easily map this Java structure to the above decision table

“DefineGreeting”. It is created based on the standard template

"DecisionTableTemplate". Then the strings { "If", "If", "Then" } define the

selected table columns from this template. The next array of strings { "Current

Hour", "Current Hour", "Result" } defines the names of decision variables used

OpenRules, Inc. OpenRules® User Manual

103

in these columns. Then we have a two-dimensional array of strings where each

sub-array represents one rule (or the table row) such as

new String[] {">=0","<=11","Good Morning"}.

Depending on the column type, instead of the names of the decision variables the

column titles may contain any text in plain English. For example, the first

column in the second decision table “CheckGreeting” is defined as

“ConditionVarOperValue”, that according to the standard template has 3 sub-

columns. The title of this column is defined as “<Var> <Oper> <Value>”. Note that

this title is “merged” while the content of the proper 3 sub-columns is defined

using 3 strings such as "Result","Is Not","Good Afternoon" in the unmerged

format.

Finally, this decision book is saved to the file “./rules/include/Rules.xls” using

the method decisionBook.saveToFile("./rules/include/Rules.xls");

Formal API

The Java class DecisionBook has a public constructor without parameters and

the following public methods:

 public void addDecisionTable(
 String tableName, // table name
 String templateName, // template name
 String[] labels, // template column labels
 String[] descriptions, // descriptions or variables
 String[][] rules // rules
);

This method adds a new decision table to the rule book. The first parameter is

the name of the generated decision table (no spaces allowed). The second

parameter is the name of the standard OpenRules template that has one of the

following values:

 DecisionTableTemplate – for regular single-hit decision tables

 DecisionTable1Template – for multi-hit decision tables

 DecisionTable2Template – for rule sequences (see more)

OpenRules, Inc. OpenRules® User Manual

104

The third parameter is an array of column labels selected from the proper

template. The fourth parameter is an array of names that corresponds to the

column type – it could be either a name of the decision variable or a title of the

proper column. The fifth parameter is a two-dimensional array of strings where

each sub-array represents one rule (or the decision table row).

The method

 public void saveToFile(String xlsFile);

saves this decision book in the Excel file whose name is provided as a parameter.

The method

 public int getNumberOfRuleTables();

returns a number of decision tables currently added to the decision book. Please

note that the proper Excel file will contain a separate worksheet for each

decision table.

Logging API

OpenRules® provides an API for decision logging. Assuming that “decision” is an

instance of the class Decision, you may use the following logging methods:

 To log (print) any text string you may write

decision.log(text);

 To memorize the execution log you may write

 decision.saveRunLog(true);

 decision.execute();

Then all log-statements produced during this decision run will be saved

internally.

 You may get this saved log as follows:

 Vector<String> log = decision.getRunLog();

OpenRules, Inc. OpenRules® User Manual

105

You may print the saved log by the method

decision.printSavedRunLog()

or you may save it into a file by the method

 decision.printSavedRunLog(filename).

This feature is very useful when your application wants to show the good

results of the decision execution but also need to show the errors in the user-

defined decision model - see, for example, how it is done in the latest remote

evaluation version.

JSR-94 Implementation

OpenRules® provides a reference implementation of the JSR94 standard known

as Java Rule Engine API (see http://www.jcp.org/en/jsr/detail?id=94). The

complete OpenRules® installation includes the following projects:

JSR-94 Project Description

lib.jsr94
This project contains the standard jsr94-

1.0 library

com.openrules.jsr94

This is an OpenRules®'s reference

implementation for the JSR94 standard

and includes the source code. It uses

OpenRulesEngine to implement

RuleExecutionSet

HelloJsr94

This is an example of using JSR94 for

simple rules that generate customized

greetings

HelloJspJsr94

HelloJspJsr94 is similar to HelloJsp but

uses the OpenRules® JSR-94 Interface to

create and run OpenRulesEngine for a web

application.

Multi-Threading

OpenRulesEngine is thread-safe and works very efficiently in multi-threaded

environments supporting real parallelism. OpenRulesEngine is stateless, which

allows a user to create only one instance of the class OpenRulesEngine, and then

http://openrules.com/eval_custom_projects.htm
http://openrules.com/eval_custom_projects.htm
http://www.jcp.org/en/jsr/detail?id=94

OpenRules, Inc. OpenRules® User Manual

106

share this instance between different threads. There are no needs to create a

pool of rule engines. A user may also initialize the engine with application data

common for all threads, and attach this data directly to the engine using the

methods setAttachment(Object attachment). Different threads will receive

this instance of the rule engine as a parameter, and will safely run various rules

in parallel using the same engine.

The complete OpenRules® installation includes an example "HelloFromThreads"

that demonstrates how to organize a parallel execution of the same

OpenRulesEngine's instance in different threads and how to measure their

performance.

INTEGRATION WITH JAVA AND XML

Java Classes

OpenRules® allows you to externalize business logic into xls-files. However,

these files can still use objects and methods defined in your Java environment.

For example, in the standard example “RulesRepository” all rule tables deal

with the Java object Appl defined in the Java package myjava.package1.

Therefore, the proper Environment table inside file Main.xls (see above) contains

a property "import.java" with the value "myjava.package1.*":

The property "import.java" allows you to define all classes

from the package following the standard Java notation, for

example "hello.*". You may also import only the specific

class your rules may need, as in the example above. You can

define a separate property "import.java" for every Java

package used or merge the property "import.java" into one cell

with many rows for different Java packages. Here is a more

complex example:

OpenRules, Inc. OpenRules® User Manual

107

Environment

import.static com.openrules.tools.Methods

import.java

my.bom.*

my.impl.*

my.inventory.*

com.openrules.ml.*

my.package.MyClass

com.3rdparty.*

include
../include/Rules1.xls

../include/Rules2.xls

Naturally the proper jar-files or Java classes should be in the classpath of the

Java application that uses these rules.

If you want to use static Java methods defined in some standard Java libraries

and you do not want to specify their full path, you can use the property

"import.static". The static import declaration imports static members from

Java classes, allowing them to be used in Excel tables without class

qualification. For example, many OpenRules® sample projects use static

methods from the standard Java library com.openrules.tools that includes class

Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write

 out("Rules 1")

instead of

 Methods.out("Rules 1")

XML Files

Along with Java classes, OpenRules® tables can use objects defined in XML files.

For example, the standard sample project HelloXMLCustomer uses an object of

type Customer defined in the file Customer.xml located in the project classpath:

<Customer

 name="Robinson"

OpenRules, Inc. OpenRules® User Manual

108

 gender="Female"

 maritalStatus="Married"

 age="55"

/>

The xls-file, HelloXmlCustomer.xls, that deals with this object includes the

following Environment table:

The property, "import.schema", specifies the location of the proper xml-file, in

this case "classpath:/Customer.xml". Of course, you can use any other

location in your local file system that starts with the prefix "file:". This

example also tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules
®
 package

"com.openrules.tools.Methods"

2. xml-file "classpath:/Customer.xml"

3. Java class "Response" from a package "hello"

4. include-file "HelloRules.xls" which is located in the subdirectory "include" of the

directory where the main xls file is located.

The object of the type "Customer" can be created using the following API:

 Customer customer = Customer.load("classpath:/Customer.xml");

You may use more complex structures defined in xml-files. For example, the

project HelloXMLPeople uses the following xml-file:

<?xml version="1.0" encoding="UTF-8"?>

<People type="Array of Person(s)">

 <Person name="Robinson" gender="Female" maritalStatus="Married"

age="55" />

 <Person name="Robinson" gender="Female"

maritalStatus="Single" age="23" />

http://openrules.com/HelloXmlCustomer.xls

OpenRules, Inc. OpenRules® User Manual

109

 <Person name="Robinson" gender="Male"

maritalStatus="Single" age="17" />

 <Person name="Robinson" gender="Male"

maritalStatus="Single" age="3" />

</People>

The method that launches greeting rules for every Person from an array

People is defined as:

DATA MODELING

OpenRules® includes an ability to define new data/object types and creates the

objects of these types directly in Excel. It allows business analysts to do Rule

Harvesting by defining business terms and facts without worrying about their

implementation in Java, C#, or XML. It also provides the ability to test the

business rules in a pre-integrated mode. To do standalone rule testing, a

designer of rules and forms specifies his/her own data/object types as Excel

tables and creates instances of objects of these types passing them to the rule

tables. We describe how to do it in the sections below.

There is one more important reason why a business or even a technical specialist

may need data modeling abilities without knowing complex software

development techniques. In accordance with the SOA principle of loosely coupled

http://www.service-architecture.com/

OpenRules, Inc. OpenRules® User Manual

110

services, rule services have to specify what they actually need from the objects

defined in an external environment. For example, if an object "Insured" includes

attributes related to a person's military services, it does not require that all

business rules that deal with the insured be interested in those attributes. Such

encapsulation of only the essential information in the Excel-based data types,

together with live process modeling, allows OpenRules® to complete the rule

modeling cycle without leaving Excel.

OpenRules® provides the means to make business rules and forms independent

of a concrete implementation of such concepts. The business logic expressed in

the decision tables should not depend on the implementation of the objects these

rules are dealing with. For example, if a rule says: “If driver's age is less than 17

then reject the application” the only thing this business rule should "know" about

the object “driver” is the fact that it has a property “age” and this property has a

type that support a comparison operator “<” with an integer. It is a question of

configuration whether the Driver is a Java class or an XML file or a DB table

from a legacy system. Similarly, if a form has an input field "Driver's Age", the

form should be able to accept a user's input into this field and automatically

convert it into the proper object associated with this field independently of how

this object was implemented.

Thus, OpenRules® supports data source independent business rules (decision

tables) and web forms. Your business rules can work with an object of type

Customer independently of the fact that this type is defined as a Java class, as

an XML file or as an Excel table. You can see how it can be done using examples

HelloJava, HelloXML, and HelloRules from the OpenRules®'s standard

installation. It is a good practice to start with Excel-based data types. Even if you

later on switch to Java classes of other data types, you would always be able to

reuse Excel-based types for standalone testing of your rules-based applications.

Datatype and Data Tables

OpenRules
®
 allows a non-technical user to represent different data types directly in Excel and

to define objects of these types to be used as test data. Actually, it provides the ability to

OpenRules, Inc. OpenRules® User Manual

111

create Excel-based Data Models, which, in turn, define problem specific business terms and

facts. At the same time, a data model can include data types specified outside Excel, for

example in Java classes or in XML files. Here is an example of a simple data type

"PersonalInfo":

Now we can create several objects of this type "PersonalInfo" using the following data

table:

We can reference to these objects inside rules or forms as in the following snippets:

out(personalInformation["He"].lastName);

if (personalInformation["She"].state.equals("NJ")) ...

You may use one datatype (such as PersonalInfo) to define a more complex aggregate

datatype, like TaxReturn in this example:

OpenRules, Inc. OpenRules® User Manual

112

You may even create an object of the new composite type "TaxReturn" using references to

the objects "He" and "She" as in this example:

Now we can reference these objects from inside rules or forms as in the following snippet:

out(taxReturn[0].taxPayer.lastName);

The above tables may remind you of traditional database tables simply presented in Excel.

While these examples give you an intuitive understanding of OpenRules
®
 Datatype and Data

tables, the next sections will provide their formal descriptions.

OpenRules, Inc. OpenRules® User Manual

113

You may use a type of table "Variable". These tables are similar to the Data tables but

instead of arrays of variables they allow you to create separate instances of objects directly in

Excel files. Here is a simple example:

Variable Customer mary

name age gender maritalStatus

Name Age Gender Marital Status

Mary Brown 5 Female Single

The variable "mary" has type Customer and can be used inside rules or passed back from an

OpenRulesEngine to a Java program as a regular Java object. As usual, the object type

Customer can be defined as a Java class, an Excel Datatype, or an xml structure.

How Datatype Tables Are Organized

Every Datatype table has the following structure:

Datatype tableName

AttributeType1 AttrubuteName1

AttributeType2 AttrubuteName2

.. ..

.. ..

The first "signature" row consists of two merged cells and starts with the

keyword "Datatype". The "tableName" could be any valid one word identifier of

the table (a combination of letters and numbers). The rows below consist of two

cells with an attribute type and an attribute name. Attribute types can be the

basic Java types:

- boolean

- char

- int

- double

- long

- String (java.lang.String)

- Date (java.util.Date)

OpenRules, Inc. OpenRules® User Manual

114

You may also use data types defined:

- in other Excel Datatype tables

- in any Java class with a public constructor with a single parameter of the type String

- as one-dimensional arrays of the above types.

The datatype "PersonalInfo" gives an example of a very simple datatype. We can

define another datatype for a social security number (SSN):

and add a new attribute of this type to the datatype "PersonalInfo":

It is interesting that these changes do not affect the already existing data

objects defined above (like personalInformation["He"]) - their SSNs just

will not be defined.

Implementation Restriction. Make sure that the very first attribute in a Datatype

table has type String or your own type but not a basic Java type like int.

The following example demonstrates how to create a Data table for a Datatype

that includes one-dimensional arrays:

OpenRules, Inc. OpenRules® User Manual

115

Datatype Order

String number

String[] selectedItems

String[] offeredItems

double totalAmount

String status

Here is an example of the proper Data table:

Data Order orders

number selectedItems totalAmount status

Number Selected Items
Total

Amount
Status

6P-U01

INTRS-PGS394

3700 In Progress INTRS-PGS456

Paste-ARMC-2150

You may also present the same data in the following way:

Data Order orders

number selectedItems totalAmount

Number
Selected Items

Total Amount
Item 1 Item 2 Item 3

6P-U01
INTRS-
PGS394

INTRS-
PGS456

Paste-ARMC-
2150

3700

How Data Tables Are Organized

Every Datatype table has a vertical or horizontal format. A typical vertical Data table has the

following structure:

Data datatypeName tableName

 AttributeName1

from

"datatypeName"

AttributeName2

from

"datatypeName"

AttributeName3

from

"datatypeName"

 ...

Display value of

the

Display value of

the

Display value of

the
...

OpenRules, Inc. OpenRules® User Manual

116

AttributeName1 AttributeName2 AttributeName3

data data data ...

data data data ...

...

The first "signature" row consists of two merged cells and starts with the

keyword "Data". The next word should correspond to a known datatype: it can be

an already defined Excel Datatype table or a known Java class or an XML file.

The "tableName" is any one word valid identifier of the table (a combination of

letters and numbers).

The second row can consists of cells that correspond to attribute names in the

data type "datatypeName". It is not necessary to define all attributes, but at

least one should be defined. The order of the columns is not important.

The third row contains the display name of each attribute (you may use

unlimited natural language).

All following rows contain data values with types that correspond to the types of

the column attributes.

Here is an example of the Data table for the datatype "PersonalInfo" defined

in the previous section (with added SSN):

The table name is "personalInformation" and it defines an array of objects of

the type PersonalInfo. The array shown consists only of two elements

personalInformation[0] for John and personalInformation[1] for Mary.

You may add as many data rows as necessary.

OpenRules, Inc. OpenRules® User Manual

117

The attributes after the SSN attribute have not been defined. Please, note that

the references to the aggregated data types are defined in a natural way

(ssn.ssn1, ssn.ssn2, ssn.ssn3) using the dot-convention.

As you can see from this example, the vertical format may not be very convenient

when there are many attributes and not so many data rows. In this case, it could

be preferable to use a horizontal format for the data tables:

Data datatypeName tableName

 AttributeName1

from "datatypeName"

Display value of the

AttributeName1
data data data ...

AttributeName2 from

"datatypeName"

Display value of the

AttributeName2
data data data ...

AttributeName3 from

"datatypeName"

Display value of the

AttributeName3
data data data ...

...

Here is how our data table will look when presented in the horizontal format:

Predefined Datatypes

OpenRules® provides predefined Java classes to create data tables for arrays of

integers, doubles, and strings. The list of predefined arrays includes:

OpenRules, Inc. OpenRules® User Manual

118

1. ArrayInt - for arrays of integer numbers, e.g.:

Method int[] getTerms()

return ArrayInt.getValues(terms);

Data ArrayInt terms

value

Term

36

72

108

144

2. ArrayDouble - for arrays of real numbers, e.g.:

Method double[] getCosts()

return ArrayDouble.getValues(costs);

 Data ArrayDouble costs

value

Costs

$295.50

$550.00

$1,000.00

$2,000.00

$3,295.00

$5,595.00

$8,895.00

3. ArrayString - for arrays of strings, e.g.:

Method String[] getRegions()

return ArrayString.getValues(regions);

 Data ArrayString regions

value

Region

NORTHEAST

MID-ATLANTIC

SOUTHERN

MIDWEST

MOUNTAIN

PACIFIC-COAST

OpenRules, Inc. OpenRules® User Manual

119

These arrays are available from inside an OpenRules® table by just calling their

names: getTerms(), getCosts(), getRegions(). You may also access these

arrays from a Java program, using this code:

OpenRulesEngine engine =

 new OpenRulesEngine("file:rules/Data.xls");

int[] terms = (int[])engine.run("getTerms");

The standard installation includes a sample project "DataArrays", that shows

how to deal with predefined arrays.

Accessing Excel Data from Java - Dynamic Objects

You can access objects created in Excel data tables from your Java program.

These objects have a predefined type DynamicObject. Let's assume that you

defined your own Datatype, Customer, and created an array of customers in

Excel:

Data Customer customers

name maritalStatus gender age

Customer
Name

Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method Customer[] getCustomers()

return customers;

In you Java program you may access these objects as follows:

OpenRulesEngine engine =

 new OpenRulesEngine("file:rules/Data.xls");

DynamicObject[] customers =

(DynamicObject[])engine.run("getCustomers");

System.out.println("\nCustomers:");

for(int i=0; i<customers.length; i++)

 System.out.println("\t"+customers[i]);

OpenRules, Inc. OpenRules® User Manual

120

This code will print:

Customer(id=0){

 name=Robinson

 age=24

 gender=Female

 maritalStatus=Married

}

Customer(id=1){

 name=Smith

 age=19

 gender=Male

 maritalStatus=Single

}

You may use the following methods of the class DynamicObject:

public Object getFieldValue(String name);

public void setFieldValue(String name, Object value);

For example,

String gender = (String) customers[0].getFieldValue("gender");

will return "Female", and the code

customer.setFieldValue("gender", "Male");

customer.setFieldValue("age", 40);

will change the gender of the object customers[0] to "Male" and his age to 40.

How to Define Data for Aggregated Datatypes

When one Datatype includes attributes of another Datatype, such datatypes are

usually known as aggregated datatypes. You have already seen an example of an

aggregated type, PersonalInfo, with the subtype SSN. Similarly, you may

have two datatypes, Person and Address, where type Person has an attribute

"address" of the type Address. You may create a data table with type Person

using aggregated field names such as "address.street", "address.city",

"address.state", etc. The subtype chain may have any length, for example

"address.zip.first5" or "address.zip.last4". This feature very

OpenRules, Inc. OpenRules® User Manual

121

conveniently allows a compact definition of test data for complex interrelated

structures.

Finding Data Elements Using Primary Keys

You may think about a data table as a database table. There are a few things

that make them different from traditional relational tables, but they are

friendlier and easier to use in an object-oriented environment. The very first

attribute in a data table is considered to be its primary key. For example, the

attribute "id" is a primary key in the data table "personalInformation" above.

You may use values like "He" or "She" to refer to the proper elements of this

table/array. For example, to print the full name of the person found in the array

"personalInformation", you may write the following snippet:

 PersonalInfo pi = personalInformation["He"];

 out(pi.fisrtName + " " + pi.middeInitial + ". "

 + pi.lastName);

Cross-References Between Data Tables

The primary key of one data table could serve as a foreign key in another table

thus providing a cross-reference mechanism between the data tables. There is a

special format for data tables to support cross-references:

Data datatypeName tableName

 AttributeName1 from

"datatypeName"

AttributeName2

from

"datatypeName"

AttributeName3 from

"datatypeName"
 ...

>referencedDataTable1 >referencedDataTable2

Display value of the

AttributeName1

Display value

of the

AttributeName2

Display value of the

AttributeName3
...

data data data ...

data data data ...

...

OpenRules, Inc. OpenRules® User Manual

122

This format adds one more row, in which you may add references to the other

data tables, where the data entered into these columns should reside. The sign

">" is a special character that defines the reference, and "referencedDataTable"

is the name of another known data table. Here is an example:

Both columns "TaxPayer" and "Spouse" use the reference

">personalInformation". It means that these columns may include only primary

keys from the table, "personalInformation". In our example there are only two

valid keys, He or She. If you enter something else, for example "John" instead of

"He" and save your Excel file, you will receive a compile time (!) error "Index Key

John not found" (it will be displayed in your Eclipse Problems windows). It is

extremely important that the cross-references are automatically validated

at compile time in order to prevent much more serious problems at run-time.

Multiple examples of complex inter-table relationships are provided in the

sample rule project AutoInsurance. Here is an intuitive example of three related

data tables:

OpenRules, Inc. OpenRules® User Manual

123

See more complex examples in the standard project “AutoInsurance”.

OPENRULES® REPOSITORY

To represent business rules OpenRules® utilizes a popular spreadsheet

mechanism and places rules in regular Excel files. OpenRules® allows users to

build enterprise-level rules repositories as hierarchies of inter-related xls-files.

The OpenRules® Engine may access these rules files directly whether they are

located in the local file system, on a remote server, in a standard version control

system or in a relational database.

Logical and Physical Repositories

The following picture shows the logical organization of an OpenRules® repository

and its possible physical implementations:

OpenRules, Inc. OpenRules® User Manual

124

Logically, OpenRules® Repository may be considered as a hierarchy of rule

workbooks. Each rule workbook is comprised of one or more worksheets that can

be used to separate information by types or categories. Decision tables are the

most typical OpenRules® tables and are used to represent business rules. Along

with rule tables, OpenRules® supports tables of other types such as: Form

Layouts, Data and Datatypes, Methods, and Environment tables. A detailed

description of OpenRules® tables can be found here.

Physically, all workbooks are saved in well-established formats, namely as

standard xls- or xml-files. The proper Excel files may reside in the local file

system, on remote application servers, in a version control system such as

Subversion, or inside a standard database management system.

OpenRules® uses an URL pseudo-protocol notation with prefixes such

as "file:", "classpath:", "http://", "ftp://", "db:", etc.

http://openrules.com/docs/man_spreadsheets.html

OpenRules, Inc. OpenRules® User Manual

125

Hierarchies of Rule Workbooks

An OpenRules® repository usually consists of multiple Excel workbooks

distributed between different subdirectories. Each rule workbook may include

references to other workbooks thus comprising complex hierarchies of inter-

related workbooks and rule tables.

Included Workbooks

Rules workbooks refer to other workbooks using so called "includes" inside the

OpenRules® "Environment" tables. To let OpenRules® know about such include-

relationships, you have to place references to all included xls-files into the table

"Environment". Here is an example of an OpenRules® repository that comes

with the standard sample project "RuleRepository":

The main xls-file "Main.xls" is located in the local directory

"rules/main". To invoke any rules associated with this file,

the proper Java program creates an OpenRulesEngine using

a string "file:rules/main/Main.xls" as a parameter.

There are many other xls-files related to the Main.xls and

located in different subdirectories of "rules". Here is a

fragment of the Main.xls "Environment" table:

As you can guess, in this instance all included files are defined relative to the

directory "rules/main" in which “Main.xls” resides. You may notice that files

“RulesA11.xls” and “RulesA12.xls” are not included. The reason for this is that

only “RulesA1.xls” really "cares" about these files. Naturally its own table

"Environment" contains the proper "include":

OpenRules, Inc. OpenRules® User Manual

126

Here, both "includes" are defined relative to the directory "CategoryA" of their

"parent" file “RulesA1.xls”. As an alternative, you may define your included files

relative to a so called "include.path" - see sample in the next section.

Include Path and Common Libraries of Rule Workbooks

Includes provide a convenient mechanism to create libraries of frequently used

xls-files and refer to them from different rule repositories. You can keep these

libraries in a file system with a fixed "include.path". You may even decide to

move such libraries with common xls-files from your local file system to a remote

server. For instance, in our example above you could move a subdirectory "libA"

with all xls-files to a new location with an http

address http://localhost:8080/my.common.lib. In this case, you should first define

a so-called "include.path" and then refer to the xls-files relative to this

include.path using angle brackets as shown below:

Here we want to summarize the following important points:

- The structure of your rule repository can be presented naturally inside xls-

files themselves using "includes"

- The rule repository can include files from different physical locations

- Complex branches on the rules tree can encapsulate knowledge about their

own organization.

Using Regular Expressions in the Names of Included Files

Large rule repositories may contain many files (workbooks) and it is not

convenient to list all of them by name. In this case you may use regular

expression inside included file names within the Environment table. For

example, consider in the following Environment table:

http://localhost:8080/my.common.lib

OpenRules, Inc. OpenRules® User Manual

127

Environment

include ../category1/*.xls

include ../category2/XYZ*.xls

include ../category3/A?.xls

The first line will include all files with an extension “xls” from the folder

“category1”. The second line will include all files with an extension “xls” and

which names start with “XYZ” from the folder “category2”. The third line will

include all files with an extension “xls” that start with a letter “A” following

exactly one character from the folder “category1”.

Actually along with wildcard characters “*” or “?” you may use any standard

regular expressions to define the entire path to different workbooks.

 Imports from Java

OpenRules® allows you to externalize business logic into xls-files. However,

these files still can use objects and methods defined in your Java environment.

For example, in the standard example “RulesRepository” all rule tables deal with

Java objects defined in the Java package myjava.package1. Therefore, the

proper Environment table inside file Main.xls (see above) contains a property

"import.java" with value "myjava.package1.*".

Usually, you only place common Java imports inside the main xls-file. If some

included xls-files use special Java classes you can reference them directly from

inside their own Environment tables.

Imports from XML

Along with Java, OpenRules® allows you to use objects defined in XML files. For

example, the standard sample project “HelloXMLCustomer” uses an object of the

type, Customer, defined in the file Customer.xml located in the project classpath:

<Customer

 name="Robinson"

 gender="Female"

 maritalStatus="Married"

http://docs.oracle.com/javase/tutorial/essential/regex/char_classes.html

OpenRules, Inc. OpenRules® User Manual

128

 age="55"

/>

The xls-file “HelloCustomer.xls” that deals with this object includes the following

Environment table:

The property "import.schema" specifies the location of the proper xml-file, in

this case "classpath:/Customer.xml". Of course, it could be any other

location in the file system that starts with the prefix "file:". This example also

tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules® package

"com.openrules.tools.Methods"

2. xml-file "classpath:/Customer.xml"

3. Java class "Response" from a package "hello"

4. include-file "HelloRules.xls" that is located in the subdirectory "include" of

the directory where the main xls file is located.

Parameterized Rule Repositories

An OpenRules® repository may be parameterized in such a way that different

rule workbooks may be invoked from the same repository under different

circumstances. For example, let's assume that we want to define rules that offer

different travel packages for different years and seasons. We may specify a

concrete year and a season by using environment variables YEAR and SEASON.

Our rules repository may have the following structure:

rules/main/Main.xls

rules/common/CommonRules.xls

OpenRules, Inc. OpenRules® User Manual

129

rules/2007/SummerRules.xls

rules/2007/WinterRules.xls

rules/2008/SummerRules.xls

rules/2008/WinterRules.xls

To make the OpenRulesEngine automatically select the correct rules from such a

repository, we may use the following parameterized include-statements inside

the Environment table of the main xls-file rules/main/Main.xls:

Environment

import.java season.offers.*

include ../common/SalutationRules.xls

include ../${YEAR}/${SEASON}Rules.xls

Thus, the same rules repository will handle both WinterRules and SummerRules

for different years. A detailed example is provided in the standard project

SeasonRules.

Rules Version Control

For rules version control you can choose any standard version control system

that works within your traditional software development environment. We

would recommend using an open source product "Subversion" that is a

compelling replacement for CVS in the open source community. For business

users, a friendly web interface is provided by a popular open source product

TortoiseSVN. For technical users, it may be preferable to use a Subversion

incorporated into Eclipse IDE. One obvious advantage of the suggested approach

is the fact that both business rules and related Java/XML files will be handled by

the same version control system.

You may even keep your Excel files with rules, data and other OpenRules® tables

directly in Subversion. If your include-statements use http-addresses that point

to a concrete Subversion repository then the OpenRulesEngine will dynamically

http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

130

access SVN repositories without the necessity to move Excel files back into a file

system.

Another way to use version control is to place your rule workbooks in a database

and use DBV-protocol to access different versions of the rules in run-time -

read more.

Rules Authoring and Maintenance Tools

OpenRules® relies on standard commonly used tools (mainly from Open Source)

to organize and manage a Business Rules Repository:

http://openrules.com/docs/man_repositoryDB2.html

OpenRules, Inc. OpenRules® User Manual

131

To create and edit rules and other tables presented in Excel-files you may use

any standard spreadsheet editors such as:

- MS Excel™

- OpenOffice™

- Google Spreadsheets™

Google Spreadsheets are especially useful for sharing spreadsheet editing - see

section Collaborative Rules Management with Google Spreadsheets.

For technical people responsible for rules project management OpenRules

provides an Eclipse Plug-in that allows them to treat business rules as a natural

part of complex Java projects.

DATABASE INTEGRATION

OpenRules® provides a user with ability to access data and rules defined in

relational databases. There are two aspects of OpenRules® and database

integration:

1. Accessing data located in a database

2. Saving and maintaining rules in a database as Blob objects.

The detailed description of database integration in provided at

http://openrules.com/pdf/OpenRulesUserManual.DB.pdf.

EXTERNAL RULES

OpenRules® allows a user to create and maintain their rules outside of Excel-

based rule tables. It provides a generic Java API for adding business rules from

different external sources such as:

1. Database tables created and modified by the standard DB management

tools

2. Live rule tables in memory dynamically modified by an external GUI

http://openrules.com/ruleeditors.htm
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleproject.htm
http://openrules.com/pdf/OpenRulesUserManual.DB.pdf

OpenRules, Inc. OpenRules® User Manual

132

3. Java objects of the predefined type “RuleTable”

4. Problem-specific rule sources that implement a newly offered rules

provider interface.

With external rules you may keep the business parts of your rules in any

external source while the technical part (Java snippets) will remain in an Excel-

based template, based on which actual rules will be created by the

OpenRulesEngine. For example, you may keep your rules in a regular database

table as long as its structure corresponds to the columns (conditions and actions)

of the proper Excel template. Thus, the standard DB management tools, or your

own GUI that maintains these DB-based rule tables, de-facto become your own

rules management environment.

The external rules may also support a preferred distribution of responsibilities

between technical and business people. The business rules can be kept and

maintained in a database or other external source by business analysts while

developers can continue to use Excel and Eclipse to maintain rule templates and

related software interfaces.

The detailed description of external rules in provided at

http://openrules.com/pdf/OpenRulesUserManual.ExternalRules.pdf.

OPENRULES® PROJECTS

Pre-Requisites

OpenRules
®
 requires the following software:

- Java SE JDK 1.5 or higher

- Apache Ant 1.6 or higher

- MS Excel or OpenOffice or Google Docs (for rules and forms editing only)

- Eclipse SDK (optional, for complex project management only)

Sample Projects

http://openrules.com/pdf/OpenRulesUserManual.ExternalRules.pdf
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://office.microsoft.com/home/
http://download.openoffice.org/1.1.1/index.html
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=http://spreadsheets.google.com/ccc?new
http://www.eclipse.org/downloads/

OpenRules, Inc. OpenRules® User Manual

133

The complete OpenRules® installation includes the following workspaces:

openrules.decisions - decision projects

openrules.rules - various rules projects
openrules.dialog – rules-based web questionnaires
openrules.web - rules-based web applications & web services
openrules.solver - constraint-based applications.

Each project has its own subdirectory, e.g. "DecisionHello". OpenRules
®
 libraries

and related templates are located in the main configuration project,

“openrules.config”, included in each workspace. A detailed description of the

sample projects is provided in the Installation Guide.

Main Configuration Project

OpenRules
®
 provides a set of libraries (jar-files) and Excel-based templates in the folder

“openrules.config” to support different projects.

Supporting Libraries

All OpenRules® jar-files are included in the folder, “openrules.config/lib”.

For the decision management projects you need at least the following jars:

 openrules.all.jar

 poi-3.6-20091214.jar

 commons-logging-1.1.jar (or higher)

 commons-logging-api-1.1.jar (or higher)

 commons-lang-2.3.jar (or higher)

 log4j-1.2.15.jar (or higher)

 commons-beanutils.jar (or higher)

There is a supporting library

 com.openrules.tools.jar

contains the following optional facilities:

- operators described in the Java class Operator that can be used inside your

own Rules tables and templates

http://openrules.com/downloads/protected/build/openrules_6.0.1.web.zip
http://openrules.com/downloads/protected/build/openrules_6.0.1.solver.zip
http://openrules.com/pdf/OpenRulesInstallationGuide.pdf

OpenRules, Inc. OpenRules® User Manual

134

- convenience methods like “out(String text)” described in the Java class

Methods

- a simple JDBC interface DbUtil

- text validation methods like “isCreditCardValid(String text)”

described in the Java class Validator.

If you use the JSR-94 interface you will also need

 com.openrules.jsr94.jar

If you use external rules from a database you will also need

 openrules.db.jar

 openrules.dbv.jar

 derby.jar

 commons-cli-1.1.jar.

Different workspaces like “openrules.decisions”, “openrules.rules”, etc.

include the proper versions of the folder “openrules.config”.

Predefined Types and Templates

The Excel-based templates that support Decisions and Decision Tables included

in the folder, “openrules.config”:

 DecisionTemplates.xls

 DecisionTableExecuteTemplates.xls

 DecisionTableValidateTemplates.xls

Sample decision projects include Excel tables of the type “Environment” that

usually refer to “../../../openrules.config/DecisionTemplates.xls”.

You may move all templates to another location and simply modify this reference

making it relative to your main xls-file.

TECHNICAL SUPPORT
Direct all your technical questions to support@openrules.com or to this

Discussion Group. Read more at http://openrules.com/services.htm.

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
http://openrules.com/services.htm

