
OpenRules, Inc.

www.OpenRules.com

November-2024

OPENRULES®

DECISION MANAGER

User Manual

for Business Analysts

How to Create, Test, and Deploy

Business Decision Models

http://www.openrules.com/

OpenRules, Inc. OpenRules® Getting Started

2

Table of Contents

Introduction .. 6

What is OpenRules® ... 6

What is Decision Model .. 6

What is Decision Service .. 8

Architecture .. 8

Installing OpenRules Software .. 9

Pre-Requisites .. 9

Download and Install ... 9

Introductory Decision Service ... 10

Decision Model ”Vacation Days” .. 10

Representing Business Logic.. 10

Glossary .. 13

File Structure ... 14

Test Cases .. 16

Building and Testing Decision Model .. 17

File “project.properties” .. 17

File “test.bat” .. 17

File “pom.xml” ... 18

Testing Results ... 18

Explanations .. 19

Execution Path ... 20

OpenRules Graphical Explorer .. 21

Diagramming .. 21

Testing and Debugging ... 22

Deploying Decision Model .. 23

OpenRules, Inc. OpenRules® Getting Started

3

More Decision Models... 25

Decision Modeling Approach ... 25

Decision Model ... 26

Goal-Oriented Decision Modeling .. 26

Graphical Decision Model Explorer.. 27

Diagramming ... 28

Diagram Views .. 29

Diagram Manipulations .. 32

Live Decision Model Diagrams ... 33

Testing Decision Model .. 34

Debugging Decision Model ... 36

Deploying Decision Model .. 37

Decision Tables ... 39

Decision Table Structure .. 39

Execution Logic .. 41

Tables of the type “Decision”... 42

Tables of the type “DecisionTable” .. 44

Using Different Types of Decision Tables ... 44

Table Conditions ... 46

Comparing Strings .. 47

Comparing Numbers ... 49

Using Natural Language Inside Decision Tables ... 50

Comparing Dates .. 51

Comparing Boolean Values ... 53

Checking if a Decision Variable is Undefined .. 53

Other Condition Types .. 53

Conditions on Collections .. 55

OpenRules, Inc. OpenRules® Getting Started

4

Table Conclusions ... 58

Simple Conclusions/Actions .. 58

Conclusions on Collections .. 60

Displaying Messages ... 61

Displaying Rule Numbers ... 61

Expressions .. 62

Formulas ... 62

Composing Decision Variable Names ... 65

Functions for Collections of Objects .. 66

Java Snippets .. 69

Dealing with Dates ... 70

Glossary.. 72

Standard Glossary .. 72

Column “Decision Variable” .. 73

Column “Business Concept” .. 73

Column “Attribute” ... 73

Column “Type” .. 74

Optional Glossary Columns ... 74

Column “Description”.. 74

Column “Used As” ... 74

Column “Default Value” .. 75

Formulas inside Glossary ... 76

Context-Specific Columns “Used As” .. 77

Column “JSON Name” .. 78

Column “Business Concept JSON Name”... 79

Column “Domain” ... 80

Multiple Glossaries .. 81

OpenRules, Inc. OpenRules® Getting Started

5

Big Decision Tables .. 81

Using Tables “BigDecision” and “BigDecisionTable” ... 81

Using Decision Tables with CSV Files ... 83

Using Decision Tables with Fixed-Width Files .. 86

Using Decision Tables with Databases .. 88

Dealing with Collections of Objects .. 89

Iteration over Collections of Objects .. 90

Adding New Objects to Collections... 92

Sorting Collections of Objects ... 92

Decision Model Testing ... 94

Building Test Cases.. 94

Test Cases in “DecisionTest” Tables ... 94

Active/Inactive Test Cases .. 95

Test Arrays in “DecisionData” Tables .. 96

References Between DecisionData Tables .. 97

Building and Testing Decision Model .. 98

Configuration File “project.properties” ... 98

Build and Run ... 99

Error Reporting ... 99

Testing Decision Model ... 100

Decision Model Deployment ... 101

Rules-based Service Orchestration ... 104

Technical Support .. 106

OpenRules, Inc. OpenRules® Getting Started

6

INTRODUCTION

What is OpenRules®
OpenRules® helps enterprises develop operational decision services for their decision-

making business applications. OpenRules provides a set of decision intelligence

software tools. It allows business analysts to develop, test, deploy, and continue to

maintain operational business decision models.

OpenRules is oriented toward business analysts (subject matter experts) allowing them

to:

• Create business decision models in Excel files using decision tables and other

standard decisioning constructs to represent sophisticated business decision logic.

• Test/Debug/Execute Decision Models and Analyze the produced decisions.

• Deploy decision models as ready-to-be-executed decision microservices on-cloud

or on-premises.

• Connect Decision Service to a relational database.

• Learn Business Rules from your historical data.

• Find Optimal Decisions.

OpenRules includes the following tools:

- Decision Manager with a superfast Rule Engine

- Rule Learner for rules discovery

- Rule Solver for decision optimization

- Rule DB for integration with databases.

This guide explains how you, as a business analyst, can create, test, and maintain

decision models and then work with software developers to convert your models to

decision services and integrate them with existing IT systems.

What is Decision Model

Decision models represent business logic that can be used to make decisions. A decision

model consists of:

• Decision variables that can take specific values from domains of values.

https://openrulesdecisionmanager.com/
https://rulelearner.com/
https://rulesolver.com/
https://ruledb.com/

OpenRules, Inc. OpenRules® Getting Started

7

• Decision rules (frequently expressed as decision tables) that specify relationships

between decision variables.

All decision variables are usually described in the special table “Glossary”. Some of

these decision variables are known (decision input) and some of them are unknown

(decision output) that may represent the decision model’s goals. A decision model can be

executed by a superfast Decision Engine that finds a decision by assigning the proper

values to unknown decision variables following the business logic specified by decision

rules.

Business decision models are usually created, tested, and maintained by business

analysts in the Rules Repository using only familiar tools such as Excel (or Google

Sheets) and OpenRules Decision Modeling IDE:

You may create test cases for your decision models in Excel following OpenRules

templates.

https://openrulesdecisionmanager.com/business-decision-models/
https://openrulesdecisionmanager.com/graphical-decision-modeling/openrules-explorer/

OpenRules, Inc. OpenRules® Getting Started

8

What is Decision Service

Tested decision models can be passed to technical people to be deployed as decision

services on-premises or on any cloud. The most popular deployment choice is REST

decision microservices ready to be executed from external decision-making applications.

Architecture
Top-level architecture is shown in the following picture where a stateful decision-

making application invokes stateless operational decision services.

The lifecycle of OpenRules-based decision services are shown below:

https://openrulesdecisionmanager.com/building-decision-services/architecture/

OpenRules, Inc. OpenRules® Getting Started

9

INSTALLING OPENRULES SOFTWARE

Pre-Requisites

Before installing OpenRules, you need to install commonly used free Java Development

Kit (JDK) version 1.8 (or higher) and Apache Maven. For instance, for Windows

download “apache-maven-3.x.y-bin.zip“. After installing JDK and Maven, make sure

that you added their “bin” folders to your Path user environment variables.

You will also need MS Excel or Google Sheets for rules editing only (you don’t need them

in run-time).

Recommend hardware configuration: RAM 8Gb or more and CPU 2.2 GHz or more. Read

more.

Download and Install

You may download a free evaluation version or purchase an OpenRules subscription. In

both cases, you will receive a fully functional OpenRules Decision Manager in one of

these files:

• “OpenRulesDecisionManager_x.y.z.zip” for Windows or

• “OpenRulesDecisionManager_x.y.z.tar.gz” for Mac or Linux.

Unzip this file to your hard drive, and you will see the folder

“OpenRulesDecisionManager” that contains OpenRules core components including

examples.

Double-click on “install.bat” (or run “install” if you use Unix or Mac) from the folder

“OpenRulesDecisionManager/openrules.config”. The installation may take up to 1-2

minutes based on your internet connection speed displaying all downloadable files on

the “black” screen. Internally, OpenRules uses Maven plugins but you don’t have to

know anything Maven or even Java (just have then pre-installed).

Make sure that during the installation you don’t receive any red messages and at the

end, you will see the message:

“OpenRules Decision Manager x.y.z: INSTALLATION COMPLETED”

Now, you are ready to run examples such as “VacationDays” from the folder

https://jdk.java.net/java-se-ri/8
https://jdk.java.net/java-se-ri/8
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://office.microsoft.com/home/
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=https://spreadsheets.google.com/ccc?new
https://openrulesdecisionmanager.com/installation/
https://openrulesdecisionmanager.com/installation/download-evaluation-version/
https://openrulesdecisionmanager.com/pricing/enterprise-edition/

OpenRules, Inc. OpenRules® Getting Started

10

“OpenRulesDecisionManager” by a simple click on “test.bat” and/or analyze them

from OpenRules IDE using “expore.bat”. Any issues? Contact support@openrules.com.

INTRODUCTORY DECISION SERVICE

The downloaded folder “OpenRulesDecisionManager” includes several sample

decision models ready to be built, tested, and deployed as decision services on different

cloud platforms. In this section, we will demonstrate all these features using a simple

decision service that calculates an employee’s vacation days.

Decision Model ”Vacation Days”

This decision model specifies decision logic for assigning vacation days to an employee

based on his/her age and years of service. Here are the business rules:

• Every employee receives at least 22 vacation days. Additional days are provided

depending on age and years of service:

• Only employees younger than 18 or at least 60 years, or employees with at least 30

years of service will receive an extra 5 days;

• Employees with at least 30 years of service and of age 60 or more receive an extra 3

days, on top of possible additional days already given;

• If an employee has at least 15 but less than 30 years of service, an extra 2 days are

given. These 2 days are also provided for employees of age 45 or more. These extra 2

days cannot be combined with an extra 5 days.

Representing Business Logic

Any decision model can be seen as a set of decision variables (known and unknown) and

a set of business rules that describe the relationships between them. A decision model

specifies how to determine unknown variables called “goals” or “sub-goals” using the

known ones. For this decision model, the goal is to determine the value of the decision

variable “Vacation Days” which we will refer to as our main goal. We will use Excel

tables in the OpenRules format to represent decision variables and business rules.

The following table provides the first example of a so-called decision table that specifies

the business logic for our main goal:

mailto:support@openrules.com

OpenRules, Inc. OpenRules® Getting Started

11

The first row (with a black background and white foreground) is called a signature row.

Every OpenRules decision table in the left top corner contains a keyword such as

Decision, DecisionTable, Glossary, DecisionTest, DecisionData, etc. This table starts

with the keyword “Decision”. It tells us that this is a so-called “multi-hit” table that

executes all (!) satisfied rules in the top-down order.

The second word in the signature row “CalculateVacationDays” specifies the name of the

decision table that should be unique, start with a letter, and not include whitespaces.

The second row specifies different conditions and actions (conclusions). This table

contains 3 conditions (specified by the keyword “Condition”) and one conclusion (the

keyword “Conclusion”).

The third row contains the names of decision variables used by conditions and

conclusions. The variable name can use spaces and should clearly explain the business

meaning of these variables.

The very first rule in the 4th row assigns 22 days to the variable “Vacation Days”

(unconditionally). Empty cells indicate that the proper condition is not applicable

(instead of leaving the cells empty you may use the hyphen “-“).

The rules in rows 5, 6, and 7 may add (or not) an extra 5, 3, or 2 vacation days when an

employee is eligible for them. Looking at the last rule, you will see how this decision

table takes care of the rule “An extra 2 days cannot be combined with an extra 5 days.”

Hopefully, this decision table is intuitive enough to represent our top-level decision logic.

Note that all columns in the first (signature) row are merged to indicate the end of the

table. Usually, all decision tables should be surrounded by empty cells, especially pay

OpenRules, Inc. OpenRules® Getting Started

12

attention to have an empty row at the end of any decision table.

Now let’s define the eligibility logic for extra 5, 3, and 2 vacation day. First, we create

another decision table that specifies how the decision variable (sub-goal) “Eligible for

Extra 5 Days” can be defined:

This table starts with the keyword “DecisionTable” that specifies a single-hit decision

table. Such a table executes rules in the top-down order and stops when one rule is

satisfied (hit). The first rule sets “Eligible for Extra 5 Days” to TRUE when Employee’s

“Age in Years” (an input decision variable) is strictly less than 18. If not, the second rule

will do the same for employees of the age 60 or older. The third rule sets “Eligible for

Extra 5 Days” to TRUE when Employee’s “Years of Service” (another input decision

variable) is more or equal to 30. If all first 3 rules fail, then the last rule (so-called

“default” rule) will set “Eligible for Extra 5 Days” to FALSE.

Similarly, the following decision table specifies decision logic for the sub-goal “Eligible

for Extra 3 Days”:

And finally, the following decision table specifies decision logic for the sub-goal “Eligible

for Extra 2 Days”:

OpenRules, Inc. OpenRules® Getting Started

13

This completes the representation of the business logic for our decision model. In the

project “VacationDays” all these tables have been created in the Excel file “Rules.xlsx”

placed in the folder “VacationDays/rules”.

Glossary

Any decision model requires that all used decision variables (goals, sub-goals, and input

variables) used in the decision tables should be described in the special table called

“Glossary”. Here is an example of a glossary described in the file “Glossary.xlsx” in the

folder “VacationDays/rules”:

This table has the keyword “Glossary” in the top-left corner. The first column “Variable

Name” contains the names of decision variables exactly how they were used inside the

decision tables.

The second column “Business Concept” contains the name of a business concept to

which these variables belong. There could be several business concepts, but this model

contains only one concept “Employee”. The name of the business concept should be

unique, start with a letter, and do not include whitespaces. Note that merging cells

inside the second column “Employee” indicates that all variables on the left belong to

this concept.

The third column “Attribute” provides technical names for all decision variables – they

will be used for the IT integration. These names should start with a small letter and not

include whitespaces.

OpenRules, Inc. OpenRules® Getting Started

14

The fourth column “Type” describes the expected type of each decision variable such as

“String” for text variables, “int” or “Integer” for integer variables, “double” or “Double”

for real variables, “boolean” or “Boolean” for logical variables, Date for dates, “String[]”

for an array of text variables, etc. Actually, the types are the valid Java types but as a

business analyst, you don’t have to even know this fact and just memorize the most

frequently used keywords such as String, int or Integer, double or Double, Boolean,

Date.

A glossary may contain optional columns such as:

• “Description” with a plain English explanation of the decision variable meaning.

• “UsedAs” that can be defined as in, out, required, or const.

• “Domain” that may describe possible values of the variable, e.g. “1-120” for the

variable Age and “Single, Married” for the variable Gender.

• “Default Value” that will be used when a variable is not defined.

• “JSON Name” that contains custom names of JSON attributes that can includes

spaces and any national language characters.

These columns could be very helpful to understand the decision model.

You may notice that some decision variables (goals and sub-goals) are hyperlinked to

point to the decision tables (worksheets) that specify these goals. A click on the variable

inside the glossary will immediately open the xls-file and the table that specifies this

variable. It’s easy to do using Excel Hyperlinks and is very convenient for the future

maintenance of your decision models when you want to find out “what is defined where”.

File Structure

Let’s look at how this decision model is organized. The sub-folder “rules” represents a

so-called “Rules Repository” and contains the following Excel files:

• DecisionModel.xlsx: includes the Environment table that refers to all Excel files

that compose this decision model.

• Glossary.xlsx with the table Glossary that describes all decision variables used by

this decision model.

• Rules.xlsx with decision tables that implement business logic.

OpenRules, Inc. OpenRules® Getting Started

15

• Test.xlsx with tables that describe test cases.

The file “VacationDays/rules/DecisionModel.xlsx” describes the structure of the

decision model in the table “Environment”:

This table states that our decision model includes files “Glossary.xlsx” and “Rules.xlsx”.

Your model can use multiple xls- and xlsx-files located in different folders, and you can

define them all in the Environment table relative to the file “DecisionModel.xlsx”. If your

entire decision model is described in one Excel file, you don’t need to define the

Environment table at all.

The Environment table usually also specifies various properties used to build, test, and

deploy this decision model:

The property “model.name” specifies the name of the decision model as it will be known

to the external world. This name should start with a letter and not contain whitespaces.

The property “model.goal” specifies the name of the main goal from the glossary that

your decision model should determine.

The property “model.package” specifies the name of the internal Java package in

which OpenRules will put generated Java files. It could be any name similar to

“com.company.problem” but it should start with a letter and not to contain whitespaces.

The property “model.precision” specifies the precision of real numbers used to

compare the expected and actualy produced results.

Note. These and other project properties could be overwritten in the file “VacationDays/

project.properties”.

OpenRules, Inc. OpenRules® Getting Started

16

Test Cases

The file “VacationDays/rules/Test.xlsx” describes test cases for this decision model in

the following table that starts with the keyword “DecisionTest”:

This table describes 6 test cases with columns “ActionDefine” specify input decision

variable and the columns “ActionExpect” specify the expected values. The first column

“#” defines the name or an order number of the test.

When a decision model contains many decision variables, it can be more convenient to

use an alternative way to specify test-cases using Data tables. For example, the table

describes an array of 6 test-employees. The first row specifies the table type using the

keyword “DecisionData”. Then after space, it contains the word “Employee” that is the

same name we used as a business concept in the above Glossary. And then after space, it

contains the word “employees” that is the name of this array of employees.

The second row contains the names of Variable “Id”, “Age in Years”, and “Years of

Service” used as input for our decision model that should be the same as in the first

column of the glossary.

The next 6 rows describe employees with specific values of these attributes.

Test cases with expected results defined in this table of the type “DecisionTest”:

OpenRules, Inc. OpenRules® Getting Started

17

Here the second column “ActionUseObject” defines the business objects associated with

the business concepts defined in the glossary, in this case, “Employee”. And the third

column “ActionExpect” specifies the expected values of the decision variable “Vacation

Days”.

Building and Testing Decision Model

OpenRules provides a decision engine capable of building, testing, and deploying

business decision models on-premise or on-cloud. There are several bat-files in every

project folder such as “VacationDays” which can be used by a user to execute OpenRules

decision engine to build/test/deploy decision models.

File “project.properties”

The file “VacationDays/project.properties” specifies various properties of our project

used to build, test, and deploy this decision model. Here are the required properties:

The property “model.file” specifies the name of the main file that defines the structure

of the decision model.

The property “test.file” specifies the name of the xls-file that defines test cases.

This file may also contain properties described above in the Environment table, and if

they are defined here they will have a preference.

File “test.bat”

The file “VacationDays/test.bat” is used to build and test your decision model. This file

is the same for all standard decision models and you don’t even have to look inside this

file. When you double-click on this file, it will do the following:

OpenRules, Inc. OpenRules® Getting Started

18

1. If the model hasn’t been built yet or some files have been changed, it will execute

these steps:

• Validates all files included in your decision model for possible errors;

• If there are errors, it will show the errors pointing to the reasons and the

proper place in Excel files;

• If there are no errors, it will generate Java classes (in the folder “target”)

needed internally to execute this decision model. The generated Java classes

will be compiled preparing the decision model for execution.

2. After a successful build, the decision model will be executed against test cases

described in the property “test.file”.

Another bat-file “VacationDays/build.bat” can be used to build the decision model as

well, but it will execute the model only after rebuild.

Note. If you use Mac or Linux, instead of “test.bat” you can use the provided shell-files

“test” or “build”.

File “pom.xml”

Each OpenRules project contains the configuration file “pom.xml”. Usually, a business

person doesn’t have to look inside this file. However, if you open

“VacationDays/pom.xml” with any text editor such as Notepad, you will see that in the

line 7 it contains the name of your project written as follows:

<artifactId>Hello</artifactId>

It is also can be helpful to note that the used release of OpenRules software is defined in

the line such as <openrules.version>10.4.0</openrules.version>. All other lines may be

used in the future by technical people to choose different configuration options.

Testing Results

During the execution, you will see the execution protocol. For example, below you can

see a snapshot of the protocol that shows business rules executed for the test case D. For

each executed rule it also shows in which cells this rule is defined in Excel, e.g.

 CalculateVacationDays #4 (B8:F8)

The highlighted lines show the old and new values of decision variables that were

OpenRules, Inc. OpenRules® Getting Started

19

modified by the current rule. You may show/hide the execution details by defining the

property “trace” as “On” or “Off” in the file “project.properties”.

Explanations
After the decision model execution, you also may look at the automatically generated

HTML reports for each test case. For example, below you can see the report for Test D

generated by OpenRules in the file “report/TestD.html”. It shows in a user-friendly

format which rules were executed and why by providing the values of all decision

variables participated in these rules in the moment they were executed.

OpenRules, Inc. OpenRules® Getting Started

20

You may control the report generation by defining the property “report” as “On” or “Off”

in the file “project.properties”.

Execution Path
Please note that OpenRules decision engine can automatically figure out the order in

which the decision tables should be executed. We call it “execution path”. For this

decision model, the execution path is defined as:

1) SetEligibleForExtra5Days

2) SetEligibleForExtra3Days

3) SetEligibleForExtra2Days

4) CalculateVacationDays

It followed the intrinsic dependencies between the corresponding goals and sub-goals.

Looking at the above decision tables we can conclude (like the decision engine did) that

the goal “VacationDays” depends on the sub-goals “Eligible for Extra 5 Days”, “Eligible

for Extra 3 Days”, and “Eligible for Extra 2 Days”. We did not specify this order in any

diagram (like DMN DRD [1]). Contrary, OpenRules can generate such dependency

diagrams automatically – see below.

In the real-world, decision models include many inter-related goals and sub-goals and

such relations can be quite complex and frequently changed. So, it’s important that a

decision engine that executes a decision model is capable to automatically discover the

execution path. Still, if you prefer, you may define the execution path manually using

the table of the type “Decision” with a special column “ActionExecute”.

OpenRules, Inc. OpenRules® Getting Started

21

OpenRules Graphical Explorer

OpenRules comes with using OpenRules Explorer, a graphical integrated development

environment (IDE) for business-oriented decision modeling. From this graphical

interface you can do the following:

• Decision Model Visualization and Editing

• Testing

• Debugging

• Deploying.

You can start OpenRules Explorer by a double-click on “explore.bat”.

Diagramming

OpenRules Explorer automatically generates decision diagrams like the one below:

This diagram reflects the Goal-Oriented approach to Decision Modeling and follows the

DMN (Decision Model and Notation) graphical convention for decision requirement

diagrams. All goals are shown as yellow rounded rectangles, and the main goal has a red

border. The arrows between goals show the automatically (!) discovered knowledge

relationships, e.g. the main goal “Vacation Days” depends on the sub-goals for extra

days.

You don’t have to draw the diagram yourself as it is automatically generated based on

an already defined glossary, goal/sub-goals, and tables that specify their logic. You may

freely move the diagram elements around and the Explorer will keep all relationships

between them (arrows) intact. The Explorer can expand this diagram by showing all

https://openrulesdecisionmanager.com/graphical-decision-modeling/
https://www.omg.org/dmn/

OpenRules, Inc. OpenRules® Getting Started

22

related input variables and business concepts. By a click on a node such as

“CalculateVacationDays” you may open the proper decision table right inside the

Explorer:

Click on “Open Excel” to see and modify this table in Excel.

Testing and Debugging

Click on the “running man” in the menu, to open the Test & Debug view.

The left panel “Run Tests” shows all available test cases which you can open in Excel by

clicking on the test name. The panel “Execution Path” shows all major execution steps in

the automatically defined order. You can execute ALL TESTS or only selected test cases.

To execute a test case you may click on the icon and you will see the results on the

Execution Console. You may click on the tab “Execution Report” to see the automatically

generated reports that show only actually executed rules with pointers to the places in

Excel where they are defined, brief rules formulations, and all involved decision

variables with their values in the time of the rule execution.

OpenRules, Inc. OpenRules® Getting Started

23

You can debug your decision model by click on the Debug-button . You will be able to

execute rules one by one, analyze all related decision variables before and after rules

execution, set breakpoints, and much more. Here is a typical Debugger’s view:

OpenRules Debugger allows business analysts with no programming experience to

navigate through decision models using an intuitive graphical interface and helps them

to understand the most complex situations. See its detailed description and/or watch the

proper video.

Deploying Decision Model

OpenRules internally converts business decision models such as “Vacation Days” into

highly efficient Java code and then automatically deploys it on-premises, on-cloud, or

even on smartphone. Your decision model can be deployed as a decision microservice at

your preferred deployment platform including AWS Lambda, MS Azure, Docker, Apache

Spark, and more. You may deploy your model from OpenRules Explorer using a view

such as this one:

Alternatively, you can do it with a simple a double-click to a provided bat-file such as

https://openrulesdecisionmanager.com/rule-debugger/
https://openrulesdecisionmanager.com/rule-debugger/
https://youtu.be/k6307CX32j4
https://openrulesdecisionmanager.com/deploying-decision-services/

OpenRules, Inc. OpenRules® Getting Started

24

“deployLambda.bat”. The deployment parameters can be set in the files

“project.properties" and “pom.xml”. This one-click deployment will create an AMS

Lambda function and will produce its endpoint URL:

Now it can be executed as a regular RESTful web service. For instance, using

POSTMAN with the generated URL and a simple JSON request produced by OpenRules

in the folder “jsons”:

Similarly, you may deploy this same business decision model as RESTful web service for

MS Azure and many other deployment frameworks.

https://openrulesdecisionmanager.com/deploying-decision-services/

OpenRules, Inc. OpenRules® Getting Started

25

More Decision Models

You also may download workspace “OpenRulesSamples” which includes many

decision models, such as “Hello“, “VacationDays“, “UpSellRules“,

“PatientTherapy”, and others, which are ready to be built, tested, and deployed.

There are several decision models with the names starting with “VacationDays”, e.g

“VacationDaysLambda”, “VacationDaysSpringBoot”, etc. They demonstrate how your

technical people may use your business decision models in different deployment

environments such as Amazon AWS, MS Azure, and others.

You may find many more useful business decision models by downloading

“OpenRulesSamples” from here. Some of them are described in the OpenRules Blog.

To create a new custom decision model, you may simply copy any existing sample project

such as “Hello” into a new folder, say “MyProject”, and in the file “pom.xml” (see line 7)

replace <artifactId>Hello</artifactId> to <artifactId>MyProject</artifactId>

Also, make sure that you are using the latest release of OpenRules (e.g. 10.4.0) by

setting <openrules.version>10.4.0</openrules.version>

You may place your project anywhere on your hard drive. Then you may double-click on

“test.bat” to make sure it works, and then start making changes in your Excel files and

“project.properties”.

DECISION MODELING APPROACH

OpenRules provides all the necessary tools to support the modern decision modeling

methodology such as Goal-Oriented Decision Modeling. It allows business analysts to

develop and maintain operational business decision models and deploy them as decision

microservices. Subject matter experts without help from programmers can create

decision models using only familiar MS Excel (or Google Sheets) as an editor, OpenRules

Explorer as Graphical Decision Modeling IDE, and OpenRules Decision Manager as a

building, deployment, and execution environment.

https://openrulesdecisionmanager.com/download/install-samples/
https://openrulesdecisionmanager.com/decision-models/hello-customer/
https://openrulesdecisionmanager.com/decision-models/vacation-days/
https://openrulesdecisionmanager.com/decision-models/up-sell-rules/
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrulesdecisionmanager.com/building-decision-services/install-samples/
https://openrules.blog/
https://www.amazon.com/dp/1794498699

OpenRules, Inc. OpenRules® Getting Started

26

Decision Model

The above introductory example shows a typical decision model represented as a

glossary surrounded by decision tables that specify decision logic for different goals and

sub-goals as in the following picture:

All decision variables should be described in the special table “Glossary”. Some of these

decision variables are known (decision input) and some of them are unknown (decision

output) that may represent goals/sub-goals. By executing a decision model OpenRules

decision engine finds a decision that assigns values to unknown decision variables

following the business logic specified by decision rules.

Goal-Oriented Decision Modeling

OpenRules uses a goal-oriented approach to decision modeling described in this book. It

promotes a top-down approach that starts with the definition of the top-level Decision

Goal (not with rules or data). You put the top-level goal into a glossary and define its

business logic using a decision table that specifies its sub-goals using sub-goals and

other decision variables. You continue this process for all sub-goals until the business

logic for all goals and sub-goals is defined.

https://www.amazon.com/dp/1794498699

OpenRules, Inc. OpenRules® Getting Started

27

For example, the introductory decision model has the top-level goal called “Vacation

Days” – the only decision variable added to the initial glossary. Its decision logic defines

in the decision table “CalculateVacationDays” which specifies 3 sub-goals: “Eligible for

Extra 5 Days”, “Eligible for Extra 3 Days”, and “Eligible for Extra 2 Days”. We added

these sub-goals to the glossary and specified their decision tables. These decision tables

identified two input variables “Age in Years” and “Years of Service“ (which we also

added to the glossary). Then we added test cases and executed the decision model.

The real-world decision models can be much more complex, and contain more rules, but

the methodological approach remains the same.

OpenRules allows a business analyst to represent and maintain decision logic directly in

Excel. The following sections describe major OpenRules decisioning constructs.

The goal-oriented approach is supported by the graphical Decision Modeling IDE

(integrated development environment) that allows a business analyst to analyze their

decision model using automatically built decision diagrams and a powerful while user-

friendly Debugger.

GRAPHICAL DECISION MODEL EXPLORER

OpenRules comes with Decision Model Explorer, a Graphical Integrated Decision

Modeling Environment that includes automatically built Diagrams such as the one

below:

https://openrulesdecisionmanager.com/graphical-decision-modeling/openrules-explorer/
https://openrulesdecisionmanager.com/graphical-decision-modeling/rule-debugger/

OpenRules, Inc. OpenRules® Getting Started

28

Each OpenRules Decision Manager project includes the batch file “explore.bat” that

starts the Explorer. For example, the above Explorer’s view will be displayed when you

double-click on this file from the standard decision project “PatientTherapy“. You can

click on the icon in the title bar to Open any other decision project.

Diagramming

When you open OpenRules Explorer from the folder with an existing decision model for

the first time, it will generate its diagram using only goals and sub-goals. This diagram

reflects the Goal-Oriented Decision Modeling approach and in general, follows the DMN

(Decision Model and Notation) graphical convention for decision requirement diagrams.

All goals are shown as yellow rounded rectangles, and the main goal has a red border.

The arrows between goals show the automatically (!) discovered knowledge

relationships, e.g. the goal “Recommended Dose” depends on the sub-goal “Patient

Creatinine Clearance”.

You don’t have to draw the diagram yourself as it’s being AUTOMATICALLY generated

based on an already defined glossary, goal/sub-goals, and tables that specify their logic.

You may freely move the diagram elements around and the Explorer will keep all

https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://www.omg.org/dmn/

OpenRules, Inc. OpenRules® Getting Started

29

relationships between them (arrows) intact.

Double-click on any node inside the diagram shows additional information

about the node. For example, for a decision table, it can open the

corresponding Excel file where this table is defined. When you make

changes in Excel they will be immediately reflected on the diagram.

If you can click on the Main Menu icon , it will show all menu items and the file

structure of the rules repository:

Diagram Views

You may create different diagram views of the same decision model by selecting

different elements from the legend on the right. For example, if you select only “Goals”

in the legend, the diagram may look as follows:

OpenRules, Inc. OpenRules® Getting Started

30

If you also select “Tables“, all related decision tables (and other business knowledge

model elements such as “Decision”, “DecisionService”, “Code”, “Method”) will be shown

as blue rectangles:

The dashed arrows from blue tables to goals prompt you that a table contains the logic

that specifies the connected goal.

You may also select “Input“, then all decision variables will be shown as white rounded

OpenRules, Inc. OpenRules® Getting Started

31

rectangles with dashed lines to the goals that use them:

You may hide the “Input Data” and select “Concepts” to show the business concepts

described in your glossary. They will be shown as pink rounded rectangles:

When you click on a concept or an input node all related dashed links will be

highlighted. A double-click on a blue node such as "DefineMedication" will open a view

with the proper decision table:

OpenRules, Inc. OpenRules® Getting Started

32

You may adjust the width of any column and click on the left of any rule to setup a

breakpoint for the debugging. If you want to modify this table, click on "Open Excel”.

Diagram Manipulations

You can easily adjust diagrams in many ways. You may drag & drop any nodes and all

automatically calculated links (arrows) will stay intact. You may use the following

buttons to move the diagram around, zoom in/out, or put it in the center:

You can click on the button “Export PDF” to export the diagram to the PDF format in

the file of your choice.

When a decision model iterates over collections of objects and sorts some of them like in

a quite complex decision model “Flight Rebooking“, the automatically generated diagram

explains complex relationships by putting clarifying labels such as “Execute …” on the

proper links:

https://dmcommunity.org/challenge/challenge-oct-2016/

OpenRules, Inc. OpenRules® Getting Started

33

Live Decision Model Diagrams

The generated diagrams will be automatically updated whenever the decision logic in

the underlying Excel tables is changed (without a refresh button). If OpenRules Explorer

recognizes missing nodes it shows them in red. Watch the video that demonstrates how

OpenRules Explorer keeps decision model diagrams LIVE.

Here is the above diagram for “Flight Rebooking” being automatically modified when we

commented out the decision table “AssignNewFlight”:

https://t.co/cZCjKZyqSR?amp=1

OpenRules, Inc. OpenRules® Getting Started

34

Testing Decision Model

You can test your decision model directly from Explorer by running test cases defined in

Excel. Click on the icon and you will see a view similar to this one:

OpenRules, Inc. OpenRules® Getting Started

35

The left panel “Run Tests” shows all available test cases which you can open in Excel by

clicking on the test name. The panel “Execution Path” shows all major execution steps

(usual rulesets such as decision tables) in the automatically defined order.

You can execute ALL TESTS or only selected test cases. To execute a test case you may

click on the corresponding icon and you will see the results on the Execution

Console. You may click on the tab “Execution Report” to see the automatically generated

reports that show only actually executed rules with pointers to the places in Excel where

they are defined, brief rules formulations, and all involved decision variables with their

values in the time of the rule execution:

OpenRules, Inc. OpenRules® Getting Started

36

This information provides detailed explanation of what and why was executed.

Debugging Decision Model

You can debug your decision model by click on the Debug-button :

OpenRules, Inc. OpenRules® Getting Started

37

See the detailed description of OpenRules Debugger and watch the video.

Deploying Decision Model

OpenRules Decision Manager allows you to deploy your decision model as a regular Java

program on-premises or on-cloud using the following deployment options:

https://openrulesdecisionmanager.com/rule-debugger/
https://youtu.be/k6307CX32j4

OpenRules, Inc. OpenRules® Getting Started

38

You may find more information about decision model deployment in the User Manual for

Developers.

You can deploy your decision model directly from OpenRules Explorer using the

“Deploy” menu-item . You will see a view like this one:

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf

OpenRules, Inc. OpenRules® Getting Started

39

DECISION TABLES

OpenRules uses classical decision tables which are in the heart of OpenRules from its

introduction in 2003 and became the major decisioning construct of the DMN standard.

OpenRules utilizes MS Excel and/or Google Sheets as the most powerful and commonly

known table editors (but doesn’t rely on Excel’s formulas).

Decision Table Structure

OpenRules uses the keyword “DecisionTable” for the most frequently used single-hit

decision tables. For example, let’s consider a very simple decision table:

Its first row contains the keyword “DecisionTable” and a unique table’s name such as

“DefineSalutation” (no spaces allowed). The second row uses the keywords “Condition”

OpenRules, Inc. OpenRules® Getting Started

40

and “Conclusion” to specify the types of decision table columns. Instead of the keyword

“Condition” you may it’s synonym “If”. Instead of the keyword “Conclusion” you may it’s

synonyms “Then” or “Action”. All keywords are case-sensitive.

The third row contains the names of decision variables expressed in plain English

(spaces are allowed). The columns of a decision table define conditions and conclusions

using different operators and operands appropriate to the decision variable specified in

the column headings.

The rows below the decision variable names specify multiple rules. For instance, the

second rule can be read as:

“IF Gender is Female AND Marital Status is Married THEN Salutation is Mrs”.

This is an example of the horizontal decision table where rules are defined from top to

bottom. The same decision table may be presented in the vertical format when rules

are presented from left to right:

If some cells in the rule conditions are empty, it is assumed that this condition is

satisfied. A decision table may have no conditions, but it always should contain at least

one conclusion/action.

The conditions in a decision table are always connected by the logical operator “AND”

and never by the operator “OR”. Each rule can be read as:

 IF Condition-1 AND Condition-2 AND …

 THEN Conclusion-1 AND Conclusion-2 AND …

When you need to use “OR”, you may add another rule that is an alternative to the

previous rule(s). However, some conditions may have a decision variable defined as an

array or a list of values. Within such array-conditions “ORs” can be expressed using

commas. Consider the following decision table from the standard project

“UpSellRules”:

OpenRules, Inc. OpenRules® Getting Started

41

For instance, the second rule can be read as:

IF Customer Profile is one of Bronze or Silver

 AND Customer Products include Product 1 and Product 3

 AND Customer Products do not include Product 6, Product 7, and Product 8

THEN Offered Products are Product 6, Product 7, and Product 8

 AND Recommendation is Additional Products 6,7,8.

Execution Logic

All rules are executed one-by-one in the order they are placed in the decision table. For

the horizontal (default) decision tables, all rules (rows) are executed in top-down order.

For vertical decision tables, all rules (columns) are executed in left-to-right order.

The execution logic of one rule is the following:

OpenRules, Inc. OpenRules® Getting Started

42

 IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all other

conditions in the same rule are ignored and not evaluated. Actions are executed only if

all conditions in the same rule are satisfied. Conditions and actions with empty cells (or

hyphens) are ignored.

There is a simple rule that governs rules execution inside a decision table:

The preceding rules are evaluated and executed first!

However, a designer of decision tables may specify different execution logic by using one

of two major types:

• Decision or DecisionMultiHit

• DecisionTable or DecisionSingleHit

Note. OpenRules also provides a constraint-based rule engine to execute decision models in the

inferential mode when an order of rules inside decision tables and between tables is not important.

Tables of the type “Decision”

These tables start with the keyword “Decision”. They evaluate rules one by one and

execute all rules which conditions are satisfied. That’s why they are also called “multi-

hit” decision tables. Instead of the keyword “Decision” you may use its synonym

“DecisionMultiHit”. The main table for the above sample “Vacation Days” provides a

typical example of a multi-hit decision table:

The table of the type “Decision” allows the actions of already executed rules to affect the

http://rulesolver.com/

OpenRules, Inc. OpenRules® Getting Started

43

conditions of rules specified after them. In this sense, they are like traditional

programming languages. The table “Decision” supports the following rules execution

logic:

• Rules are evaluated in top-down order and if a rule condition is satisfied, then

the rule actions are immediately executed.

• Rule overrides are permitted. The action of any executed rule may override the

action of any previously executed rule.

Let’s consider an example of driving eligibility logic: “A person of age 17 or older is

eligible to drive. However, in Florida 16-year-olds can also drive”. We may present this

logic using the following table of the type “Decision”:

The first unconditional rule sets “Driving Eligibility” to “Eligible” (default!). The second

rule may override this value with “Ineligible” for all people younger than 17. But for 16-

year-olds living in Florida, the third rule will again assign the value “Eligible” to

Driving Eligibility.

There are two important observations about the behavior of the tables “Decision”:

1. Rule actions can affect the conditions of other rules.

2. There could be rule overrides when rules defined below already executed rules could

override already executed actions.

3. The default values are usually defined in the very first rule.

These tables naturally support the following logic:

OpenRules, Inc. OpenRules® Getting Started

44

 More specific rules should override more generic rules!

For example, in the above table the Florida’s driving eligibility rules override the US

rules as we defined them after (!) the US rules.

Tables of the type “DecisionTable”

These tables start with the keyword “DecisionTable”. They evaluate rules one by one

and stop after the first “hit” when a rule is satisfied. That’s why they are also called

“Single-Hit” decision tables. All 3 tables in the introductory example that specify

decision logic for extra vacation days give examples of single-hit decision tables.

Let’s present the above table “DetermineDriverEligibility” using a single-hit table of the

type “DecisionTable”:

The first rule takes care of 16-year-olds living in FL. For all other people younger than

17 the second rule assigns the value “Ineligible” to the decision carriable “Driver

Eligibility”. And the third unconditional rule (the default!) makes all other people

Eligible.

Preferably, your rules should cover all possible combinations of decision variables

inside the table’s conditions. Otherwise, it is good practice to catch and report an

“impossible” situation in the last (default) rule.

Using Different Types of Decision Tables

The same decision logic could be represented by both types of tables “Decision” and/or

“DecisionTable”. Let’s consider a situation when we need to calculate “TaxableIncome”

OpenRules, Inc. OpenRules® Getting Started

45

using some formula and if the result is negative, we should assign make it equal to 0. If

we use the table of the type “Decision” it may look as below:

Here the decision variable “TaxableIncome” is present in both the condition and the

action. The first (unconditional) rule will calculate and set its value using the proper

formula. The second rule will check if the calculated value is less than 0. If it is true,

this rule will reset this decision variable to 0.

The same logic could be expressed with a single-hit table “DecisionTable” such as:

However, if your decision table contains hundreds or thousands of rules, single-hit is

much more efficient than multi-hit.

In situations when you need rule overrides, multi-hit tables are the way to go. The only

thing a decision model designer needs to do is to place "more specific" rules after "more

generic" rules.

It is very convenient to use multi-hit decision tables to accumulate some data, e.g. in so-

called “scorecards”. For example, the following decision table accumulates “Application

Risk Score” based on 3 different conditions:

OpenRules, Inc. OpenRules® Getting Started

46

The first rule will unconditionally assign value 0. All other rules may increment the

score using the operator “+” and the provided value (32, 35, 40, …).

Table Conditions

In the most cases table conditions are specified by the keywords “Condition” (or its

synonym “If”) in the second row of a decision table, e.g.:

If a condition has two sub-columns it means the first one used by operators like “Is” or

“>” and the second one – by values like “Male” or “1000”. Conditions without sub-

columns assume that the operator is “=” or “Is”. However, you may place an operator in

the front of a value in the same cell, e.g. “> 1000”. For consistency reason it is

recommended to use two sub-columns.

The condition cells can contain specific values like “1000” or “> 1000” but they also

contain names of other decision variables or even expressions. For instance, the above

decision table “CalculateTaxableIncome” uses conditions:

OpenRules, Inc. OpenRules® Getting Started

47

Comparing Strings

The following operators can be used for conditions to compare strings.

Is To compare two strings are the same. This comparison is case sensitive

by default unless you changes it using the property “model.ignoreCase”.

Instead of “Is” you also can write “=” or “==” (with an apostrophe in front

of them to avoid confusion with Excel’s own formulas).

Use the value null to check if a variable of type String, Date, Integer,

Boolean, or any custom type is undefined. It will cause a syntax error if

applied against a decision variable with a primitive type such as int,

double, boolean. You may check the primitive variables against their

default values (0 for int, 0.o for double, false for boolean).

Is Not To check if two strings are not the same. This comparison is case

sensitive. Synonyms: !=, isnot, Is Not Equal To, Not, Not Equal, Not

Equal To.

Is Empty Applied to check if a variable of the type String, Date, or a custom type

like Customer is empty. The sub-column for the value should be

TRUE/Yes or FALSE/No.

Contains To compare if a decision variable contains certain values. For example,

“House” contains “use”. The comparison is not case-sensitive. Synonym:

Contain.

Does Not

Contain

To compare if a decision variable does not contain certain values. For

example, “House” doesn’t contain “user”. The comparison is not case-

sensitive.

OpenRules, Inc. OpenRules® Getting Started

48

Starts

With

To compare if a decision variable starts with certain values. For

example, “House” starts with “ho”. The comparison is not case-sensitive.

Synonym: Start.

Like To check if a decision variable matches simple patterns with three

wildcards:

• The percent sign (%) represents zero, one, or multiple characters

• The underscore sign (_) represents one, single character

• The character sign (#) represents one digit

Examples: ‘ABCD” is like ‘ab%’ and ‘732-993-3131’ is like ‘___-___-____’

This operator is not case sensitive. Synonym: Is Like.

Not Like This operator is opposite to Like. This operator is not case sensitive.

Synonym: Is Not Like.

Match To check if a decision variable matches standard regular expressions.

For example, you can use the expression “\d{3}-\d{3}-\d{4}” to check if

the content of the decision variable is a valid US phone number such as

732-993-3131. Synonyms: Matches.

No Match To check if a decision variable doesn’t match a regular expression. For

example, you can use the expression “[0-9]{5}” to check if the content of

the decision variable consists of 5 digits like a valid US zip code. The

condition is satisfied if it is not true. Synonyms: Not Match, Does Not

Match, Different, Different From.

You may control case sensitivity of comparison operators by setting the property

“model.ignoreCase” to FALSE or TRUE (in the Environment table or in

“project.properties”).

You may change case sensitivity of a particular operator by adding [Ignore Case] or [Case

Sensitive] after the operator.

https://www.w3schools.com/sql/sql_like.asp
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® Getting Started

49

Comparing Numbers

The following operators can be used for conditions to compare numbers (integer, real, or

BigDecimal):

Is

To compare two numbers are the same. Instead of “Is” you also can write

“=” or “==” (with an apostrophe in front of them to avoid confusion with

Excel’s own formulas)

Is Not
To check if two numbers are not the same. Synonyms: !=, isnot, Is Not

Equal To, Not, Not Equal., Not Equal To

>

To check a number represented by the decision variable is strictly larger

than the number in the column’ cell. Synonyms: Is More, More, Is More

Than, Is Greater, Greater, Is Greater Than

>=

To check a number represented by the decision variable is larger than or

equal to the number in the column’ cell. Synonyms: Is More Or Equal. Is

More Or Equal To, Is More Than Or Equal To, Is Greater Or Equal To,

Is Greater Than Or Equal To

<=

To check a number represented by the decision variable is smaller than

or equal to the number in the column’ cell. Synonyms: Is Less Or Equal,

Is Less Or Equal To, Is Less Than Or Equal To, Is Smaller Or Equal To,

Is Smaller Or Equal To, Is Smaller Than Or Equal To

<

To check a number represented by the decision variable is strictly

smaller than the number in the column’ cell. Synonyms: Is Less, Less, Is

Less Than, Is Smaller, Smaller, Is Smaller Than

Within

To check if a decision variable is within the provided interval. The

interval can be defined as: [0;9], (1;20], 5..10, between 5 and 10, more

than 5 and less or equals 10. Synonyms: Inside, Inside Interval, Interval

Outside

To check if a decision variable is outside of the provided interval. The

interval can be defined as: [0;9], (1;20], 5..10, between 5 and 10, more

than 5 and less or equals 10. Synonyms: Outside Interval

OpenRules, Inc. OpenRules® Getting Started

50

In conditions without operators OpenRules assumes the operator “Within” when an

interval is specified. For example,

checks if the variable “Current Hour” is within the interval [0..11) assuming that 0 is

included and 11 is not included.

Using Natural Language Inside Decision Tables

OpenRules allows a rules designer to use “almost” natural language expressions to

represent intervals of numbers inside conditions without operators. You may define

FROM-TO intervals in practically unlimited English using such phrases as: "500-1000",

"between 500 and 1000", "Less than 16", "More or equals to 17", "17 and older", "< 50",

">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by specifying

their two bounds or sometimes only one bound. Here are some examples of valid integer

intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5, 6, 7, 8, 9, and 10

5;10 contains 5, 6, 7, 8, 9, and 10

[5,10) contains 5, 6,7,8, and 9 (but not 10)

[5..10) The same as [5,10)

5..10 contains 5 and 10

5..10 contains 5 and 10

-5..20 contains -5 and 20

-5 .. -20 error: left bound is greater than the right one

-5 ..-2 contains -5, -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

OpenRules, Inc. OpenRules® Getting Started

51

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5 does not contain 5

more 10 does not contain 10

more than 10 does not contain 10

10+ more than 10

>10 does not contain 10

>=10 contains 10

between 5 and 10 contains 5 and 10

no less than 10 contains 10

no more than 5 contains 5

equals to 5 equals to 5

greater or equal than 5

and less than 10
 contains 5 but not 10

more than 5 less or equal

than 10
 does not contain 5 and contains 10

more than 5,111,111 and

less or equal than

10,222,222

 does not contain 5,111,111 and contains

10,222,222

[5'000;10'000'000) contains 5,000 but not 10,000,000

[5,000;10,000,000) contains 5,000 but not 10,000,000

(5000;10,000,000] contains 5,000 and 10,000,000

You may represent integer intervals as you usually do in plain English. The only

limitation is the following: lower bound should always go before upper bound!

Along with integer intervals, you may similarly represent intervals of real numbers.

The bounds of double intervals could be integer or real numbers such as [2.7; 3.14).

Comparing Dates

OpenRules naturally supports date comparison with the operators =, !=, >, >=, <=, and <

like in the following example:

OpenRules, Inc. OpenRules® Getting Started

52

Because different countries use different Date formats we recommend using the

commonly understandable format “yyyy-MM-dd”. At the same time, OpenRules will

recognize Date variables presented in the standard format specific for the majority of

countries (using system locales). For example, the standard US date formats are

"MM/dd/yyyy", “MM/dd/yy HH:mm”, and "EEE MMM dd HH:mm:ss zzz yyyy". We also

recommend not to use the Date format when you define your dates in Excel: to avoid

unnecessary conversion by Excel use a simple Text format.

To compare two Date variables, you may do it as in the following decision table:

You may see more examples of how to use new Date operators by analyzing the sample

project "HelloWithDates" available in the downloaded workspace "OpenRulesSamples".

By default, OpenRules compares dates ignoring time. If you want to use time

components of the Date variables, instead of the operators such as "<" you should use

the operator "< time", as in the table below:

OpenRules, Inc. OpenRules® Getting Started

53

Comparing Boolean Values

If a decision variable has type "boolean", e.g. “Employee is Veteran”, you can check if it’s

true by using the following conditions:

You can use the following boolean values:

• True, TRUE, Yes, YES

• False, FALSE, No, NO

You also may compare two Boolean decision variables as below:

Checking if a Decision Variable is Undefined

If you want to check if a decision variable is undefined, you may compare it with a

special value null. Here are examples e.g.

Only decision variables of types String, Date, Integer, Double, Boolean, or any custom

type can be compared with null. It you try to compare a decision variable of a primitive

type such as int, double, or boolean with null, you will receive a syntax error.

For variables of the type String or Date you may use the operator “Is Empty”:

Other Condition Types

OpenRules, Inc. OpenRules® Getting Started

54

There are several convenience condition types described in the examples below.

ConditionBetween

This condition of the type “ConditionBetween” check if the variable “Amount” is more

or equals to 10 and less or equals to 20.

ConditionVarOperValue

When your decision table contains too many columns it may become too large and

unmanageable. In practice, large decision tables have many empty cells because not all

decision variables participate in all rule conditions even if the proper columns are

reserved or all rules. For example, here is a decision table taken from a real-world

application that has more than 20 conditions (not all of them shown) with many empty

rule cells:

To make this decision table more compact, instead of the standard column’s structure

with two sub-columns

we may use another column representation with 3 sub-columns:

OpenRules, Inc. OpenRules® Getting Started

55

This way the above table will be replaced may with a much more compact table that

may look as follows:

P.S. Similarly, instead of a column of the type “Conclusion” you may use a column of the

type “ConclusionVarOperValue” with 3 sub-columns that represent a variable name, an

operator, and a value.

Conditions on Collections

In practice, business rules deal not only with separate decision variables but also with

collections of decision variables such as arrays, lists, sets, or maps. OpenRules provides

necessary constructs to use collections in conditions and conclusions.

Condition with Collection Operators

For example, this is a fragment of the decision table from the sample project

“UpSellRules”:

OpenRules, Inc. OpenRules® Getting Started

56

Here the variable “Customer Profile” is a regular variable of the type String, and the

first condition simply checks if the value of the variable “Customer Profile” is one of two

strings “Bronze” or “Silver”. However, the variable “Customer Products” is an array of

strings that identifies all products this customer already has. So, the second condition

checks if this array includes product “Product 1” (the first rule) or if it includes the

products “Product 1” and “Product 3” (the second rule). The third condition checks if this

array doesn’t include product “Product 2” (the first rule) or if it doesn’t include the

products “Product 6”, “Product 7”, and “Product 8” (the second rule).

The following operators can be used for conditions defined on a variable and a collection:

Is One Of

For integer and real numbers, and for strings. Checks if a

value is among cell values listed through a comma.

Synonyms: Is One, Is One of Many, Is Among, Among.

Is Not One Of

For integer and real numbers, and for strings. Checks if a

value is NOT among cell values listed through a comma.

Synonyms: Is not among, Not among.

Starts With

One Of

To compare if a decision variable starts with one of values

listed through commas. For example, “House” starts with one

of the values “hou, mo”.

Does Not

Start With

One Of

Compare if a decision variable starts with one of values listed

through commas and returns TRUE is it DOES NOT. For

example, “House” does not start with one of values “Mo, Wo”.

The following operators can be used for conditions defined on two collections:

Include

To compare two collections. Returns true when the first

collection includes all elements of the second collection.

Synonyms: Include All

Exclude

This operator is opposite to the operator “Include”. Returns

true when even one element of the first collection is not

present in the second collection. Synonym: Does Not

Include

OpenRules, Inc. OpenRules® Getting Started

57

Intersect

To compare a collection with another collection. Returns true

when the first collection and the second collection have

common elements.

Synonyms: Intersect With, Intersects

Does Not

Intersect

Returns true when the first collection and the second

collection do not have common elements.

Synonyms: Does not Intersect With, Exclude All

When these operators deal with strings, they are case sensitive. You may control case

sensitivity of all these operators by setting the property “model.ignoreCase” to FALSE

or TRUE (in the Environment table or in “project.properties”).

You may control case sensitivity of a particular operator by adding [Ignore Case] or

[Case Sensitive] at the end of the operator.

If the decision variables do not have an expected type for the specified operator, the

proper syntax error will be diagnosed.

Note that the operators Is One Of, Is Not One Of, Include, Exclude, Intersect, and

Does Not Intersect work with values separated by commas. Sometimes a comma could

be a part of the value and you may want to use a different separator. In this case, you

may simply add your separator character at the end of the operator. For example, if you

want to check that your variable “Address” is one of “San Jose, CA” or “Fort Lauderdale,

FL”, the comma between City and State should not be confused with a separator. In this

case, you may use the operator “Is One Of #” or “Is One Of separated by #” with an

array of possible addresses described as “San Jose, CA#Fort Lauderdale, FL”. Instead of

the separator “ #” you may use any non-alphabetic character after a space, e.g. “ ^”.

What can you use as values of the above operators? There are 3 possible options:

1) Constants, e.g., Bronze, Silver or Product 6, Product 7, Product 8 in the above

decision table

2) Decision variables, e.g., Var 1, Var 2, Const 2, Var 3

OpenRules, Inc. OpenRules® Getting Started

58

3) A single decision variable that represents a collection defined somewhere else (in a

test data or another decision table).

A sample project “ArrayOperators” from the standard installation provides good

examples of different cases.

ConditionMap

If the decision variable is a map (e.g. an instance of Java class HashMap) the following

condition

will check if the map-variable “My Map” contains a pair (“key1”,”values5”).

Table Conclusions

Simple Conclusions/Actions

There are two most used types of conclusions specified by the keywords “Conclusion” or

its synonyms “Action” or “Then”, e.g.:

The columns of the type “Conclusion” may have two sub-columns: one for an operator

like “Is” or “=” and another - for a value.

The following operators can be used inside decision table conclusions:

Is

Assigns one value to the conclusion decision variable.

Synonyms: =, ==

When you use “=” or “==” inside Excel, you have to put an

apostrophe in front of them to avoid confusion with Excel’s

formulas.

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

59

Assign

Plus

Takes the conclusion decision variable, adds to it a value

from the rule cell and saves the result in the same decision

variable. Synonym: +, +=

Assign

Minus

Takes the conclusion decision variable, subtracts from it a

value from the rule cell and saves the result in the same

decision variable. Synonym: -, -=

Assign

Multiply

Takes the conclusion decision variable, multiplies it by a

value from the rule cell and saves the result in the same

decision variable. Synonym: *, *=

Assign

Divide

Takes the conclusion decision variable, divides it by a value

from the rule cell and saves the result in the same decision

variable. Synonym:/, /=

The accumulation operators +, -, *, and / are usually used in scorecards such as then

decision table above.

You may assign string using simple conclusion columns like in these decision tables:

 or

You may assign numbers (integer, real, BigDecimal) using simple conclusion columns

like in these decision tables:

OpenRules, Inc. OpenRules® Getting Started

60

You may use “” (double quotes) or “ “ in the action cells to assign an empty string or a

space character to a String variable.

Conclusions on Collections

When you want to assign some values to decision variables that are collections (such as

arrays or lists) you can use the following operators:

Are
Assigns one or more values listed through commas to the

conclusion variable that is expected to be an array/collection

Add

Adds one or more values listed through commas to the

conclusion variable that is expected to be an array/collection.

Synonyms: +

Add

Unique

Adds one or more values listed through commas to the

conclusion variable that is expected to be an array but making

sure that these values are not present in the array/collection.

Synonyms: +unique, +u

For example, if the decision variable “Offered Products” is an array (or a list) of strings,

you use the following conclusion to assign to 3 products:

If after this conclusion you will also apply the following conclusion

then the value of the variable “Offered Products” will become

 { “Product 2”, “Product 4”, “Product 5”, “Product 7”, “Product 8” }

OpenRules, Inc. OpenRules® Getting Started

61

Displaying Messages

There is a special conclusion types “Message” and “ActionPrint” for displaying

messages directly from decision tables. For example, the following action displays the

message “Employee is eligible to 27 vacation days”:

But if you want instead of hard-coded 27 days to display the actual number of vacation

days already calculated in the decision variable “VacationDays”, you may use this

action:

The expressions {{Name}} and {{VacationDays}} will be replaced with their actual values.

By using “{{“ and “}}” around variable names you explicitly say that you want to use their

values.

After the message, OpenRules will also print [produced by <name of the decision table>].

The action “Message” displays messages only when the property “trace=On” (in the file

“project.properties”). If “trace=Off” and you still want to show certain messages, e.g.

critical errors, you may use “ActionPrint” instead of “Message”.

Displaying Rule Numbers

Sometimes, you want your message to refer to the rule that was applied. To do this, you

may associate unique names with all rules in the column of the type "#" and then refer

to these names in the Message column using $RULE_ID like in the following example:

The message will be shown as “Executed rules <Rule 1>” or “Executed rules <Rule 2>”.

OpenRules, Inc. OpenRules® Getting Started

62

Expressions

OpenRules allows you to use expressions (formulas) in the decision table cells.

OpenRules supports the following expressions:

• Simple formulas

• Compositions of decision variables

• Java Snippets.

Formulas

You may use naturally looking formulas that contain the names of your decision variable

and traditional operation signs (+, -, *, /, and more) along with brackets to define the

order of the operations. Here is a simple example:

That will assign a difference between values of AdjustedGrossIncome and

DependentAmount to the variable TaxableIncome. Here is a more complex formula from

the example “PatientTherapy” that calculates Patient Creatinine Clearance:

When your resulting decision variable has type “String” you can use the operator “+” to

concatenate different strings (or even numbers). For example, this conclusion

will use the values of decision variable “Greeting”, “Salutation”, and “Name” (defined in

the Glossary of the standard project Hello) to define a Hello Statement that may look

like “Good Afternoon, Ms. Robinson!”.

Alternatively, you may explicitly use string interpolation by taking decision variable

OpenRules, Inc. OpenRules® Getting Started

63

names the double curly braces, “{{“ and “}}”. It will allow you not to use pluses and

quotations and simply write:

You also can use some simple functions like min(x,y) and max(x,y) like in the following

actions borrowed from the standard project 1040EZ:

Here is a partial list of supported operators and functions:

Feature Syntax Examples

Numbers

regular

integer or real

numbers

10, 465.25, -25, 3.14

Add x + y 3+2

Subtract x - y 3 - 2

Multiply x * y 3 * 2

Divide x / y 3/2

Power: x y pow(x,y) 5**2

Negate -x -3

OpenRules, Inc. OpenRules® Getting Started

64

Comparison

x < y

x <= y

x = y

x <> y or x!= y

x >= y

x > y

2 <> 3 [produces 1]

2 != 2 [produces 0]

Logical "and" x and y

1 and 1 [produces 1]

1 and 0 [produces 0]

0 and 0 [produces 0]

Logical "or" x or y

1 and 1 [produces 1]

1 and 0 [produces 1]

0 and 0 [produces 0]

Absolute value abs(x)
abs(-5) [produces 5]

abs(5) [produces 5]

Maximum

between two

numbers

max(x,y) max(5,6) [produces 6]

Minimum

between two

numbers

min(x,y) min(5,6) [produces 5]

Floor floor(x)
floor(3.5) [produces 3]

floor(-3.5) [produces -3]

Ceiling ceil(x)
ceil(3.4) [produces 4]

ceil(-3.4) [produces -3]

"π" PI The mathematical constant "π"

e x exp(x) exp(1) = 2.7182818284590451

Rounding round(x)
round(3.5) [produces 4]

round(-3.5) [produces -4]

Square root sqrt(x) sqrt(9) [produces 3]

OpenRules, Inc. OpenRules® Getting Started

65

OpenRules also supports many other operators and functions defined in the standard Java

class Math.

Composing Decision Variable Names

All decision variables used in decision tables or test tables should be defined in the

glossary. However, you may compose new complex decision variables out of the existing

ones without declaring them in the Glossary. For example, a sample project

"HelloNestedLocation" has two business concepts “Location” and “Customer” defined in

this Glossary:

To produce a greeting like: "Good Afternoon, Ms. Kaye in CA!", a user could create the

following table:

However, starting with Release 10 it is not necessary to define “State of Customer's

Location" in the Glossary. This expression uses a special qualifier “of” and OpenRules

can automatically recognize that you refer to the “State” of the “Customer’s Location”.

So, you may remove the proper variable from the Glossary. Similarly, you may write

{{City of Customer's Location}}.

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

OpenRules, Inc. OpenRules® Getting Started

66

The corresponding test data may be defined in the following table:

Instead of the qualifier "of" you may use a special divider "::". For instance, in the above

table you may write {{Customer's Location:: State}} instead of {{State of Customer's

Location}}.

When your glossary includes multiple nested objects, the qualifier "of" and divider "::"

may be used multiple times inside the expressions. For instance, the standard sample

“DepartmentsEmployeesLocations” deals with the concept Department which includes

decision variable Manager of the type Employee. So, you to refer to his/her salary inside

a decision table, you may simply write "Salary of Manager of Department" or

"Department :: Manager :: Salary".

Functions for Collections of Objects

OpenRules supports various functions for collections of objects that allow you to avoid

using iteration loops for the calculation of typical collection characteristics. A typical

sample project “AnalyzeEmployees” is included in the standard installation. It has the

following glossary:

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

67

The “blue” decision variables represent input information. As you can see, the concept

“Company” contains an array “Employees”. The concept “Employee” besides various

characteristics of one employee (Name, Age, Gender, Salary, Number of Children)

includes an array “Locations” as an employee may live in multiple locations.

The “red” decision variables represent the output of this decision model which should

calculate their values. Of course, it could be done using decision tables for “for-each”

loops (see below). However, it is much simpler to do it using the following decision table

“ApplyFunctions”:

OpenRules, Inc. OpenRules® Getting Started

68

As you may guess, the expression

Count of Employees

returns the total number of employees inside the collection “Employees”. The

expressions

Max of Salary of Employees

Average of Salary of Employees

returns the maximum and average salaries among all employees.

The expression

Sum of Number of Children of Employees

calculates the total number of children for all employees.

The expression First of Employees returns the first employee in the array Employees,

and Salary of First of Employees returns his/her salary.

The expression

Array of Salary of Employees

returns an array of all salaries for all employees (the array’s type is defined in the

glossary as double[]).

As an employee may have residences in different locations in different states, we may

construct a list of all states (without duplications) where employees have residencies:

DistinctList of State of Locations of Employees

And we don’t need to use nested loops.

OpenRules, Inc. OpenRules® Getting Started

69

The first words inside these expressions are called functions and currently OpenRules

supports the following functions on collections:

Count, Sum, Max, Min, Average, Array, List, Set,

DistinctArray, DistinctList, First, and Last.

You may use combinations of such functions as in these examples:

Average of Array of Salary of Employees

Count of DistinctList of State of Locations of Employees.

It is convenient to use these functions inside the “ActionAssign” as in the above

decision table.

Java Snippets

You may use so-called “Java Snippets” inside decision table cells. They should start with

a sign “:=” like in this example:

Similarly, the expression that calculates “Patient Creatinine Clearance” could be written

using the following Java snippet:

In these examples, the ${Greeting} or ${Patient Age} refer to the value of the decision

variable “Greeting” and “Patient Age”.

Java snippets allow users familiar with the basics of Java to write any arithmetic and

logical formulas using valid Java expressions placed directly in the decision table cells

but preceding by a sign “:=”. However, Java snippets are less friendly compared with

OpenRules, Inc. OpenRules® Getting Started

70

simple expressions and business people may ignore this section.

To make Java snippets more readable to business users, OpenRules allows you to refer

to the values of decision variables as ${variable name}. For instance, ${Amount}

returns the value of the decision variable “Amount” with the type specified in the

glossary (e.g., int or double). ${DOB} will return the actual date of birth. You also may

refer to the entire business concept as ${business concept}. For instance, you may

refer to the attribute “age” of the employee as ${Employee}.getAge().

It's possible to hide a Java snippet inside a special table of the type “Method”, e.g.:

Then we may call this method from this decision table:

Inside Java snippets you may use regular operators "+", "-", "*", "/", "%" and any other

valid Java operators. You may freely use parentheses to define the desired execution

order. You also may use any standard or 3rd party Java methods and functions, e.g.

:= Math.min(${Line A}, ${Line B})

If you want to use the value of a decision variable such as “Customer Location” inside a

decision table cell, you may simply write "Customer Location" in this cell (with or

without quotes). You even may simply write $Customer Location.

While being more technical, Java snippets remove any limits from the expressive power

of OpenRules. They allow using complex Java constructs like loops, functions, recursion,

etc. They allow using any Java libraries created by your programmers or by 3rd parties.

Dealing with Dates

Here are examples of columns that assign dates:

OpenRules, Inc. OpenRules® Getting Started

71

When you need to apply arithmetic operations with date variables such as calculating

the number of years, months, or days between dates, you still need to use OpenRules

Java snippets. For these purposes, you may use static methods of the class "Dates"

included in the standard OpenRules library "com.openrule.tools". For example, you may

use the following Java snippet inside a condition cell of your decision table:

 := Dates.years($D{Date1}, $D{Date2}) >= 2

It checks that a number of years passed between the variables "Date1" and "Date2" is at

least 2 years. You may calculate the age of the person from its birthday as follows:

Similarly use the following methods:

Dates.months(Date d1, Date2 d2)

Dates.monthsToday(Date date)

Dates.days(Date d1, Date d2)

Dates.daysToday(Date d).

The standard library "com.openrule.tools" also includes methods that produce new

dates:

 addHours(date, hours)

 addDays(date,days)

 addMonths(date,months)

 addYears(date,years)

 setYear(date,year)

 setMonth(date,month)

 setDay(date,day)

 today()

 newDate(year,month,day)

 newDate("yyyy-mm-dd")

OpenRules, Inc. OpenRules® Getting Started

72

You also may get integer values of year, month, and day by calling Dates methods

getYear(date), getMonth(date), and getDay(date).

All these methods can be used for dates arithmetic like in this example:

 You just need to remember to add an "import.java" statement that points to

"com.openrules.tools.Dates" to your Environment table.

GLOSSARY

You’ve already seen many examples of the “Glossary” table that is in the heart of any

decision model.

Standard Glossary

Usually the table “Glossary” contains 4 columns:

• Decision Variable

• Business Concept

• Attribute

• Type.

Here is a typical table of the type Glossary from the sample project “PatientTherapy”:

https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/

OpenRules, Inc. OpenRules® Getting Started

73

Column “Decision Variable”

This column should be always the first one as it defines the names of all decision

variables exactly as they are used inside the decision tables. The names of decision

variables should start with a letter or underscore and can contain only letters, digits,

spaces, underscores, hyphens, and apostrophes (no other special characters allowed).

It is recommended to associate with the decision variables that represent goals/sub-goal

hyperlinks to the decision tables that specify their logic.

Column “Business Concept”

This column should be defined as the second one – it associates different decision

variables with the business concepts to which they belong. Usually, you want to keep

decision variables that belong to the same business concept together and merge all rows

in the column “Business Concept” that share the same concept.

Column “Attribute”

This column should be defined as the third one – it defines the technical names of

decision variable that used for the integration of the decision model with input/output

objects. The names of the attributes cannot contain spaces and usually follow the

“Camel” naming convention for Java and JSON attributes. Usually business people

should coordinate this column with their IT counterparts.

https://en.wikipedia.org/wiki/Camel_case

OpenRules, Inc. OpenRules® Getting Started

74

Column “Type”

This column specifies the types of the decision variables. The typical types are:

• Integer or int - for integer numbers

• Double or double – for real numbers (or Float/float)

• String – for text variables

• Date – for dates

• Boolean or boolean – for logical variables with values TRUE (Yes) or

FALSE (No).

You may add [] after the type, e.g. String[] to say that this is an array of strings.

While it’s not important for business users to even know this, but these types are

valid Java types. Actually, any Java types can be used in the column “Type”.

The column “Type” may even use the names of Business Concepts specified in

this or other decision model glossaries or defined in 3rd party Java classes.

Optional Glossary Columns

Your Glossary may contain various optional columns after the column “Type” – their

order is not important.

Column “Description”

The optional column “Description” provides a plain English description of the decision

variable. It’s always a good practice to have the column “Description” in your glossary.

Column “Used As”

This optional column “Used As” allows you to set certain restrictions on how the

decision variables are used by the decision model. If your glossary doesn’t include this

column, then all (!) decision variables (except those defined in the Glossary’s formulas)

will be included in the decision model output (response).

This column may restrict decision variable using the following properties or their

combinations:

OpenRules, Inc. OpenRules® Getting Started

75

▪ in – defines a variable as the decision model’s input

▪ required – states that the input variable must have a value

▪ out – defines the variable as the decision model’s output

▪ const – defines the variable as a constant.

These properties can be listed in the column “Used As” separated by commas. Below is

the description of the most useful combinations of these properties.

The property “required” triggers the validation of the decision variable. If the

corresponding variable is undefined, OpenRules will produce an error at the execution

time. A variable is considered undefined in the following situations:

• If the variable is defined using standard types such as String, Integer,

Double, Boolean, etc. or custom business concepts defined in the glossary or

Java, then it is undefined when its value is null

• If a numeric decision variable is defined using Java primitive types such

as int, long, double, or boolean then it is undefined if its value is zero. In this

cases the attribute “required” is ignored for undefined variables.

You may specify the default value for the potentially undefined variable in the column

“Default Value” (see below).

The property “out” tells OpenRules that this variable will be calculated within the

decision model and should be included in the generated output such as the outgoing

JSON structure.

If the cell of the column “Used As” is empty (no properties are defined), then the

corresponding decision variable will be treated as a temporary variable that will not be

included in the generated output.

The column “Used As” may be effectively used for security and performance

improvement reasons. Only decision variables that are marked as out will be included

in the output of the secure decision service and sent over the network back to the client.

Column “Default Value”

OpenRules, Inc. OpenRules® Getting Started

76

The column “Default Value” defines the default values of the decision variables which

are required as an input but come to the decision model undefined (null). For example,

in the following glossary

decision variable “Start Date of Service” has type Date and is a required input variable.

If its actual input value is null, then the date 1/1/2017 will be used.

The constants MaxAge and MinAge are specified as 120 and 16 and can be used in

decision tables as regular decision variables instead of hard-coded numbers.

In this glossary, these constants are not marked as out. Therefore, they both (and as a

result, the entire concept “Settings”) will not be included in the outgoing JSON.

Formulas inside Glossary

Some decision variables can be calculated inside decision models using Glossary’s

formulas instead of attributes. For example, in the above glossary, two last rows have a

special indicator “:=” in the column “Business Concept”. It means the values for the

proper two decision variables “Age in Years” and “Years of Service” will be calculated by

using formulas (Java snippets) specified in the 3rd column:

These variables will be automatically calculated as the number of years from today until

“Date of Birth” and “Start Date of Service” correspondingly.

By default, the values of decision variables defined by formulas are being recalculated

whenever these variables are used inside the decision service. However, you can notice

OpenRules, Inc. OpenRules® Getting Started

77

that the above glossary specifies “Age in Years” as const in the column “Used As”. It

directs OpenRules to calculate the value of the variable “Age in Years” only once at its

first read and will never recalculate it again. Sometimes it could save recalculation time

and improve the overall performance.

Note. If a decision variable is defined in the Glossary using a formula, it should not be

used in DecisionTest tables. It also will not be included in the JSON response.

Context-Specific Columns “Used As”

Sometimes you want to treat the same decision variables differently in different

contexts. Let’s assume that when the above service is invoked from “Premise” we want

its response to show all involved decision variables. However, when it is invoked from

“Cloud” we want the response to include only Employee’s Id and the calculated vacation

days and omit all other variables. It can be important for performance and/or security

reasons.

To satisfy such requirements, we may introduce two different “Used As” columns, one

for “Premise” and another for “Cloud”. We also may add a special decision variable

“Invocation Source” with possible values “Premise” or “Cloud”. Here is the properly

adjusted glossary:

You can see, a new decision variable “Invocation Source” belongs to the business

concept “Settings” with the default value “Premise”. The column “Used As” has been

replaced by two columns: “Used As for Premise” and ”Used As for Cloud”. To direct

OpenRules which UsedAs-column to choose, you can use the following decision table

with the predefined name “UsedAsSelector”:

https://openrules.files.wordpress.com/2021/08/glossary10.png

OpenRules, Inc. OpenRules® Getting Started

78

Now, OpenRules will dynamically decide which UsedAs-column to use based on the

value of the decision variable “Invocation Source”. It will select “Used As for Cloud” if

Invocation Source is Cloud and “Used As for Premise” in all other cases.

In this decision table you can use any decision variable instead on “Invocation Source”

(or even combinations of decision variables) and use any UsedAs-list specified in the

glossary. Only the name of the decision table “UsedAsSelector” is predefined.

The standard workspace “OpenRulesSamples” includes the decision project

“VacationDaysWithAdvancedUsedAs” that demonstrates the use of multiple

UsedAs-lists.

Column “JSON Name”

The optional column “JSON Name” describes custom names that can be used in JSON

tests instead of attribute names. For example, the glossary

allows you to use the following JSON:

https://openrules.files.wordpress.com/2021/08/glossary12.png
https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

79

Column “Business Concept JSON Name”

The optional column “Business Concept JSON Name” describes custom names that

can be used in JSON tests instead of the names of business concepts. For example, the

sample project "VacationDaysJson" included in the standard installation, uses the

following glossary:

It specifies two business concepts "Employee" and "Company" and their JSON

names in French are defined as "l' employée" and "l' entreprise" in the column

"Business Concept JSON Name". French names for their attributes are defined in

the column "JSON Name".

You can deploy this decision model as a REST service using "runLocalServer.bat".

Then if you test it with POSTMAN, you will get the following results:

OpenRules, Inc. OpenRules® Getting Started

80

Instead of French, you may use any other language or English names with spaces

and other special characters not allowed in the column "Attribute".

Column “Domain”

The optional column “Domain” describes acceptable values (domain) of the decision

OpenRules, Inc. OpenRules® Getting Started

81

variable. Only Rule Solver actually uses this column while in other products it is just for

information.

Multiple Glossaries

Usually, a business model has one glossary. But if it’s too big, you may split it into

several tables of the type “Glossary”. For example, the sample project

“InsurancePremium” contains 3 files “GlossaryClient.xlsx”, “GlossaryDriver.xlsx”, and

“GlossaryCar.xlsx” with separate Glossary tables for glossaryClient, glossaryDriver, and

glossaryCar.

BIG DECISION TABLES

When decision models use really big decision tables with tens and even hundreds of

thousands of rules, the performance of the regular decision engine may go down. It

becomes unacceptable especially when such tables need to be executed a million times a

day. In many practical cases such large decision tables were simply moved from a

database or from large CSV files to rules. Why do people do it? Because, after

appreciating the simplicity and power of decision tables, they prefer to treat every row in

their DB tables as a rule, so they can easily understand, change, and add more rules.

Using Tables “BigDecision” and “BigDecisionTable”

To handle big decision tables, OpenRules offers special types of decision tables

“BigDecision” and “BigDecisionTable”. They look like regular decision tables but

instead of the keyword “Decision” or “DecisionTable” they use “BigDecision” or

“BigDecisionTable”. However, they are being evaluated using a completely different

execution mechanism that is based on a self-balancing binary search algorithm adjusted

to the logic of decision tables. And this mechanism improves the performance of big

decision tables 10 or sometimes 100 times!

Let’s consider an example of a big decision table included in the standard installation as

the “OpenRulesSamples/MedicalServiceCoverage” decision project:

https://rulesolver.com/
http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

82

The actual table contains more than 16K rows (rules) and is located in the Excel file

“Rules.xlsx” which occupies almost 3 MB. So, it is quite a big table. However, if you

deploy and execute this table for different test cases, it will constantly show a great

performance under 1 millisecond!

Please note there is an optional 4th row that for regular decision tables may contain any

operator common for all rows in the proper columns. If this row is omitted, all operators

are assumed to be “=”.

Condition columns of the 4th row may contain only comparison operators “=”, “>”, “<”,

“>=”, “<=”. Action columns of the 4th row may operators “=”, +, +=, -, -=, *, *=, /, /=.

Cells may contain constants, single decision variables defined in the glossary, or strings

with interpolations like {{Greeting}}, {{Name}}.

You always may change the keyword “BigDecisionTable” to “DecisionTable” and it will

continue to work (but probably slower).

The above BigDecisionTable is an example of a single-hit decision table. If you change

OpenRules, Inc. OpenRules® Getting Started

83

the above “BigDecisionTable” to “BigDecision”, it will find and execute several rules that

satisfy your test criteria, and the latest satisfied rule will override previous rules. For

multi-hit big decision tables, it can be useful to use increment/decrement operators “+”

or “-” in the 4th row of the Action columns. For instance, in large scorecards, you may

execute only a limited number of satisfying rules to accumulate a score in the Action

column.

Thus, BigDecision/BigDecisionTable could be a good choice when your decision table

contains thousands or even tens of thousands of rows. However, when it contains

hundreds of thousands of rows, even Excel itself becomes much slower to search and

requires much more time and memory to be downloaded in OpenRules. In this case, we

recommend our customers to switch from the Excel to external files in CSV or fixed-

width formats.

Using Decision Tables with CSV Files

It is easy for customers to save their Excel tables in CSV (Comma Separated Values)

format using text files with the extension “.csv”. Then, instead of adding the rows from

such CSV files directly into Excel-based BigDecisionTable, a customer may simply

indicate where those rows are coming from. For example, the above decision table can be

presented as follows:

As you can see, now the first (signature) row contains a reference to the CSV file

“MedicalCoverage.csv” where all “rules” are coming from:

https://datatracker.ietf.org/doc/html/rfc4180
http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls

OpenRules, Inc. OpenRules® Getting Started

84

This way you keep only business logic in an Excel-based decision table plus a reference

to a CSV file with rules that become your data. For example, this table specifies that the

“Date Of Service” should be between “Date Of Service Min” and “Date Of Service Max”.

However, all rows inside the CSV file represent not rules but rather their thresholds

(data!).

In the above table the CSV file is assumed to be in the same folder where the xls-file

with the above table is located. However, you can use any valid URL path, e.g.

[./data/MedicalCoverage.csv] would tell OpenRules that this CSV file is in the sub-

folder “data” of the folder that contains the file “RulesWithCSV.xlsx”.

The CSV file itself looks as below:

The first row of this CSV file contains a list of all column names separated by commas:

Place Of Service,Service Type,Plan,Group Size,In Network,Is Covered,Date Of Service

Min,Date Of Service Max,Covered in Full,Copay,Coinsurance

Another good example of using a big decision table with large CSV files can be found in

the standard installation project “OpenRulesSamples/ICD10”. It uses this big decision

table

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

85

to find incompatible pairs of diagnoses defined in the CSV-file “ICDCodes.csv” that

contains ~70,000 pairs such as:

…

Note that Diagnosis1 and Diagnosis2 are decision variables described in the Glossary

while Column 1 and Column 2 are titles of the two columns described only in the first

row of the CSV file “ICDCodes.csv”.

You may use the following table of the type BigDecision to find finds out if the decision

variable “Diagnosis Code” is “Found in Column 1” and accumulates all matching codes

from the Column 2 in the decision variable “Matches in Column 2” which is defined in

the glossary as an array of strings:

Note that here the action column “Found in Column 2” contains value “TRUE” in the cell

of the second row (value “FALSE” is also allowed).

The following table demonstrates how to determine a Row Number inside the CSV file in

which the decision table condition is satisfied for the very first time:

OpenRules, Inc. OpenRules® Getting Started

86

Here we use “#” to specify the found row number assuming the row numeration starts

with 1. If this table cannot find the proper value in Column 2 of the CSV file, the Row

Number will be 0 (meaning not found).

Keeping your rules (data) in external CSV files works exactly like it would work if these

“rules” were located inside the Excel decision table. However, it is not only convenient

for a user from the maintenance perspective, but brings two huge advantages:

• Performance: OpenRules handles large tables with data coming from

CSV files almost in no time

• Memory: your decision model does not require a lot of memory

anymore!

You can use CSV files in the described way for both types of OpenRules decision tables:

regular decision tables and Big Tables.

Using Decision Tables with Fixed-Width Files

Instead of a CSV file, your rules (data) may come a fixed-width text file such as below:

Data in a fixed-width text file is arranged in rows and columns, with one entry per row.

Each column has a fixed width, specified in characters, which determines the maximum

amount of data it can contain. No delimiters are used to separate the fields in the file.

Instead, smaller quantities of data are padded with spaces to fill the allotted space, such

that the start of a given column can always be specified as an offset from the beginning

of a line.

http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls

OpenRules, Inc. OpenRules® Getting Started

87

Let’s take the previous example but instead of the CSV file use the corresponding fixed-

width file:

CSV File “ICD10Codes.csv” Fixed-width File “ICD10Codes.txt”

As you can see, we added two lines at the beginning of the fixed-width file:

1) First line with column names (exactly as for the CSV file)

2) Second line with column widths listed through commas.

It is important that each column has enough characters as defined by the column’s

width. If the actual width is smaller than the required width, you need to add the

corresponding number of spaces (including in the last column).

To tell OpenRules that you want to use file “ICD10Codes.txt” instead of file

“ICD10Codes.csv”, you may simply make the proper change in your decision table:

OpenRules will use the file extension “.txt” to figure out that the file in square brackets

is a fixed-width file. You may download and run sample “ICD10WithFixedWidth” from

the standard installation “OpenRulesSamples”.

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

88

Using Decision Tables with Databases

Instead of keeping your data in Excel, in a CSV file, or in a fixed-width file, OpenRules

allows you to get your data directly from a relational database. These capabilities are

provided by OpenRules “RuleDB” product by empowering Excel-based business rules

with run-time RDBMS communication mechanisms.

Let’s consider an example of how it works by migrating an SQL query to OpenRules.

Consider this SQL query defined on the classic MySQL Sample Database:

You may this SQL query to a special Excel-based table of the type “DataSQL“:

We moved only the technical part of the query that usually resides in FROM and JOIN

statements. However, the WHERE part of the query also contained the technical (not

business) information such as

that we added to the WHERE-column of our table “SelectedOrders”.

The business part of the query

does not depend on the way we select the records and can be migrated to the regular

decision table:

http://ruledb.com/
https://www.mysqltutorial.org/mysql-sample-database.aspx/

OpenRules, Inc. OpenRules® Getting Started

89

These business rules should be applied to every order selected from the data source

“SelectedRecords”. It can be done by the iteration rules defined in this table:

To glue everything together, as usual with OpenRules we need to specify the Glossary:

Note that here the business concept “SelectedOrders” is the same as defined above in the

DataSQL table and its attributes use exactly the same names as defined in the query’s

SELECT statement (with aliases ‘c’, ‘o’, and ‘p’).

Our decision model capable of talking to the Sample Database “classicmodels” is

completed.

DEALING WITH COLLECTIONS OF OBJECTS

Real-world decision models frequently use collections of business objects such as

employees of the company or charges inside a bill. OpenRules provides business-friendly

capabilities to deal with such collections including arrays and lists of objects. They allow

a user to define which decision tables to execute against a collection of objects and to

calculate values defined on the entire collection.

OpenRules, Inc. OpenRules® Getting Started

90

Iteration over Collections of Objects

Standard sample projects "AggregatedValues" and "AggregatedValuesWithLists”

demonstrate how to iterate over collections of business objects. The business concept

Employee is defined in the Java class Employee with different customer attributes such

as name, age, gender, maritalStatus, salary, and wealthCategory. Another class

Department defined the business concept Department that include employees defined as

a collection of employees using an array Employee[] or ArrayList<Employee>.

We want to process all employees in each department to calculate such Department’s

attributes as "minSalary", "totalSalary", “salaries”, “richEmployees”

“numberOfHighPaidEmployees”, and other attributes, which are specified for the entire

collection. Each employee within any department can be processed by the following

rules:

Pay attention that we use here a multi-hit table of the type “Decision”, so all satisfied

rules will be executed. The first one unconditionally calculates the Total Salary,

Maximal and Minimal Salaries, etc. The second rule defines Employee’s Wealth

Category, increases the Number of High-Paid Employees inside the department using

the accumulation operator "+", and adds this employee to the collection “Rich

Employees”.

The above decision table will be executed “for each Employee in Employees” as defined

in its signature row:

This iteration provides business users with an intuitive way to apply rules over

OpenRules, Inc. OpenRules® Getting Started

91

collections of business objects (without the necessity to deal with programming loops).

When you need to iterate through arrays/lists of the basic types such as String[], int[],

double[], etc. instead of the business concepts you may use the corresponding decision

variables. For example, the standard project “ICD10” the object Claim has a decision

variable “Diagnoses” of the type String[]:

In this project, we need to iterate through the array “Diagnoses” twice using the nested

loops defines as follows:

Here the first decision table “IterateDiagnoses” iterates over the array of Diagnoses for

the first time using a temporary decision variable “Diagnosis 1” and for the second time

using temporary decision variable “Diagnosis 2” (they are defined only withing these

loops). To make sure that these variables are different, it uses an intermediate array

“Already Selected Diagnoses”. For each unique pair (Diagnosis1; Diagnosis2) it executes

OpenRules, Inc. OpenRules® Getting Started

92

the decision table “SearchCSV” that does a highly efficient search in the CSV file

“ICD10Codes.csv”.

We can essentially simplify this decision model by using a special action-column

“ActionNestedLoops”. Instead of the above table “IterateDiagnoses” we can use the

following table:

You will get the same results but without an intermediate check for uniqueness of pairs

(Diagnosis1; Diagnosis2). You can even remove “Already Selected Diagnoses” from the

Glossary.

Adding New Objects to Collections

You may use the standard column of the type "ActionNew" to add a new object to a

collection of objects. For example, you may create a new instance of the type "Booking",

define its attributes, and add it to the collection "Bookings" using them the following

table:

Sorting Collections of Objects

OpenRules allows you to easily sort arrays (or lists) of your business objects. You can use

regular decision tables that define how compare any two elements of such arrays and

add [sort <ArrayName>] at the end of its signature row. Let’s look at this sample:

OpenRules, Inc. OpenRules® Getting Started

93

This table is taken from the standard project “SortPassengers” that shows how to sort

the array of "Passengers" using their frequent flier status and a number of miles. For

each pair of passengers “Passenger1” and “Passenger2” it selects a preferred passenger

in the last column of the type “ActionPrefer”. When the statuses of both passengers are

the same, the number of frequent miles serves as a tiebreaker. When even the miles are

the same, you may use “=” or “Same” (or any other word different from Passenger1 and

Passenger2). There is no need to define “Passenger1” and “Passenger2” in the glossary

that simply looks as below:

Here the array “Passengers” by itself is a decision variable defined inside the business

concept "Problem". The glossary does not include variables "Passenger1" and

"Passenger2" as they are local variables used only inside the table “SortPassengers”.

Their names are formed by the type “Passenger” of the array of “Passengers” plus the

numbers 1 and 2.

This and a more complex project "FlightRebooking" can be found in the standard

OpenRules, Inc. OpenRules® Getting Started

94

workspace OpenRulesSamples. Another sample project "SortProducts" demonstrates

how to sort arrays of objects defined in the Java class Product that need to be

Comparable.

DECISION MODEL TESTING

OpenRules provides all necessary tools to build, test, and debug your business decision

models. The same people (subject matter experts) who created decision models can

create test cases for these models using simple Excel tables or objects coming from the

outside world (from Java, XML, or JSON). You’ve already seen test cases in the

introductory example. Now we will explain how to create and use test cases.

Building Test Cases

You can use predefined OpenRules tables of the types “DecisionTest” and “DecisionData”

to create executable test cases for your decision models.

Test Cases in “DecisionTest” Tables

Look at the decision model "PatientTherapy" included in the standard installation

"OpenRulesSamples". The simplest way to provide data for testing this decision model is

the following table of the type "DecisionTest" that describes 3 test cases:

Blue columns of the type "ActionDefine" provide test values for input decision variables.

https://openrulesdecisionmanager.com/building-decision-services/install-samples/
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases1.png

OpenRules, Inc. OpenRules® Getting Started

95

Reddish columns of the type "ActionExpect" provide expected values for the proper

output decision variables. If the expected values do not match the actual values

produced during the decision model execution (using test.bat) OpenRules will display

mismatches. For instance, if in the Test 2 you replace the expected Recommended

Medication to "Levofloxacin", you will receive the following error:

This table is self-explanatory. The only column that requires an explanation is "Patient

Allergies" that defines a text array of the type String[] with potentially many allergies.

So, here we used two sub-rows to represent two allergies and cells in all other columns

for the Test 1 were merged. Of course, you can add as many sub-rows as you need.

Alternatively, you may list all allergies separated by commas inside a one cell as below:

Active/Inactive Test Cases

You also may select which test cases you want to test at any moment. You may use the

column of the type “ActionActive” to mark the active test cases like in the example

“CreditCardApplication” below:

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases3-1.png
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases2.png

OpenRules, Inc. OpenRules® Getting Started

96

Here we marked only the second test case as “active” and during the execution, only this

test case will be tried. If all cells in the column “ActionActive” are empty, then all tests

will be executed.

You are not limited anymore to one DecisionTest table with the name “testCases”. You

may create multiple DecisionTest tables with different names (they should be unique)

and OpenRules will execute active test cases within all of them.

Test Arrays in “DecisionData” Tables

In more complex cases, it is more convenient to define separate data tables one for each

business concepts. For instance, here is the data table for all test-patients:

In the left top corner this table specifies its type "DecisionData" following the business

concept "Patient" (defined in the Glossary) and the names of the array "patients".

Similarly, you may define an array “visits” that provides data for the business concept

"DoctorVisit":

You can use these two arrays "patients" and "visits" to define the same test cases as

above but in a more compact way:

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases4.png
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases5.png

OpenRules, Inc. OpenRules® Getting Started

97

Here instead of 6 columns "ActionDefine" we use only 2 columns of the type

"ActionUseObject". Their cells refer to the elements of the arrays "patients" and

"visits" using indexes starting with [0], e.g. patients[0] refers to the first element of the

array patients, and visits[2] refers to the third element of the array visits.

Note. All keywords “ActionDefine”, “ActionExpect”, and “ActionUseObject” are

case-sensitive.

References Between DecisionData Tables

Here is an example from the project “OrderPromotion” from the standard installation

“OpenRulesSamples”. The following DecisionData table defines an array of order items:

And this DecisionData table defines an array of order that specifies which order items

from the array “orderItems” belong to which orders:

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases6-1.png

OpenRules, Inc. OpenRules® Getting Started

98

The 2rd column in the 2rd row includes the reference “>orderItems”. It tells OpenRules

that the names such as “AAA-1112” or “BBB-2639” are actually the references (“primary

keys”) to the proper rows in the array “orderItems”. In the second column each Order

Item Id starts with a new line (in Excel use Alt+Enter).

Alternatively, you may put Order Items Ids in separate sub-rows in the second column

and merge the proper cell in the first column:

Note. Instead of defining test data in Excel, you may read data from relational databases

by using special tables of the type “DataSQL” – see http://RuleDB.com.

Building and Testing Decision Model

Configuration File “project.properties”

After you complete the design of your decision model and its test cases, you need to

adjust the standard file “project.properties”. An example of such a file was provided for

the introductory model as follows:

http://ruledb.com./

OpenRules, Inc. OpenRules® Getting Started

99

Usually, you need only two properties:

• model.file – it is usually the file “DecisionModel.xlsx” that describes the

structure of your model in the Environment table

• test.file – the name of the file that contains your test cases (it could be omitted if

using test your model directly from Java)

There could be several optional properties:

• run.class – the name of a Java class that will be used instead of the standard

OpenRules class; see an example in the project “HelloJava”;

• trace=On/Off – to show/hide all executed rules in the execution protocol;

• report=On/Off – to generate or not the HTML-reports that show all executed

rules (and only them) with explanations why they were executed;

More properties could be added for different deployment options.

Build and Run

To build and run your decision model, you need to double-click on the standard file

“test.bat“. If you run it for the first time or made any changes in your decision mode,

first it will build your model. During the “build” OpenRules will do the following:

• analyze the decision model for errors and consistency.

• if everything is OK, it will automatically generate Java code for your model used

for testing and execution.

• if OpenRules finds errors in your design, it will show them in red in the execution

protocol.

• Runs the generated code against your test cases.

Error Reporting

OpenRules is trying to find as many errors as possible in your decision model and report

them in friendly business terms. For example, let’s get back to the introductory decision

model “VacationDays” and make a mistake in the decision table

“CalculateVacationDays” by omitting a space in the name of the decision variable

“Eligiblefor Extra 5 Days”. OpenRules will catch the error and will show it as follows:

OpenRules, Inc. OpenRules® Getting Started

100

We highlighted the error message. As you can see OpenRules reports that the variable

“Eligiblefor Extra 5 Days” not found and points to the exact place in your Excel files

where the error occurred. It is a very important feature of OpenRules, as the generated

Java code keeps track of the original Excel tables and produces all messages and

explanations in the business terms used by the decision model author in Excel.

P.S. The generated Java code will be used internally to deploy and execute your model.

As a business analyst, you even don’t have to look at them or to know where they are

located. Nobody ever should modify the generated files as they will be automatically re-

generated when you modify your decision model.

Testing Decision Model

You can fix the error in the file Rules.xlsx by adding a space between the words

“Eligible” and “for” and double-click on “test.bat” again. It will re-build your decision

model and execute it against all test-cases. Here is an execution protocol (for the first

test case only):

OpenRules, Inc. OpenRules® Getting Started

101

The protocol shows all executed actions and their results. Along with the execution

protocol, “test.bat” also produces the explanation reports in the folder “report” using a

friendly HTML format. It shows all executed rules and values of the involved decision

variables in the moment of execution – see the above example.

DECISION MODEL DEPLOYMENT

OpenRules provides all the necessary facilities to simplify the integration of business

decision models with modern enterprise-level applications. Tested decision models may

be easily deployed on-premises or on-cloud. The deployment type is usually defined by

the property "deployment" in the file "project.properties". It can take the following

values:

• aws-lambda - for AWS Lambda functions

OpenRules, Inc. OpenRules® Getting Started

102

• azure-function - for MS Azure functions

• rest - for RESTful services using OpenRules REST

• spring-boot - for RESTful services using SpringBoot

• java (default) - for Java API.

Examples of new deployment capabilities are presented in the Vacation Days sample

projects included into the standard installation "openrules.install". Now it has the

following projects:

• VacationDays - a basic decision project that contains mainly an Excel-based

decision model in the rule repository "rules". The major decision model properties

are now located in the table "Environment" of the file "DecisionModel.xlsx":

The file "project.properties" only refers to the decision model files and execution

properties:

All other Vacation Days projects refer to the same rules repository and demonstrate

different deployment options.

• VacationDaysJava - a basic decision project that demonstrates Java integration. It

uses "Employee.java" in src/main/java instead of automatically generated Java class

in the folder "target". Its "project.properties" file looks as follows:

OpenRules, Inc. OpenRules® Getting Started

103

It includes many well-commented examples of Java programs such as

"SamplesJsonEmployees" which demonstrates OpenRules Java API.

• VacationDaysLambda - a decision project that demonstrates how to deploy the

decision model "VacationDays" as an AWS Lambda function. Its "project.properties"

file looks as follows:

Note that the "model.package" defined in the "project.properties" overrides the one

in the Environment table. Look at the automatically generated test cases in the

JSON format in the folder "jsons". You may use them in POSTMAN after you call

"deployLambda.bat". There is a new batch file "buildLambda.bat" that packages

the decision model as one zip-file "target/VacationDaysLambda-1.0.0.jar" to be used

for custom AWS Lambda deployment.

• VacationDaysAzure - a decision project that demonstrates how to deploy the

decision model "VacationDays" as an MS Azure function. Its "project.properties" file

looks as follows:

OpenRules, Inc. OpenRules® Getting Started

104

All Azure configuration information is specified in the file "pom.xml".

• VacationDaysRest - a decision project that demonstrates how to deploy the

decision model "VacationDays" as a RESTful web service (currently OpenRules

REST utilizes Undertow). It requires only a minimal configuration, and produces

decision services with small memory footprints and high efficiency. Its

"project.properties" file looks as follows:

• VacationDaysSpringBoot - a decision project that demonstrates how to deploy the

decision model "VacationDays" as a RESTful web service using SpringBoot. Its

"project.properties" file looks as follows:

You also may package your decision model as a Docker image making it ready to be

deployed to any of the following container registries:

• Google Container Registry (GCR)

• Amazon Elastic Container Registry (ECR)

• Docker Hub Registry

• Azure Container Registry (ACR).

You may find more details how these projects work in the User Manual for Developers.

RULES-BASED SERVICE ORCHESTRATION

OpenRules provides business users with abilities to build and deploy operational

https://www.docker.com/
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf

OpenRules, Inc. OpenRules® Getting Started

105

decision microservices. It empowers business users with an ability to assemble new

decision services by orchestrating existing decision services independently of how they

built and deployed. The service orchestration logic is a business logic too, so it is only

natural to apply the decision modeling approach to orchestration. To orchestrate

different services, you may create a special orchestration decision model that

describes under which conditions such services should be invoked and how to react to

their execution results.

OpenRules decision tables have special action-columns of the type “ActionExecute”

that is usually used to execute different services upon certain conditions without

worrying how they were implemented and deployed. To describe such external services

OpenRules added a special new table “DecisionService“. You may download a special

workspace “openrules.loan” that implements a library of decision services described in

the Loan Origination example from the DMN Section 11.

The workspace “openrules.loan” contains several decision models with two main goals

“BureauStrategy” and “Routing” deployed as external decision services:

The high-level goal “Loan Origination Result” is an example of the orchestration

decision models.

If you open this decision model in OpenRules Explorer, it will be displayed using the

https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrules.wordpress.com/2017/06/21/loosely-coupled-decision-models-for-loan-origination/
http://www.omg.org/spec/DMN
https://openrules.files.wordpress.com/2020/10/loanoriginationgoals.png

OpenRules, Inc. OpenRules® Getting Started

106

following diagram:

This decision model is not aware of the internal structure of these two decision services

which are shown as green rectangles. However, we can see the decision table

“LoanOriginationResult” that invokes these services and business concepts (pink

rounded rectangles) used by these services.

You may find more information about service orchestration in the User Manual for

Developers.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or this Discussion Group.

Read more.

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
https://openrulesdecisionmanager.com/technical-support/

