o)V ADECISION

OPENRULES®
DECISION MANAGER

User Manual
for Business Analysts

How to Create, Test, and Deploy
Business Decision Models

OpenRules, Inc.

www.OpenRules.com

November-2024

http://www.openrules.com/

OpenRules, Inc. OpenRules® Getting Started

Table of Contents

INErOAUCTION ..ottt e et e ettt e e sttt e e s abee e e e 6
WHhat 18 OPEIRULES®ueiiiiiiiee ettt e e e e e e e e e e e 6
What 1s Decision Model.......cccoiiiiiiiiiiiiiiii e e 6
WHhat 18 DECISION SEIVICE c...ueviiiiiiiiiiiiiiiiee ettt ettt ettt e ettt e ettt e e sttt e sttt eeabbeeeenaas 8
AT CRIEECTUTC ...ttt ettt e ettt e ettt e e sttt e e et e e ettt e e e aaaeee s 8

Installing OpenRules SOFtWATE..............ooviiiiiiiiiiiiiiiiiiiiieieeeeee et eeeeeeeeeeeeeaesaraaeasasaaarsraerarrrrrraaaa———. 9
Pre-REQUISITES c.ovvniiiiie ettt et e e et e et e et e e e et e e e araaaaes 9
Download and INStallcooiiiiiiiiiiiiiie e e e s e e e e 9

INntroductory DeCISION SEIVICE............oovviiiiiiiiiiiiiiiiiiiiiiiiteeeeteeeeeeeeeeeaeeeeseraasesserararrararrr—r—a—————————————. 10
Decision Model "Vacation Days”ceeeeiiiiiiiiiiiiieiee e e et e e e e e e et e e e e e e e e aaaaanaeeeeeeessaanns 10
Representing Business LLOZIC.uuuiieiiiiiiiiiiiie e e e e et e e e e e e e e ettt e e e e e e e e aa e as 10
GlOSSATY .o 13
FILE SEIUCTUTE «.eeiiiii ettt e e ettt e e e e ettt eeeeeeanaaans 14
TTESE CASES ittt ettt ettt ettt e e e e ettt e e e e e e bbbttt e e e e e e bbbttt et e e e e ettt baeeeeeeeas 16
Building and Testing Decision Modeloiiiiiiiiiiiiiiiii e e e 17

BT R oY o) [T e A 03) o<1 i 1 L L AT OO P PP PP UURUURUPPUPPPIOt 17
FIle Hest. At o et e e e e e e e e 17
File POl oo e e e e e e e e et aaaaaaas 18
TeStING RESULLS....ciiiiiiiiie ettt e e e e e et e e e e e e e et e e e e e e e s et nns 18
EXPIANATIONS .ooiiiiiiiieiii e e e e et e e e e et e e e e e et eeeaeeeaa e aaaaaaes 19
ExXecution Path..........ooiiiiiii e e e e e 20
OpenRules Graphical EXplOTercooeeiiiiiiiiiiiii 21
DIAGIAMINIINIG ...eeviiieeeeeeeeeee ettt e e e e et e e e e e e et a e e e e e e e et aaaaaaas 21
Testing and DeDUGZINGuceiiiiiiiiiiciee ettt e e e e et e e e e e eeeaaaaas 22
Deploying Decision MOloooovviiiiiiiiiiiiiiie ettt 23

OpenRules, Inc. OpenRules® Getting Started

More Decision MOELS.ccoouuiiiiiiiiiiiiic e 25
Decision Modeling APProachi.............coooiiiiiiiiiiiiiiii ettt e e 25
DeCiSION IMOAEL .ottt et e e e et e e e e e e 26
Goal-Oriented Decision IMOGEIINGceeeiiiiiiiiiiieeee et e e e e e e e e e e e e eeaaanns 26
Graphical Decision Model EXPIOTer............oooouiiiiiiiiiiiiiiieee et 27
DIAGTAMIMNING ..vvviiieeeiiiiiiiie e e e e et e e e e e ettt e eeeeeeeeaaaa e aeeeeeeessssensaaeaesassssnsssaeaaessssssnnnnaaeeessssssnnns 28
DIAGTAIM VIBWS..etttiiiiieieiiiiiiiie e e e e e ettt ie e e e e et ettt e e e e eeeeaaaat e aeaeeseesssasnssaeeeeessssnnssaaeaeesssssnnnnaaaeeeeees 29
Diagram ManipUlations........ceeeiiiiiiiiiiiiie e e et e e e e e e e et reeeeeeeeaattaeeeeeaeessannaaaaaaeees 32
Live Decision Model DIagramsuueueeeeeiiiiiiiiiiiie e e eeeiiiiiie e e e e e e eetteie e e e e e eeeaateeeeaeeaassaaaaaeaeaaenns 33
Testing DeciSion IMOAELcoovviiiiiiiiiiieiiee et e e e e e e e e e e e e e e ea st e eeeeeeeassanannnns 34
Debugging Decision MOdEl.........oovviiiiiiiiiiiicie e e e e e e et e e e e e e e e a e bt e e e e e e aaaaaaaas 36
Deploying Decision MOdel........oooviiiiiiiiiiiiiiiicie e e e e e e e e e e e e e e e e eab e eeaeeeraaaaaes 37
DeCiSion Tables.....cccooiiiiiiiiiiiiiii ettt e e et e e e e aeeeeeeas 39
Decision TaDle SEITUCTUTE.ciiiiiiiiiiiiiii ettt ettt e e ettt e e ettt e e sttt e e e anteeeeanas 39
EXECULION TLOZIC 1ovtviiieeieeieiiiiiee e et e e e e e e ettt e e e e e e e e e s bt e eeeeeeeasbaaaaeaseesssssannnaaaaaeees 41
Tables of the type “Decision”..............cccoooiiiii 42
Tables of the type “DecisionTable” 44
Using Different Types of Decision Tables............cccccoo 44
Table CONAItIONSoiiiiiiiiiiiie ettt e e ettt e e e e e ettt et e eeeeeanaans 46
(070300) T N B e Yo 1 ' 1 T3 SO PP PP PUPPPPPPPPRE 47
COMPATING NUIMDETSeiiiiiiiiiiiiiiiiiiie ittt et eee e e aeeeeeeeesesaessssasssssssssssssssssssssssssssssssssssssnnnes 49
Using Natural Language Inside Decision Tablescooieiiiiiiiiiiiiiiiiniiiiieeee e 50
(076300) 7 L B e Y=l D T = PSPPSR PP PP PUPPPPPPPPRt 51
Comparing Boolean ValUeS...........uvuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeseeaessssssssssssssssssssssssssssssssssnsnnnes 53
Checking if a Decision Variable is Undefinedoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeereeeseeeeneeen. 53
Other Condition TYPES.......uuuieeeiiiiiiiiiiee ettt e e ettt e e e e e e e eee e e e e e e e eeriaeeeaaaaaees 53
Conditions 0N COLLECTIONS. ..eevuutiiiiiiiiiiee ittt ste e st e e s e e 55

OpenRules, Inc. OpenRules® Getting Started

Table CONCIUSIONS.....ccooouiiiiiiiiiiiii ettt e et e e siteee e 58
SIMPle CoONCIUSIONS/ACEIONIS . .vvvuieeeieieeeeceee ettt e et e e e e e e e e e e e e e e e e eeens 58
Conclusions 0N CollECTIONSuiiiiiiiiiiiiiiiee ettt st e et e e 60
DS PIAYING VLESSAZES . ..uuniiiiiiee ettt ee e ettt e e e et e e e et e e e e aae e e s et e e e sea e e eeateeerraaaaes 61
Displaying Rule NUIDEIS.coovuiiiiiiii ettt e e e e e e e eees 61

| D)4) W oToE) o) ¢ K- PR USRS 62
FOPIIULAS .ottt e ettt e e e e e e e e e 62
Composing Decision Variable NAMESuviiiiiiiiiiiiiiiiiiieiiiereereereesreeereseessessesereaeere.———————————————. 65
Functions for Collections of OBJECES.uuuuuuuuuuriiiiiiee e e e e e e e e aaanas 66
S AV SIS vttt e et ittt e ettt e e et e e e et ———aaaeetae e aeeeetarr——————————__ 69

Dealing With DaAtescooeeiiiiiiiiiiiii e e e e et e e e e e e e ea bt aeeeeeeesssataaaeaeesrsssenes 70

GLOSSATYoeiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeaeeeeeae e seaeaaeeassaasssesasaaassasssas s s assesaessasss s assess s sassssssasassssasasssssasbassnsnennne 72

SEANAATA GLOSSATY .. uvvvvitiiiiiiiiieiiiitiieit s nnnnnnnnnnnnnnnnn 72
Column “Decision Variable”.........oouiiii ittt e e eeee e 73
Column “BusinesS COmCEPE . .uuuuee it e e e e e e e e e e e e e e e e 73
ColUm “ABETTDULE .eeiiieiie ettt e e e ettt e e e e e ettt e e e e e s e naabbeeeeee 73
L0761 1081 % o Nl by 0 o PP U UUPPUUUURR R 74

Optional GlosSary COIUMILISoouiuiiiiiiiiiiiiiiiie e e e e e e e et e e e e e e e ea bt eaeeeeaeeeasaaaaeeeeessssssanns 74
COTUMN “DIESCIIPEION . ..eetttiiiieiiitiiiieeeeeeteeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesssnnnnnes 74
COlUMN “USEA AS” ..ottt e ettt e e e e ettt e e e e e et et e eeeeeeanaabbeaeees 74
Column “Default Valie”.........cooiiiiiiiiiiiiiiee e e et e e e e e e 75
Formulas INS1de GLOSSATYuuuuuuuuiiiiiiiiii e e e e e e e e e as 76
Context-Specific Columns “USEA AS”uiiiiiiiiiiiiiiiitieeieeeeeeeeeeeeeeeeeeeeaeeeeeeaeeeaaeeaaeraaaaaaeraa——————————. 77
Column “TSON NAIME”......eeiiiiiiiieiiii e ettt e e e e e sttt e e e e e sttt reeeeeeenanbeeeeas 78
Column “Business Concept JSON INAME”..........uviiiiiiiiiiiiiiiiiiiiiiiiiieeetaeeeereeeererrareereaeere———————————— 79
Colummn “DOMAINTeiiiiiiiiiiiiie ettt sttt e s e e e e 80

MULLIPLE GLOSSATIES ..ovvvviieeeeeiiiiiiiee e e eeceee e et e e e e e eee e e e e e e e e et e e e e e e e e e et aeeeeeeeesasranns 81

OpenRules, Inc. OpenRules® Getting Started

Big DecCiSion Tables...........oouuiiiiiiiiiiiiiee ettt 81
Using Tables “BigDecision” and “BigDecisionTable”uviieiiiiiiiiiiiiiieeeeeeeeiieeee e 81
Using Decision Tables With CSV FIIeSuuiiiiiiiiiee e 83
Using Decision Tables with Fixed-Width Files.........coooiiiiiiiiiiiiiiiei e 86
Using Decision Tables With Databasescoeeiiiiiiiiiiiiiiee e 88

Dealing with Collections 0f ODJECTS..............ovviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeereeeeereeeeeeerrrarrarearrarrrarra—————————— 89
Tteration over Collections of ODJECESccceeiiiiiiiiiiiiiiii 90
Adding New Objects t0 COll@CTIONS.vuvviiiiiiiiiiiiiieieeieettieeeeeeereereesesssersssassssessssssssasasarararsrarrarre———————. 92
Sorting ColleCtions OF ODJECES. . .uuuuuuuuueueuieiieiii e e e saaaaanns 92

Decision Model TeStingcoeiiiiiiiiiiiiiie e e e e e e et re e e e e e eeaasateeeeeeeassssaanaaeaaaeens 94
Building Test Cases...ccoeeeeeeieiiee e 94

Test Cases in “DecisionTest” TabLesccccuuiiiiiieieiiiiiiieee ettt e e e e e e e e e e e eearaaaaeaeeens 94
AcCtIVE/INACEIVE TESE CASES c.uutiiiiiiiiii ettt ettt e et e e e e e 95
Test Arrays in “DecisionData” Tablesccccciiiiii 96
References Between DecisionData Tablesooouiiiiiiiiiiiiiiiiiiceic e 97
Building and Testing Decision Modeliiiiiiiiiiiiiiiiie e 98
Configuration File “Project. propPerties” iiiieeieieiieeieereieeeeeeeeeeeereraaseesreresreesererrarrrrerara———————————— 98
Build and RUN ..ot e s e e e e 99
Error REPOTTING . ..oiiiiiiiiieii it e e et e e e e e e et e e e e e e e et e e e e e e aaaaanns 929
Testing DecisSion IMOAEl.......ccciiiiiiiiiiiiee et e e et e e e e e e e et e e aeaaeaes 100

Decision Model Deployment...............cooeiiiiiiiiiiiiiiiiiiiiiiee et e e e e eaeaaans 101

Rules-based Service Orchestration..............ccccciiiiiiiiiiiiiiiiii e 104

TeCRNICAL SUPPOT.....coiiiiiiiiiie ettt e e e e e e e et e e e e e e e e earaaaeeaaaaaees 106

50

OpenRules, Inc. OpenRules® Getting Started

INTRODUCTION

What is OpenRules®

OpenRules® helps enterprises develop operational decision services for their decision-
making business applications. OpenRules provides a set of decision intelligence
software tools. It allows business analysts to develop, test, deploy, and continue to
maintain operational business decision models.
OpenRules is oriented toward business analysts (subject matter experts) allowing them
to:

e Create business decision models in Excel files using decision tables and other

standard decisioning constructs to represent sophisticated business decision logic.

e Test/Debug/Execute Decision Models and Analyze the produced decisions.

e Deploy decision models as ready-to-be-executed decision microservices on-cloud

or on-premises.

e Connect Decision Service to a relational database.

e Learn Business Rules from your historical data.

e Find Optimal Decisions.
OpenRules includes the following tools:

- Decision Manager with a superfast Rule Engine

- Rule Learner for rules discovery
- Rule Solver for decision optimization

- Rule DB for integration with databases.

This guide explains how you, as a business analyst, can create, test, and maintain
decision models and then work with software developers to convert your models to

decision services and integrate them with existing IT systems.

What 1s Decision Model

Decision models represent business logic that can be used to make decisions. A decision
model consists of:

e Decision variables that can take specific values from domains of values.

6©

https://openrulesdecisionmanager.com/
https://rulelearner.com/
https://rulesolver.com/
https://ruledb.com/

OpenRules, Inc.

OpenRules® Getting Started

e Decision rules (frequently expressed as decision tables) that specify relationships

between decision variables.

All decision variables are usually described in the special table “Glossary”. Some of

these decision variables are known (decision input) and some of them are unknown

(decision output) that may represent the decision model’s goals. A decision model can be

executed by a superfast Decision Engine that finds a decision by assigning the proper

values to unknown decision variables following the business logic specified by decision

rules.

Business decision models are usually created, tested, and maintained by business

analysts in the Rules Repository using only familiar tools such as Excel (or Google

Sheets) and OpenRules Decision Modeling IDE:

Business Decision Model

K Rules Repository B

=
-

¢
&

i

i

=& rules

(= CategoryA
=-{= SubCategoryAl
RulesA11.xls
7 RulesA12.xls
X)) RulesA1.xis
) RulesA2.xds
(= CategoryB
RulesB1.xls
RulesB2.xls
(= Common
= & libA
ibRulesX.xls

ibRulesY.xls
%) Main.xis

——

Business Rules & Test Cases
Created and Maintained
by Subject Matter Experts

Test

=

OpenRules

Decision
Engine

l

Execution
Results with

Explanations

You may create test cases for your decision models in Excel following OpenRules

templates.

70©

https://openrulesdecisionmanager.com/business-decision-models/
https://openrulesdecisionmanager.com/graphical-decision-modeling/openrules-explorer/

OpenRules, Inc. OpenRules® Getting Started

What is Decision Service
Tested decision models can be passed to technical people to be deployed as decision

services on-premises or on any cloud. The most popular deployment choice is REST
decision microservices ready to be executed from external decision-making applications.
Architecture

Top-level architecture is shown in the following picture where a stateful decision-

making application invokes stateless operational decision services.

‘,f_}:, e o o=
E; Stateless § ‘\w
" Operational Decision Services
Executed by Superfast Rule Engine
N
-w N o] ‘ :
| 55 g &
;:‘: ‘ Statoful } : v v S
‘ Decision-Making Applications
Data Warehouse

The lifecycle of OpenRules-based decision services are shown below:

— ! Business Decision Model | —

Goals -
Scope ' Business
project Glossary, Logic
Test cases 8
Define project Define goals, Specify business
in plain English glossary, inputs rules for goals
and expected and sub-goals
outputs

8©

https://openrulesdecisionmanager.com/building-decision-services/architecture/

OpenRules, Inc. OpenRules® Getting Started

INSTALLING OPENRULES SOFTWARE
Pre-Requisites

Before installing OpenRules, you need to install commonly used free Java Development

Kit (JDK) version 1.8 (or higher) and Apache Maven. For instance, for Windows

download “apache-maven-3.x.y-bin.zip“. After installing JDK and Maven, make sure

that you added their “bin” folders to your Path user environment variables.

You will also need MS Excel or Google Sheets for rules editing only (you don’t need them

in run-time).
Recommend hardware configuration: RAM 8Gb or more and CPU 2.2 GHz or more. Read

more.

Download and Install
You may download a free evaluation version or purchase an OpenRules subscription. In

both cases, you will receive a fully functional OpenRules Decision Manager in one of
these files:
e “OpenRulesDecisionManager_x.y.z.zip” for Windows or

e “OpenRulesDecisionManager_x.y.z.tar.gz” for Mac or Linux.

Unzip this file to your hard drive, and you will see the folder
“OpenRulesDecisionManager” that contains OpenRules core components including
examples.
Double-click on “install.bat” (or run “install” if you use Unix or Mac) from the folder
“OpenRulesDecisionManager/openrules.config”. The installation may take up to 1-2
minutes based on your internet connection speed displaying all downloadable files on
the “black” screen. Internally, OpenRules uses Maven plugins but you don’t have to
know anything Maven or even Java (just have then pre-installed).
Make sure that during the installation you don’t receive any red messages and at the
end, you will see the message:

“OpenRules Decision Manager x.y.z: INSTALLATION COMPLETED”

Now, you are ready to run examples such as “VacationDays” from the folder

9©

https://jdk.java.net/java-se-ri/8
https://jdk.java.net/java-se-ri/8
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://office.microsoft.com/home/
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=https://spreadsheets.google.com/ccc?new
https://openrulesdecisionmanager.com/installation/
https://openrulesdecisionmanager.com/installation/download-evaluation-version/
https://openrulesdecisionmanager.com/pricing/enterprise-edition/

OpenRules, Inc. OpenRules® Getting Started

“OpenRulesDecisionManager” by a simple click on “test.bat” and/or analyze them

from OpenRules IDE using “expore.bat”’. Any issues? Contact support@openrules.com.

INTRODUCTORY DECISION SERVICE

The downloaded folder “OpenRulesDecisionManager” includes several sample
decision models ready to be built, tested, and deployed as decision services on different
cloud platforms. In this section, we will demonstrate all these features using a simple

decision service that calculates an employee’s vacation days.

Decision Model "Vacation Days”
This decision model specifies decision logic for assigning vacation days to an employee

based on his/her age and years of service. Here are the business rules:
e FKvery employee receives at least 22 vacation days. Additional days are provided
depending on age and years of service:
e Only employees younger than 18 or at least 60 years, or employees with at least 30
years of service will receive an extra 5 days;
e Employees with at least 30 years of service and of age 60 or more receive an extra 3
days, on top of possible additional days already given;
o If an employee has at least 15 but less than 30 years of service, an extra 2 days are
given. These 2 days are also provided for employees of age 45 or more. These extra 2

days cannot be combined with an extra 5 days.

Representing Business Logic
Any decision model can be seen as a set of decision variables (known and unknown) and

a set of business rules that describe the relationships between them. A decision model
specifies how to determine unknown variables called “goals” or “sub-goals” using the
known ones. For this decision model, the goal is to determine the value of the decision
variable “Vacation Days” which we will refer to as our main goal. We will use Excel
tables in the OpenRules format to represent decision variables and business rules.

The following table provides the first example of a so-called decision table that specifies

the business logic for our main goal:

100

mailto:support@openrules.com

OpenRules, Inc. OpenRules® Getting Started

Decision CalculateVacationDays
Condition Condition Condition Conclusion

Eligible for | Eligible for | Eligible for

Extra 5 Days | Extra 3 Days | Extra 2 Days Vacation Days

= 22

TRUE + b
TRUE +

FALSE TRUE + 2

The first row (with a black background and white foreground) is called a signature row.
Every OpenRules decision table in the left top corner contains a keyword such as
Decision, DecisionTable, Glossary, DecisionTest, DecisionData, etc. This table starts
with the keyword “Decision”. It tells us that this is a so-called “multi-hit” table that

executes all (!) satisfied rules in the top-down order.

The second word in the signature row “CalculateVacationDays” specifies the name of the
decision table that should be unique, start with a letter, and not include whitespaces.

The second row specifies different conditions and actions (conclusions). This table
contains 3 conditions (specified by the keyword “Condition”) and one conclusion (the

keyword “Conclusion”).

The third row contains the names of decision variables used by conditions and
conclusions. The variable name can use spaces and should clearly explain the business

meaning of these variables.

The very first rule in the 4th row assigns 22 days to the variable “Vacation Days”
(unconditionally). Empty cells indicate that the proper condition is not applicable

(instead of leaving the cells empty you may use the hyphen “-%).

The rules in rows 5, 6, and 7 may add (or not) an extra 5, 3, or 2 vacation days when an
employee is eligible for them. Looking at the last rule, you will see how this decision
table takes care of the rule “An extra 2 days cannot be combined with an extra 5 days.”
Hopefully, this decision table is intuitive enough to represent our top-level decision logic.
Note that all columns in the first (signature) row are merged to indicate the end of the

table. Usually, all decision tables should be surrounded by empty cells, especially pay

11©

OpenRules, Inc. OpenRules® Getting Started

attention to have an empty row at the end of any decision table.

Now let’s define the eligibility logic for extra 5, 3, and 2 vacation day. First, we create

another decision table that specifies how the decision variable (sub-goal) “Eligible for

Extra 5 Days” can be defined:

DecisionTable SetEligibleForExtratDays
Condition Condition Conclusion

Years of Eligible for

Service Extra 5 Days

Age in Years

=18 TEUE
== B0 TEUE
== 30 TEUE

FALSE

This table starts with the keyword “DecisionTable” that specifies a single-hit decision
table. Such a table executes rules in the top-down order and stops when one rule is
satisfied (hit). The first rule sets “Eligible for Extra 5 Days” to TRUE when Employee’s
“Age in Years” (an input decision variable) is strictly less than 18. If not, the second rule
will do the same for employees of the age 60 or older. The third rule sets “Eligible for
Extra 5 Days” to TRUE when Employee’s “Years of Service” (another input decision
variable) is more or equal to 30. If all first 3 rules fail, then the last rule (so-called

“default” rule) will set “Eligible for Extra 5 Days” to FALSE.

Similarly, the following decision table specifies decision logic for the sub-goal “Eligible

for Extra 3 Days”:

DecisionTable SetEligibleForExtraiDays
Condition Condition Conclusion

Years of Eligible for
Service Extra 3 Days

== B0 == 30 TRUE
FALSE

Age in Years

And finally, the following decision table specifies decision logic for the sub-goal “Eligible
for Extra 2 Days”:

120

OpenRules, Inc. OpenRules® Getting Started

DecisionTable SetEligibleForExtra2Days

Age T Yours Years‘ of Eligible for
Service [Extra 2 Days
[15..30) TRUE
>=45 TRUE
FALSE

This completes the representation of the business logic for our decision model. In the
project “VacationDays” all these tables have been created in the Excel file “Rules.xlsx”

placed in the folder “VacationDays/rules”.

Glossary

Any decision model requires that all used decision variables (goals, sub-goals, and input
variables) used in the decision tables should be described in the special table called
“Glossary”. Here is an example of a glossary described in the file “Glossary.xlsx” in the

folder “VacationDays/rules”:

Glossa ry g lossa ry

Variable Name i:’r:;:x Attribute Type
Id id String
Vacation Days vacationDays int
Eligible for Extra & Days eligibleForExtrabDays boolean
Eligible for Extra 3 Days | Employee |eligibleForExtraiDays boolean
Eligible for Extra 2 Days eligibleForExtraZDays boolean
Age in Years age int
Years of Senvice Sernvice int

This table has the keyword “Glossary” in the top-left corner. The first column “Variable
Name” contains the names of decision variables exactly how they were used inside the
decision tables.

The second column “Business Concept”’ contains the name of a business concept to
which these variables belong. There could be several business concepts, but this model
contains only one concept “Employee”. The name of the business concept should be
unique, start with a letter, and do not include whitespaces. Note that merging cells
inside the second column “Employee” indicates that all variables on the left belong to
this concept.

The third column “Attribute” provides technical names for all decision variables — they
will be used for the IT integration. These names should start with a small letter and not

include whitespaces.

13©

OpenRules, Inc. OpenRules® Getting Started

The fourth column “Type” describes the expected type of each decision variable such as
“String” for text variables, “int” or “Integer” for integer variables, “double” or “Double”
for real variables, “boolean” or “Boolean” for logical variables, Date for dates, “String[]”
for an array of text variables, etc. Actually, the types are the valid Java types but as a
business analyst, you don’t have to even know this fact and just memorize the most
frequently used keywords such as String, int or Integer, double or Double, Boolean,

Date.

A glossary may contain optional columns such as:
e “Description” with a plain English explanation of the decision variable meaning.
e “UsedAs” that can be defined as in, out, required, or const.
e “Domain” that may describe possible values of the variable, e.g. “1-120” for the
variable Age and “Single, Married” for the variable Gender.
e “Default Value” that will be used when a variable is not defined.
e “JSON Name” that contains custom names of JSON attributes that can includes
spaces and any national language characters.

These columns could be very helpful to understand the decision model.

You may notice that some decision variables (goals and sub-goals) are hyperlinked to
point to the decision tables (worksheets) that specify these goals. A click on the variable
inside the glossary will immediately open the xls-file and the table that specifies this
variable. It’s easy to do using Excel Hyperlinks and is very convenient for the future

maintenance of your decision models when you want to find out “what is defined where”.

File Structure
Let’s look at how this decision model is organized. The sub-folder “rules” represents a

so-called “Rules Repository” and contains the following Excel files:
e DecisionModel.xlsx: includes the Environment table that refers to all Excel files
that compose this decision model.
e Glossary.xlsx with the table Glossary that describes all decision variables used by
this decision model.

e Rules.xlsx with decision tables that implement business logic.

14©

OpenRules, Inc. OpenRules® Getting Started

e Test.xlsx with tables that describe test cases.

The file “VacationDays/rules/DecisionModel.xlsx” describes the structure of the

decision model in the table “Environment”:

Glossary xlsx

include
Rules xlsx

This table states that our decision model includes files “Glossary.xlsx” and “Rules.xlsx”.
Your model can use multiple xIs- and xIsx-files located in different folders, and you can
define them all in the Environment table relative to the file “DecisionModel.xlsx”. If your
entire decision model is described in one Excel file, you don’t need to define the
Environment table at all.

The Environment table usually also specifies various properties used to build, test, and

deploy this decision model:

Environment

include Glossary xlsx
Rules.xlsx
model.name VacationDaysModel
model.goal Vacation Days
model package vacation.days
moadel_precision 0.001

The property “model.name” specifies the name of the decision model as it will be known
to the external world. This name should start with a letter and not contain whitespaces.
The property “model.goal” specifies the name of the main goal from the glossary that
your decision model should determine.

The property “model.package” specifies the name of the internal Java package in
which OpenRules will put generated Java files. It could be any name similar to
“com.company.problem” but it should start with a letter and not to contain whitespaces.
The property “model.precision” specifies the precision of real numbers used to
compare the expected and actualy produced results.

Note. These and other project properties could be overwritten in the file “VacationDays/

project.properties”.

150

OpenRules, Inc. OpenRules® Getting Started

Test Cases
The file “VacationDays/rules/Test.xlsx” describes test cases for this decision model in

the following table that starts with the keyword “DecisionTest”:

ActionDefine ActionDefine ActionDefine ActionExpect
Test ID Id Age in Years |Years of Service| Vacation Days
Test A A 17 1 27
TestB B 25 = 22
Test C c 49 30 27
TestD D 49 29 24
Test E E 57 32 27
Test F F 64 42 30

This table describes 6 test cases with columns “ActionDefine” specify input decision
variable and the columns “ActionExpect” specify the expected values. The first column
“#” defines the name or an order number of the test.

When a decision model contains many decision variables, it can be more convenient to

use an alternative way to specify test-cases using Data tables. For example, the table

DecisionData Employee employees

Id Age in Years | Years of Service
A 17 1
B 25 5
C 49 30
D 49 29
E 57 32
F 64 42

describes an array of 6 test-employees. The first row specifies the table type using the
keyword “DecisionData”. Then after space, it contains the word “Employee” that is the
same name we used as a business concept in the above Glossary. And then after space, it
contains the word “employees” that is the name of this array of employees.

The second row contains the names of Variable “Id”, “Age in Years”, and “Years of
Service” used as input for our decision model that should be the same as in the first
column of the glossary.

The next 6 rows describe employees with specific values of these attributes.

Test cases with expected results defined in this table of the type “DecisionTest”:

16©

OpenRules, Inc. OpenRules® Getting Started

|ActionUseObject| ActionExpect
Tle[:t Employee Vacation Days
Test A| employees[0] 27
Test B| employees[1] 22
Test C| employees[d] 27
Test D| employees[3] 24
Test E| employees[4] 27
Test F | employees[5] a0

Here the second column “ActionUseObject” defines the business objects associated with
the business concepts defined in the glossary, in this case, “Employee”. And the third
column “ActionExpect” specifies the expected values of the decision variable “Vacation

Days”.

Building and Testing Decision Model

OpenRules provides a decision engine capable of building, testing, and deploying
business decision models on-premise or on-cloud. There are several bat-files in every
project folder such as “VacationDays” which can be used by a user to execute OpenRules

decision engine to build/test/deploy decision models.

File “project.properties”
The file “VacationDays/project.properties’ specifies various properties of our project

used to build, test, and deploy this decision model. Here are the required properties:

model.file="rules/DecisionModel . xls™
test.file="rules/Test.xls"

The property “model.file” specifies the name of the main file that defines the structure
of the decision model.

The property “test.file” specifies the name of the xlIs-file that defines test cases.

This file may also contain properties described above in the Environment table, and if

they are defined here they will have a preference.

File “test.bat”
The file “VacationDays/test.bat’ is used to build and test your decision model. This file

is the same for all standard decision models and you don’t even have to look inside this

file. When you double-click on this file, it will do the following:

17©

OpenRules, Inc. OpenRules® Getting Started

1. If the model hasn’t been built yet or some files have been changed, it will execute
these steps:
e Validates all files included in your decision model for possible errors;
e If there are errors, it will show the errors pointing to the reasons and the
proper place in Excel files;
e If there are no errors, it will generate Java classes (in the folder “target”)
needed internally to execute this decision model. The generated Java classes
will be compiled preparing the decision model for execution.
2. After a successful build, the decision model will be executed against test cases

described in the property “test.file”.

Another bat-file “VacationDays/build.bat” can be used to build the decision model as

well, but it will execute the model only after rebuild.

Note. If you use Mac or Linux, instead of “test.bat” you can use the provided shell-files

“test” or “build”.

File “pom.xml”
Each OpenRules project contains the configuration file “pom.xml”. Usually, a business

person doesn’t have to look inside this file. However, if you open

“VacationDays/pom.xml” with any text editor such as Notepad, you will see that in the

line 7 it contains the name of your project written as follows:
<artifactld>Hello</artifactld>

It is also can be helpful to note that the used release of OpenRules software is defined in

the line such as <openrules.version>10.4.0</openrules.version>. All other lines may be

used in the future by technical people to choose different configuration options.

Testing Results

During the execution, you will see the execution protocol. For example, below you can

see a snapshot of the protocol that shows business rules executed for the test case D. For

each executed rule it also shows in which cells this rule is defined in Excel, e.g.
CalculateVacationDays #4 (B8:F8)

The highlighted lines show the old and new values of decision variables that were

18©

OpenRules, Inc. OpenRules® Getting Started

modified by the current rule. You may show/hide the execution details by defining the

property “trace” as “On” or “Off” in the file “project.properties”.

Explanations
After the decision model execution, you also may look at the automatically generated

HTML reports for each test case. For example, below you can see the report for Test D
generated by OpenRules in the file “report/TestD.html”. It shows in a user-friendly
format which rules were executed and why by providing the values of all decision

variables participated in these rules in the moment they were executed.

190

OpenRules, Inc.

Decision Table:
Rule# (Cells)

Executed Rule

Variables and Values

4 (BR:0S)

SetEligibleforExtraslays:

THEN “Eligible for
Extra 5 Days' = false

Eligidle for Extra §
Days~false

3 (B2:07)

SetEligibleForExtralDays:

THEN “Eligible for
Extra 3 Days' = false

Eligible for Extra 3
Days=false

1 (B2:03)

SetEligibleforExtra2Days:

1IF "Years of Service”
Is [15..30)

THEN “Eligidle for
Extra 2 Days' = true

Years of Service«29
gligible for Extra 2 Dayse
{old:false, new:true)}

CalculatevVacationDays: 1
(B2.£3)

THEN ‘Vacation Days' =«
22

Vacaticn Days«{old:@,
new:22}

CalculatevacationDays: 4
(ERIER)

1F "Eligible for Extra
S Days' Is false

AND ‘Eligible for Extra
2 Days' Is true

THEN “Vacation Days' «
2

Eligible for Extra 5
Dayswfalse

tiigidble for Extra 2
Days=true

Vacaticn Days«{old:22,
new:24}

OpenRules® Getting Started

You may control the report generation by defining the property “report” as “On” or “Off”

in the file “project.properties”.

Execution Path

Please note that OpenRules decision engine can automatically figure out the order in

which the decision tables should be executed. We call it “execution path”. For this

decision model, the execution path is defined as:
1) SetEligibleForExtrasDays
2) SetEligibleForExtra3Days
3) SetEligibleForExtra2Days

4) CalculateVacationDays

It followed the intrinsic dependencies between the corresponding goals and sub-goals.

Looking at the above decision tables we can conclude (like the decision engine did) that

the goal “VacationDays” depends on the sub-goals “Eligible for Extra 5 Days”, “Eligible

for Extra 3 Days”, and “Eligible for Extra 2 Days”. We did not specify this order in any

diagram (like DMN DRD [1]). Contrary, OpenRules can generate such dependency

diagrams automatically — see below.

In the real-world, decision models include many inter-related goals and sub-goals and

such relations can be quite complex and frequently changed. So, it’s important that a

decision engine that executes a decision model is capable to automatically discover the

execution path. Still, if you prefer, you may define the execution path manually using

the table of the type “Decision” with a special column “ActionExecute”.

200

OpenRules, Inc.

OpenRules Graphical Explorer

OpenRules® Getting Started

OpenRules comes with using OpenRules Explorer, a graphical integrated development

environment (IDE) for business-oriented decision modeling. From this graphical

interface you can do the following:

Decision Model Visualization and Editing
Testing

Debugging

Deploying.

You can start OpenRules Explorer by a double-click on “explore.bat”.

Diagramming

OpenRules Explorer automatically generates decision diagrams like the one below:

O "= £ O Decision Model: VacationDaysLambda

Vacation Days

ionDays

Tables

0O Cinputs

Eligible -
for Extr% 5 Days Eligible

for Extra 2 Days

0 Gonemo)

Export PDF

Eligible
for Extra 3 Days
A
| " L
l SetEligibleForExtra5Days ' | SetEligibleForExtra3Days 'l SetEligibleForExtra2Days I

®
@O

Y
©O®

This diagram reflects the Goal-Oriented approach to Decision Modeling and follows the

DMN (Decision Model and Notation) graphical convention for decision requirement

diagrams. All goals are shown as yellow rounded rectangles, and the main goal has a red

border. The arrows between goals show the automatically (!) discovered knowledge

relationships, e.g. the main goal “Vacation Days” depends on the sub-goals for extra

days.

You don’t have to draw the diagram yourself as it is automatically generated based on

an already defined glossary, goal/sub-goals, and tables that specify their logic. You may

freely move the diagram elements around and the Explorer will keep all relationships

between them (arrows) intact. The Explorer can expand this diagram by showing all

21©

https://openrulesdecisionmanager.com/graphical-decision-modeling/
https://www.omg.org/dmn/

OpenRules, Inc. OpenRules® Getting Started

related input variables and business concepts. By a click on a node such as

“CalculateVacationDays” you may open the proper decision table right inside the

Explorer:
]
Decision CalculateVacationDays
Condition Condition Condition Conclusion
Eligible for Eligible for Eligible for Extra 2 -

Rule # Extra 5 Days Extra 3 Days Days Vacation Days

1 =22

2 true +5

3 true +3

4 false true +2

Open Excel Close

Click on “Open Excel” to see and modify this table in Excel.

Testing and Debugging
Click on the “running man” in the menu, to open the Test & Debug view.

O " & O Decision Model: VacationDaysLambda @
Run Tests t Execution Report
Trace Report .
CalculateVacationDays #2 (B6:F6)
IF ‘'Eligible for Extra 5 Days' true
GUEb U=t ® THEN 'Vacation Days' + 5
variables:
@ B‘ Eligible for Extra 5 Days: true
Vacation Days: 22 --> 27
TestB & B
Test 'testCases-Test A" completed OK. Elapsed time 66.18 ms
TestC (® %
TestD (& %
Execution Path Total time: 477 ms.
VacationDaysModelTest
SetEligibleForExtra5Days

The left panel “Run Tests” shows all available test cases which you can open in Excel by
clicking on the test name. The panel “Execution Path” shows all major execution steps in

the automatically defined order. You can execute ALL TESTS or only selected test cases.

To execute a test case you may click on the icon ® and you will see the results on the
Execution Console. You may click on the tab “Execution Report” to see the automatically
generated reports that show only actually executed rules with pointers to the places in
Excel where they are defined, brief rules formulations, and all involved decision

variables with their values in the time of the rule execution.

22 ©

OpenRules, Inc. OpenRules® Getting Started

You can debug your decision model by click on the Debug-buttonﬂ'. You will be able to
execute rules one by one, analyze all related decision variables before and after rules

execution, set breakpoints, and much more. Here is a typical Debugger’s view:

| Mode! ICD10Challenge

Run Tests | b onetmde op NextActieRue B NeToble | bl CoTeEndBrespont | O festat o Oner O v

Tioe

OpenRules Debugger allows business analysts with no programming experience to

navigate through decision models using an intuitive graphical interface and helps them
to understand the most complex situations. See its detailed description and/or watch the

proper video.

Deploying Decision Model

OpenRules internally converts business decision models such as “Vacation Days” into
highly efficient Java code and then automatically deploys it on-premises, on-cloud, or
even on smartphone. Your decision model can be deployed as a decision microservice at
your preferred deployment platform including AWS Lambda, MS Azure, Docker, Apache
Spark, and more. You may deploy your model from OpenRules Explorer using a view

such as this one:

83&'% =0 %W £ o Decision Model: VacationDaysLambda

Deployment Type
AWS Lambda

openrules-demo-lambda-bucket

us-east-1

test

Alternatively, you can do it with a simple a double-click to a provided bat-file such as

230

https://openrulesdecisionmanager.com/rule-debugger/
https://openrulesdecisionmanager.com/rule-debugger/
https://youtu.be/k6307CX32j4
https://openrulesdecisionmanager.com/deploying-decision-services/

OpenRules, Inc. OpenRules® Getting Started
“deployLambda.bat”. The deployment parameters can be set in the files

“project.properties" and “pom.xml”. This one-click deployment will create an AMS

Lambda function and will produce its endpoint URL:

Lambda ARN: arn:aws:lambda:

Now it can be executed as a regular RESTful web service. For instance, using
POSTMAN with the generated URL and a simple JSON request produced by OpenRules

in the folder “jsons”:

POST ~ https://z9zgmE7cse execute-api.us-east-l.amazona) m

Params Auth Headers (9) Bodye FPre-req. Tests Settings so0

raw v JSON ~ Beautify

wop

[E1 I o

=1

5 - —

Body € 2000k 77ms 532B a0a

hl
@
-

3
X
z
=
114
;

Visualize JSON = I} Q

i

wop

m

7 vacationDays": 27 —
g eligibleForExtrasD true,
9 eligibleForExtra3D false,

1@ eligibleForExtraZDays": false,

11

12 1

13 s

14 '

15}

Similarly, you may deploy this same business decision model as RESTful web service for

MS Azure and many other deployment frameworks.

24 ©

https://openrulesdecisionmanager.com/deploying-decision-services/

OpenRules, Inc. OpenRules® Getting Started

More Decision Models
You also may download workspace “OpenRulesSamples” which includes many

3

UpSellRules”,
“PatientTherapy”, and others, which are ready to be built, tested, and deployed.

decision models, such as “Hello, “VacationDays"“,

There are several decision models with the names starting with “VacationDays”, e.g
“VacationDaysLambda”, “VacationDaysSpringBoot”, etc. They demonstrate how your
technical people may use your business decision models in different deployment

environments such as Amazon AWS, MS Azure, and others.

You may find many more useful business decision models by downloading

“OpenRulesSamples” from here. Some of them are described in the OpenRules Blog.

To create a new custom decision model, you may simply copy any existing sample project
such as “Hello” into a new folder, say “MyProject”, and in the file “pom.xml” (see line 7)

replace <artifactld>Hello</artifactld> to <artifactld>MyProject</artifactld>

Also, make sure that you are using the latest release of OpenRules (e.g. 10.4.0) by

setting <openrules.version>10.4.0</openrules.version>

You may place your project anywhere on your hard drive. Then you may double-click on
“test.bat” to make sure it works, and then start making changes in your Excel files and

“project.properties”.

DECISION MODELING APPROACH

OpenRules provides all the necessary tools to support the modern decision modeling

methodology such as Goal-Oriented Decision Modeling. It allows business analysts to

develop and maintain operational business decision models and deploy them as decision
microservices. Subject matter experts without help from programmers can create
decision models using only familiar MS Excel (or Google Sheets) as an editor, OpenRules
Explorer as Graphical Decision Modeling IDE, and OpenRules Decision Manager as a

building, deployment, and execution environment.

250

https://openrulesdecisionmanager.com/download/install-samples/
https://openrulesdecisionmanager.com/decision-models/hello-customer/
https://openrulesdecisionmanager.com/decision-models/vacation-days/
https://openrulesdecisionmanager.com/decision-models/up-sell-rules/
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrulesdecisionmanager.com/building-decision-services/install-samples/
https://openrules.blog/
https://www.amazon.com/dp/1794498699

OpenRules, Inc. OpenRules® Getting Started

Decision Model

The above introductory example shows a typical decision model represented as a

glossary surrounded by decision tables that specify decision logic for different goals and

sub-goals as in the following picture:

Decision Model Test Cases or Real Data
I! Decision Table
Extra 3 O e] inYears | Years of Service
- Goal-1 3 A 17 1
e B 25 5
rasel - - - B c 8 ET)
s} 49]
- I/
Decision Table | ; o 33
Decision Table | | Decision Table Teif | emanentl 2z
Test O oy 3 FI
Goal-3 Goal-4 Tesr | seiesti]]
1 I e 1 T faree | — =
Execution Results , — ———Explanations
- Tarcured Business Rukeo
| Employee | Decivion Table:Rubes | Executed Rule | Varisbles sad Values. |
Age in Years 49 SetElugibiek orExmat Dy 4| Elugable for Exua £ Day = fadie TUgily b e 3
Years of Service 29 .Sfﬂ.llglblfiutahlil'hu 3| Elugible for Exwa 3 Days = fadue En‘."":‘::: Fooma 3
Eligible for Extra 5 Days||false .wl.,.u.pnrmm._n 1| IF Yean of Sorvice = [15.30) THEN Ehgible for Exira 2 Dax = rue :i:'.éff.'."s:‘:.'q .
Dharvwmnrue
Eligible for Extra 3 Dﬂ}'g]l:ﬁﬂge ;L'-'.c".m\.'xluunl-n 1 |Vacanos Days = 13 | e
. . Elagubie fou Exma 5
Eligible for Extra 2 D“F‘"hﬂ‘e CaboutmeVacacaDyy 4 |1F ESDb o Exza 5 Duys = alse AN Elgible for Exarn 2 Duys = roe m‘;: —
|\'a.cat|on Days ||b-l THEN T D '}:mw .

All decision variables should be described in the special table “Glossary”. Some of these
decision variables are known (decision input) and some of them are unknown (decision
output) that may represent goals/sub-goals. By executing a decision model OpenRules
decision engine finds a decision that assigns values to unknown decision variables

following the business logic specified by decision rules.

Goal-Oriented Decision Modeling

OpenRules uses a goal-oriented approach to decision modeling described in this book. It
promotes a top-down approach that starts with the definition of the top-level Decision
Goal (not with rules or data). You put the top-level goal into a glossary and define its
business logic using a decision table that specifies its sub-goals using sub-goals and
other decision variables. You continue this process for all sub-goals until the business

logic for all goals and sub-goals is defined.

26 ©

https://www.amazon.com/dp/1794498699

OpenRules, Inc. OpenRules® Getting Started

For example, the introductory decision model has the top-level goal called “Vacation
Days” — the only decision variable added to the initial glossary. Its decision logic defines
in the decision table “CalculateVacationDays” which specifies 3 sub-goals: “Eligible for
Extra 5 Days”, “Eligible for Extra 3 Days”, and “Eligible for Extra 2 Days”. We added
these sub-goals to the glossary and specified their decision tables. These decision tables
identified two input variables “Age in Years” and “Years of Service® (which we also

added to the glossary). Then we added test cases and executed the decision model.

The real-world decision models can be much more complex, and contain more rules, but

the methodological approach remains the same.

OpenRules allows a business analyst to represent and maintain decision logic directly in

Excel. The following sections describe major OpenRules decisioning constructs.

The goal-oriented approach is supported by the graphical Decision Modeling IDE
(integrated development environment) that allows a business analyst to analyze their
decision model using automatically built decision diagrams and a powerful while user-

friendly Debugger.

GRAPHICAL DECISION MODEL EXPLORER

OpenRules comes with Decision Model Explorer, a Graphical Integrated Decision
Modeling Environment that includes automatically built Diagrams such as the one

below:

270

https://openrulesdecisionmanager.com/graphical-decision-modeling/openrules-explorer/
https://openrulesdecisionmanager.com/graphical-decision-modeling/rule-debugger/

OpenRules, Inc. OpenRules® Getting Started

Recommended Madication) *y S
F - . Drrug Interaction Waming ,'J ;."‘-' §
] . - e

x v Patient Creatining Leys
| Patiert Creatinine § ="~
Clearance
¢ R - -
& . o | 'stient Weight
e - i
|
|

@
@O

OpenRules ® Decision Manager 8.3.1 CpenRules® Explorer

Each OpenRules Decision Manager project includes the batch file “explore.bat” that
starts the Explorer. For example, the above Explorer’s view will be displayed when you

double-click on this file from the standard decision project “PatientTherapy”. You can

click on the icon M in the title bar to Open any other decision project.

Diagramming
When you open OpenRules Explorer from the folder with an existing decision model for
the first time, it will generate its diagram using only goals and sub-goals. This diagram
reflects the Goal-Oriented Decision Modeling approach and in general, follows the DMN

(Decision Model and Notation) graphical convention for decision requirement diagrams.

All goals are shown as yellow rounded rectangles, and the main goal has a red border.
The arrows between goals show the automatically (!) discovered knowledge
relationships, e.g. the goal “Recommended Dose” depends on the sub-goal “Patient

Creatinine Clearance”.

You don’t have to draw the diagram yourself as it’s being AUTOMATICALLY generated
based on an already defined glossary, goal/sub-goals, and tables that specify their logic.

You may freely move the diagram elements around and the Explorer will keep all

28 ©

https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://www.omg.org/dmn/

OpenRules, Inc. OpenRules® Getting Started

relationships between them (arrows) intact. Legend

Double-click on any node inside the diagram shows additional information

g
5

]
about the node. For example, for a decision table, it can open the] (Gen

:

corresponding Excel file where this table is defined. When you make

changes in Excel they will be immediately reflected on the diagram.

If you can click on the Main Menu icon E, it will show all menu items and the file

structure of the rules repository:

.“ O Decision Model PatientTherapy

3 Open Project
®8 Disgram
7’

Properties

_ﬁ- Tests
& Deploy

£ Settings

¥ rules
DecisionModel. xls
Glossary xls
Rules.xls

Testxls

Diagram Views

You may create different diagram views of the same decision model by selecting
different elements from the legend on the right. For example, if you select only “Goals”

in the legend, the diagram may look as follows:

290

OpenRules, Inc. OpenRules® Getting Started

Patient Therapy

| Recommended Medication '——)-{ Drug Interaction Warning '

Recommended Dose

Patient Creatinine
Clearance

If you also select “Tables”, all related decision tables (and other business knowledge

model elements such as “Decision”, “DecisionService”, “Code”, “Method”) will be shown

Patient Therapy

as blue rectangles:

_ N F
| Recommended Medication '——j-{ Drug Interaction Warning '

4 s

Patient Creatinine
Clearance

The dashed arrows from blue tables to goals prompt you that a table contains the logic
that specifies the connected goal.

You may also select “Input®, then all decision variables will be shown as white rounded

300

OpenRules, Inc. OpenRules® Getting Started

rectangles with dashed lines to the goals that use them:

-~
~-~.

{ Encounter Diagnosis ’
Patient Active
Medication

- :
(Patient Creatinine Level ’

You may hide the “Input Data” and select “Concepts” to show the business concepts

described in your glossary. They will be shown as pink rounded rectangles:

1 #
[C

When you click on a concept or an input node all related dashed links will be
highlighted. A double-click on a blue node such as "DefineMedication" will open a view

with the proper decision table:

310

OpenRules, Inc. OpenRules® Getting Started

Decision DefineMedication

MultiHit Condition |Cond ition Conclusion

Recommended
Patient Allergies Mot

Is Amoxicillin
Is Cefuroxime

Include Penicillin Is Levofloxacin

3

Open Excel Close

You may adjust the width of any column and click on the left of any rule to setup a

breakpoint for the debugging. If you want to modify this table, click on "Open Excel”.

Diagram Manipulations

You can easily adjust diagrams in many ways. You may drag & drop any nodes and all
automatically calculated links (arrows) will stay intact. You may use the following

buttons to move the diagram around, zoom in/out, or put it in the center:

Down Center

w@@@u M@
Out In
Up

You can click on the button “Export PDF” to export the diagram to the PDF format in

the file of your choice.

When a decision model iterates over collections of objects and sorts some of them like in

a quite complex decision model “Flight Rebooking®, the automatically generated diagram
explains complex relationships by putting clarifying labels such as “Execute ...” on the

proper links:

320

https://dmcommunity.org/challenge/challenge-oct-2016/

OpenRules, Inc. OpenRules® Getting Started

e
3
Loop over Loop over

Passéngers Passengers

xecute

00 Execute LoopTover
Passible Flights

Live Decision Model Diagrams
The generated diagrams will be automatically updated whenever the decision logic in
the underlying Excel tables is changed (without a refresh button). If OpenRules Explorer

recognizes missing nodes it shows them in red. Watch the video that demonstrates how

OpenRules Explorer keeps decision model diagrams LIVE.
Here is the above diagram for “Flight Rebooking” being automatically modified when we

commented out the decision table “AssignNewFlight”:

330

https://t.co/cZCjKZyqSR?amp=1

OpenRules, Inc. OpenRules® Getting Started

Export PDF

Testing Decision Model

You can test your decision model directly from Explorer by running test cases defined in

Excel. Click on the icon E#l and you will see a view similar to this one:

34©

OpenRules, Inc. OpenRules® Getting Started

Run Tests 4 Execution Report

WarnAboutDrugInterac

TSCN RApa F commended Medication’ Ts Levofloxacin
Medication® I mmmadin
ALLTE E:' THEN ‘Drug Int tion Warning' = Coumadin and Levofloxacin can result in reduced
Variables:
.
® B Drug Interaction Warning: --» Coumadin and Levofloxacin can result in reduced
Patient Active Medicatio
Tocd T
est < ® % Recommended Medication: Levo
i P . . ; .
est 3 ® & DeterminePatientTherapy #1 (B5:D5)
IF ‘Encounter Diag 5" Is Acute Sinusitis
. THEN ‘Patient Therapy = Recommended Medication: {{Recommended Medication}] Reco
Execution Path _— ’ i e
variables:
Drug Interaction Warning: Coumadin and L oxacin can result in reduced effec
1: Definededication Encounter Diagnesis: Acute Sinusitis
--* Recommended Medication: sfloxacin Recommended Dose: 5
2 CalculateCreatinineClearance Recommended : S8Bmg every M hours
Recommended Medication: Lewofl
DefineDosing
Test "testCases-Test 1° completed 0. Elapsed time 99.E4 ms
42 WarnAboutDruginteraction

2. DeterminePatientTherapy

Operfules & Dwosion Manager 8.2.1 o AL

The left panel “Run Tests” shows all available test cases which you can open in Excel by
clicking on the test name. The panel “Execution Path” shows all major execution steps
(usual rulesets such as decision tables) in the automatically defined order.

You can execute ALL TESTS or only selected test cases. To execute a test case you may

click on the corresponding icon @ and you will see the results on the Execution
Console. You may click on the tab “Execution Report” to see the automatically generated
reports that show only actually executed rules with pointers to the places in Excel where
they are defined, brief rules formulations, and all involved decision variables with their

values in the time of the rule execution:

35 ©

OpenRules, Inc.

Test1

Decision "DecisionModelPatientTherapy” (Test 1)

OpenRules® Getting Started

Execution Console

Execution Repaort

Executed Decision Tables and Rules (Thu Jan 21 15:20:31 EST 2021)

DefinetMedication: 1 (B5:G3)

IF 'Patient Allergies' Include Penicillin
THEN 'Recommended Medication' Is
Levofloxacin

Patient Allergiess[Penicillin]
Recommended Medication={old:, new:levofloxacin}

1 (B5:85)

CalculateCreatinineClearance:

THEN ‘Patient Creatinine Clearance' = {148
- Patient Age) * Patient Meight / (Patient
Creatinine Level * 72)

Patient Creatinine Clearance«{old:®.0,
new:44.416666666666664)

Patient Age=58

Patient Weight=78.8

Patient Creatinine Levels2.®

DefineDosing: 1 (85:1S)

IF 'Patient Age' Within [15,.6@]
THEN 'Recommended Dose' I: 5@8mg every 24
hours for 14 days

Patient Age=58
Recommended Dose={old:, new:500mg every 24 hours for 14
days}

WarnaboutDruginteraction: 1
(B5:F6)

IF 'Recommended Medication® Is Levofloxacin
AND 'Patient Active Medication' Is Coumadin
THEN 'Orug Interaction Warning' = Coumadin
and Levofloxacin can result in reduced
effectiveness of Coumadin

Recommended Medication=Levofloxacin

Patient Active Medication=Coumadin

Drug Interaction Warning={old:, new:Coumadin and
Levofloxacin can result in reduced effectiveness of
Coumadin)

DeterminePatientTherapy: 1
(82:03)

IF 'Encounter Diagnosis' Is Acute Sinusitis
THEN 'Patient Therapy' = Recommended
Medication: {{Recommended Medication})}
Recommended Dose: {{Recommended Dose}} Drug
Interaction Warning: {{Drug Interaction

Warning})

Encounter Disgnosis=Acute Sinusitis

Patient Therapy={old:, new:Recommended Medication:
Levofloxacin Recommended Dose: S00mg every 24 hours for
14 days Drug Interaction Warning: Coumadin and
Levofloxacin can result in reduced effectiveness of
Coumadin}

Recommended MedicationsLevofloxacin

Recommended Dose=5@0mg every 24 hours for 14 days

Drug Interaction Warning-Coumadin and Levofloxacin can
result in reduced effectiveness of Coumadin

Elapsed time = 76 ms

This information provides detailed explanation of what and why was executed.

Debugging Decision Model

You can debug your decision model by click on the Debug-button #:

36©

OpenRules, Inc. OpenRules® Getting Started

|: IGD10Challenge

Dagam () vriables

Run Tests ‘ B Mexifule Bk MeriAciveRule S MexiTable | GoToEnd/Breskpoint) Restart O
Frmabprrints
Trace Repart
BigTable SearchCSV [HDM0Cadescsv] Ciagnazes Legend

aLTETE B Sirgieik Condticn Condhian Action v Amay() ValidaeC |oim
- BARCule
Pk 8 Digaaia 1 Diagnesds 3 Emors 0:°D47.02 [SRRl

JEEZ CO6.21 D472 {iDiagnasis 1)) can - 1. CoLE *
1378 L {iTagne: C 2 # . | PR

137863 DAT.NZ [iBiagneis 1)) aan

137664 GO4.30 {iDiagnasis

@ @ @
¢ & ¢ o

137865 DAT0Z Ol 31 {iD{agnosis 1) can

@®

{iDiagnasis 1)) sam

50 %

oo 32 [iBiagneis 1)) sae

{ioiagnasis 1} can

13788 C04.32

Execution Path

I7BER DAT. liniagnesis Loop, fuer
1378 nag.4 A DEhEoEE

WalidapeChaim &1 137670 Coa. CEn4 {iagnasis 1} can !

h‘_I'llr:.'mns.rei. - .‘ ’/ }-bux‘-x—i-’ml,

137671 DATA

13777 A3 rEn 4 JiDiagnosis 1§) ean

137672 DATA D471 IiDiagnasis 11) 23

AralypeDiagrioses §1

EXECUTE

o { Dagnoss 1)

Operflues & Docision Managoe: $0.0-Shik

See the detailed description of OpenRules Debugger and watch the video.

Deploying Decision Model
OpenRules Decision Manager allows you to deploy your decision model as a regular Java

program on-premises or on-cloud using the following deployment options:

370

https://openrulesdecisionmanager.com/rule-debugger/
https://youtu.be/k6307CX32j4

OpenRules, Inc. OpenRules® Getting Started

Business
iDecision Model: ; -

8 % f : 'AWS Lambda Function
Develop) 5 paa = : Execute
ek © g BIFe Ul

Business : : ' :

Azure

Analysts ‘ o '
: i X3 : : Functions :
iDecision Tables: '
‘ (DMN : '

1 OpenRules | :

... Foman | RESTful Web Service!
; docker

You may find more information about decision model deployment in the User Manual for

Developers.

You can deploy your decision model directly from OpenRules Explorer using the

“Deploy” menu-item B3, You will see a view like this one:

38©

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf

OpenRules, Inc. OpenRules® Getting Started

Desision Madel: PatientTherapy

Java APl (@) AWE

openrules-demo-lambda-bucket

us-east-1 m m

DecisionModel Lambda upload started. File C:_GitHub\openrules.samples\PatientTherapy\target\PatientTherapy-1.
DecisionModel Lambda upload complete

Updated lambda DecisionModelPatientTherapy

Created API Gatewsy deployment DecisionModelPatientTherapy for stage [test]

Decision Service DecisionModelPatientTherapy successfully deployed.

Lambda ARM: arn:aws: lambda:us-ecast-1:3956080814566: function:DecisionModelPatientTherapy

Invoke URL: https://tubkd4analb.execute-api.us-east-1.amazonaws.com/test/patient-therapy

[INFO]

[INFO] BUILD SUCC
[FO] —-~------
[INFO] Total tim
[INFO] Finished at
[InFO]

DECISION TABLES

OpenRules uses classical decision tables which are in the heart of OpenRules from its
introduction in 2003 and became the major decisioning construct of the DMN standard.
OpenRules utilizes MS Excel and/or Google Sheets as the most powerful and commonly

known table editors (but doesn’t rely on Excel’s formulas).

Decision Table Structure

OpenRules uses the keyword “DecisionTable” for the most frequently used single-hit

decision tables. For example, let’s consider a very simple decision table:

DecisionTable DefineSalutation

Condition Condition Conclusion

Gender Marital Status Salutation
Is Male Is Mr.
Is Female Is Married Is Mrs.
Is Female Is Single Is Ms.

Its first row contains the keyword “DecisionTable” and a unique table’s name such as

“DefineSalutation” (no spaces allowed). The second row uses the keywords “Condition”

390

OpenRules, Inc. OpenRules® Getting Started

and “Conclusion” to specify the types of decision table columns. Instead of the keyword
“Condition” you may it’s synonym “If’. Instead of the keyword “Conclusion” you may it’s
synonyms “Then” or “Action”. All keywords are case-sensitive.
The third row contains the names of decision variables expressed in plain English
(spaces are allowed). The columns of a decision table define conditions and conclusions
using different operators and operands appropriate to the decision variable specified in
the column headings.
The rows below the decision variable names specify multiple rules. For instance, the
second rule can be read as:

“IF Gender is Female AND Marital Status is Married THEN Salutation is Mrs”.
This is an example of the horizontal decision table where rules are defined from top to
bottom. The same decision table may be presented in the vertical format when rules

are presented from left to right:

DecisionTable DefineSalutation

B Is Is Is
Condition Gender Male | Female | Female
» _ Is Is
Condition | Marital Stat
ndition arital Status Married | Single
_) Is Is Is
Concl Salutat
nclusion alutation M Mrs. Ms.

If some cells in the rule conditions are empty, it is assumed that this condition is
satisfied. A decision table may have no conditions, but it always should contain at least
one conclusion/action.

The conditions in a decision table are always connected by the logical operator “AND”

and never by the operator “OR”. Each rule can be read as:

IF Condition-1 AND Condition-2 AND ...
THEN Conclusion-1 AND Conclusion-2 AND ...

When you need to use “OR”, you may add another rule that is an alternative to the
previous rule(s). However, some conditions may have a decision variable defined as an
array or a list of values. Within such array-conditions “ORs” can be expressed using
commas. Consider the following decision table from the standard project

“UpSellRules”:

40©

OpenRules, Inc. OpenRules® Getting Started

DecisionTable DefineUpSellProducts

Caondition Condition Condition Zonclusion Action
Customer Profile | Customer Products | Customer Products | Offered Products | Recommendation
Is Product 2, .

One | Bronze, Silver [Include| Product 1 Do Mot Product 2 | Are Product 4, Additional
Include Products 24,5
of Product 5
Is Product g, Product g, .
One | Bronze, Silver [Include ij%u':;tg' anlNdnt Product 7, |[Are Product 7, P .Agdgnr;a;a
of rocu EUZE) product 2 Product 8 roducts o,7,
Product 4,
Is Product &, Product 5, -
Cne | Bronze, Silver [Include ';rr%%"ﬁt;' Iaglﬁjdﬂé Product 7, | Are Product 7, F,m;:ld;;tlir;aéag
Of Product 8 Product 8, e
Product 9
Product 9,
s Do Not | Lreduet . EIESE? g
One Gold Include| Product 1 Product 7, |[Are ' Gold Package
of Include Product 5 Product 4,
Product 5,
Product 10
Product 9,
Product 7,
Product 8 with
Is Product 6
) Product1, | Do Mot ' no annual fee,)
Ggfe Platinum |Include Product? | Include F;rm:junlzzttg. Are Product 4, Platinum Package
rodu Product 5 with
no charge,
Product 10
Sarry, no products
Are Maone to offer

For instance, the second rule can be read as:
IF Customer Profile is one of Bronze or Silver
AND Customer Products include Product 1 and Product 3
AND Customer Products do not include Product 6, Product 7, and Product 8
THEN Offered Products are Product 6, Product 7, and Product 8
AND Recommendation is Additional Products 6,7,8.

Execution Logic

All rules are executed one-by-one in the order they are placed in the decision table. For
the horizontal (default) decision tables, all rules (rows) are executed in top-down order.

For vertical decision tables, all rules (columns) are executed in left-to-right order.

The execution logic of one rule is the following:

41©

OpenRules, Inc. OpenRules® Getting Started

IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all other
conditions in the same rule are ignored and not evaluated. Actions are executed only if
all conditions in the same rule are satisfied. Conditions and actions with empty cells (or

hyphens) are ignored.

There is a simple rule that governs rules execution inside a decision table:

The preceding rules are evaluated and executed first!

However, a designer of decision tables may specify different execution logic by using one
of two major types:
e Decision or DecisionMultiHit

e DecisionTable or DecisionSingleHit

Note. OpenRules also provides a constraint-based rule engine to execute decision models in the
inferential mode when an order of rules inside decision tables and between tables is not important.

Tables of the type “Decision”

These tables start with the keyword “Decision”. They evaluate rules one by one and
execute all rules which conditions are satisfied. That’s why they are also called “multi-
hit” decision tables. Instead of the keyword “Decision” you may use its synonym
“DecisionMultiHit”. The main table for the above sample “Vacation Days” provides a

typical example of a multi-hit decision table:

Decision CalculateVacationDays
Condition Condition Condition Conclusion

Eligible for Eligible for Eligible for

Vacation D
Extra 6 Days | Extra 3 Days | Extra 2 Days acation Days

= 22
TRUE +
TRUE +
FALSE TRUE +

The table of the type “Decision” allows the actions of already executed rules to affect the

42 ©

http://rulesolver.com/

OpenRules, Inc. OpenRules® Getting Started

conditions of rules specified after them. In this sense, they are like traditional
programming languages. The table “Decision” supports the following rules execution

logic:

¢ Rules are evaluated in top-down order and if a rule condition is satisfied, then
the rule actions are immediately executed.
¢ Rule overrides are permitted. The action of any executed rule may override the

action of any previously executed rule.

Let’s consider an example of driving eligibility logic: “A person of age 17 or older is
eligible to drive. However, in Florida 16-year-olds can also drive”. We may present this

logic using the following table of the type “Decision”:

Decision DetermineDriverEligibility

Condition Condition Conclusion

Drivers Age US State Driving Eligibility

Eligible
= 17 Ineligible
= 16 s FL Eligible

The first unconditional rule sets “Driving Eligibility” to “Eligible” (default!). The second
rule may override this value with “Ineligible” for all people younger than 17. But for 16-
year-olds living in Florida, the third rule will again assign the value “Eligible” to

Driving Eligibility.

There are two important observations about the behavior of the tables “Decision”:

1. Rule actions can affect the conditions of other rules.
2. There could be rule overrides when rules defined below already executed rules could
override already executed actions.

3. The default values are usually defined in the very first rule.

These tables naturally support the following logic:

43©

OpenRules, Inc. OpenRules® Getting Started

More specific rules should override more generic rules!

For example, in the above table the Florida’s driving eligibility rules override the US

rules as we defined them after (!) the US rules.

Tables of the type “DecisionTable”

These tables start with the keyword “DecisionTable”. They evaluate rules one by one
and stop after the first “hit” when a rule is satisfied. That’s why they are also called
“Single-Hit” decision tables. All 3 tables in the introductory example that specify

decision logic for extra vacation days give examples of single-hit decision tables.

Let’s present the above table “DetermineDriverEligibility” using a single-hit table of the
type “DecisionTable”:

DecisionTable DetermineDriverEligibility

Condition Condition Conclusion
Drivers Age US State Driving Eligibility
= 16 ls FL Eligible
< 17 Ineligible
Eligible

The first rule takes care of 16-year-olds living in FL. For all other people younger than
17 the second rule assigns the value “Ineligible” to the decision carriable “Driver
Eligibility”. And the third unconditional rule (the default!) makes all other people
Eligible.

Preferably, your rules should cover all possible combinations of decision variables
inside the table’s conditions. Otherwise, it is good practice to catch and report an

“Impossible” situation in the last (default) rule.

Using Different Types of Decision Tables

The same decision logic could be represented by both types of tables “Decision” and/or

“DecisionTable”. Let’s consider a situation when we need to calculate “TaxableIncome”

44 ©

OpenRules, Inc. OpenRules® Getting Started

using some formula and if the result is negative, we should assign make it equal to 0. If

we use the table of the type “Decision” it may look as below:

Decision CalculateTaxablelncome

If Action
Taxablelncome Taxablelncome
AdjustedGrossincome - DependentAmount

<0 0

Here the decision variable “TaxableIncome” is present in both the condition and the
action. The first (unconditional) rule will calculate and set its value using the proper
formula. The second rule will check if the calculated value is less than 0. If it is true,

this rule will reset this decision variable to O.

The same logic could be expressed with a single-hit table “DecisionTable” such as:

DecisionTable CalculateTaxablelncome

Condition Action
AdjustedGrosslncome Taxablelncome

= | DependentAmount | AdjustedGrossincome - DependentAmount

<= | DependentAmount 0

However, if your decision table contains hundreds or thousands of rules, single-hit is

much more efficient than multi-hit.

In situations when you need rule overrides, multi-hit tables are the way to go. The only
thing a decision model designer needs to do is to place "more specific" rules after "more

generic" rules.

It is very convenient to use multi-hit decision tables to accumulate some data, e.g. in so-
called “scorecards”. For example, the following decision table accumulates “Application

Risk Score” based on 3 different conditions:

45©

OpenRules, Inc. OpenRules® Getting Started

Decision ApplicationRiskScore

Condition Condition Condition Action
Age Marital Status |Employment Status Appli{;ation Risk

COre

= 0

[18..21] + 32

[22..25] + 35

[26..35] + 40

[36..49] + 43

>=5() + 48

5 + 25

1] + 45

UMEMPLOYED + 15

STUDENT + 18

EMPLOYED + 45

SELF-EMFLOYED | + 36

The first rule will unconditionally assign value 0. All other rules may increment the

score using the operator “+” and the provided value (32, 35, 40, ...).

Table Conditions

In the most cases table conditions are specified by the keywords “Condition” (or its

synonym “If’) in the second row of a decision table, e.g.:

Condition Condition If If
Gender Gender Amount Amount
s | Male Male = | 1000 = 1000

If a condition has two sub-columns it means the first one used by operators like “Is” or
“>” and the second one — by values like “Male” or “1000”. Conditions without sub-

K"

columns assume that the operator is or “Is”. However, you may place an operator in
the front of a value in the same cell, e.g. “> 1000”. For consistency reason it is

recommended to use two sub-columns.

The condition cells can contain specific values like “1000” or “> 1000” but they also
contain names of other decision variables or even expressions. For instance, the above

decision table “CalculateTaxableIncome” uses conditions:

46 ©

OpenRules, Inc. OpenRules® Getting Started

Condition
AdjustedGrosslncome

> DependentAmount

<= | DependentAmount

Comparing Strings

The following operators can be used for conditions to compare strings.

Is To compare two strings are the same. This comparison is case sensitive
by default unless you changes it using the property “model.ignoreCase”.

“_"

Instead of “Is” you also can write or “==" (with an apostrophe in front

of them to avoid confusion with Excel’s own formulas).

Use the value null to check if a variable of type String, Date, Integer,
Boolean, or any custom type is undefined. It will cause a syntax error if
applied against a decision variable with a primitive type such as int,
double, boolean. You may check the primitive variables against their

default values (0 for int, 0.0 for double, false for boolean).

Is Not To check if two strings are not the same. This comparison is case
sensitive. Synonyms: !=, isnot, Is Not Equal To, Not, Not Equal, Not
Equal To.

Is Empty | Applied to check if a variable of the type String, Date, or a custom type
like Customer is empty. The sub-column for the value should be

TRUE/Yes or FALSE/No.

Contains | To compare if a decision variable contains certain values. For example,
“House” contains “use”. The comparison is not case-sensitive. Synonym:

Contain.

- ion var - T .
Does Not | To compare if a decision variable does not contain certain values. For
Contain example, “House” doesn’t contain “user”. The comparison is not case-

sensitive.

47©

OpenRules, Inc. OpenRules® Getting Started

Starts To compare if a decision variable starts with certain values. For
With example, “House” starts with “ho”. The comparison is not case-sensitive.

Synonym: Start.

Like To check if a decision variable matches simple patterns with three
wildcards:
e The percent sign (%) represents zero, one, or multiple characters
e The underscore sign () represents one, single character
e The character sign (#) represents one digit

Examples: ‘ABCD” is like ‘ab%’ and “732-993-3131’is like - - ’

This operator is not case sensitive. Synonym: Is Like.

Not Like | This operator is opposite to Like. This operator is not case sensitive.

Synonym: Is Not Like.

Match To check if a decision variable matches standard regular expressions.

For example, you can use the expression “\d{3}-\d{3}-\d{4}” to check if
the content of the decision variable is a valid US phone number such as

732-993-3131. Synonyms: Matches.

No Match | To check if a decision variable doesn’t match a regular expression. For

example, you can use the expression “[0-9]{5}” to check if the content of
the decision variable consists of 5 digits like a valid US zip code. The
condition is satisfied if it is not true. Synonyms: Not Match, Does Not

Match, Different, Different From.

You may control case sensitivity of comparison operators by setting the property
“model.ignoreCase” to FALSE or TRUE (in the Environment table or in

“project.properties”).

You may change case sensitivity of a particular operator by adding [Ignore Case] or [Case
Sensitive] after the operator.

48 ©

https://www.w3schools.com/sql/sql_like.asp
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® Getting Started

Comparing Numbers

The following operators can be used for conditions to compare numbers (integer, real, or

BigDecimal):

Is

To compare two numbers are the same. Instead of “Is” you also can write
(=}

or “==" (with an apostrophe in front of them to avoid confusion with

Excel’s own formulas)

Is Not

To check if two numbers are not the same. Synonyms: !=, isnot, Is Not

Equal To, Not, Not Equal., Not Equal To

To check a number represented by the decision variable is strictly larger
than the number in the column’ cell. Synonyms: Is More, More, Is More

Than, Is Greater, Greater, Is Greater Than

To check a number represented by the decision variable is larger than or
equal to the number in the column’ cell. Synonyms: Is More Or Equal. Is
More Or Equal To, Is More Than Or Equal To, Is Greater Or Equal To,
Is Greater Than Or Equal To

To check a number represented by the decision variable is smaller than
or equal to the number in the column’ cell. Synonyms: Is Less Or Equal,
Is Less Or Equal To, Is Less Than Or Equal To, Is Smaller Or Equal To,
Is Smaller Or Equal To, Is Smaller Than Or Equal To

To check a number represented by the decision variable is strictly
smaller than the number in the column’ cell. Synonyms: Is Less, Less, Is

Less Than, Is Smaller, Smaller, Is Smaller Than

Within

To check if a decision variable is within the provided interval. The
interval can be defined as: [0;9], (1;20], 5..10, between 5 and 10, more

than 5 and less or equals 10. Synonyms: Inside, Inside Interval, Interval

Outside

To check if a decision variable is outside of the provided interval. The
interval can be defined as: [0;9], (1;20], 5..10, between 5 and 10, more

than 5 and less or equals 10. Synonyms: Outside Interval

49 ©

OpenRules, Inc.

OpenRules® Getting Started

In conditions without operators OpenRules assumes the operator “Within” when an

interval is specified. For example,

If

Current Hour

[0..11)

checks if the variable “Current Hour” is within the interval [0..11) assuming that 0 is

included and 11 is not included.

Using Natural Language Inside Decision Tables

OpenRules allows a rules designer to use “almost” natural language expressions to

represent intervals of numbers inside conditions without operators. You may define

FROM-TO intervals in practically unlimited English using such phrases as: "500-1000",
"between 500 and 1000", "Less than 16", "More or equals to 17", "17 and older", "< 50",
">=10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by specifying

their two bounds or sometimes only one bound. Here are some examples of valid integer

intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5,6, 7, 8, 9, and 10

5:10 contains 5,6, 7, 8, 9, and 10

[5,10) contains 5, 6,7,8, and 9 (but not 10)
[5..10) The same as [5,10)

5..10 contains 5 and 10

5..10 contains 5 and 10

-5..20 contains -5 and 20

-5..-20 error: left bound is greater than the right one
-5..-2 contains -5, -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

50 ©

OpenRules, Inc.

OpenRules® Getting Started

less or equals 5 contains 5
less or equal 5 contains 5
less or equals to 5 contains 5

smaller than 5

does not contain 5

more 10

does not contain 10

more than 10

does not contain 10

10+ more than 10
>10 does not contain 10
>=10 contains 10

between 5 and 10

contains 5 and 10

no less than 10

contains 10

no more than 5

contains 5

equals to 5

equals to 5

greater or equal than 5
and less than 10

contains 5 but not 10

more than 5 less or equal
than 10

does not contain 5 and contains 10

more than 5,111,111 and
less or equal than
10,222,222

does not contain 5,111,111 and contains

10,222,222

[5'000;10'000'000)

contains 5,000 but not 10,000,000

[5,000;10,000,000)

contains 5,000 but not 10,000,000

(5000;10,000,000]

contains 5,000 and 10,000,000

You may represent integer intervals as you usually do in plain English. The only

limitation is the following: lower bound should always go before upper bound!

Along with integer intervals, you may similarly represent intervals of real numbers.

The bounds of double intervals could be integer or real numbers such as [2.7; 3.14).

Comparing Dates

OpenRules naturally supports date comparison with the operators =, !=, >, >= <= and <

like in the following example:

510

OpenRules, Inc.

DecisionTable DefineChild

OpenRules® Getting Started

Condition Action
Date of Birth Is Child
< 2017-02-28 FALSE
= 2017-02-28 TRUE

Because different countries use different Date formats we recommend using the
commonly understandable format “yyyy-MM-dd”. At the same time, OpenRules will
recognize Date variables presented in the standard format specific for the majority of
countries (using system locales). For example, the standard US date formats are
"MM/dd/yyyy", “MM/dd/yy HH:mm”, and "EEE MMM dd HH:mm:ss zzz yyyy". We also
recommend not to use the Date format when you define your dates in Excel: to avoid

unnecessary conversion by Excel use a simple Text format.

To compare two Date variables, you may do it as in the following decision table:

DecisionTable CompareDates
Condition Message
Date 1 Message
< Date 2 Date 1 < Date 2
>= Date 2 Date 1 »= Date 2

You may see more examples of how to use new Date operators by analyzing the sample

project "HelloWithDates" available in the downloaded workspace "OpenRulesSamples".

By default, OpenRules compares dates ignoring time. If you want to use time
components of the Date variables, instead of the operators such as "<" you should use

the operator "< time", as in the table below:

DecisionTable ComparePassengerFlights

Condition Condition Condition Action Action
Flight1ls Flight2 Is : : Flight 1 Flight 2
St?itable Sl?itable it Ariive) S(?ore S(?ore

Is TRUE | Is | FALSE 1 0

Is | FALSE | Is | TRUE 0 1

Is | TRUE |[Is| TRUE |<time| Flight 2 Arrival 1 0

Is [TRUE |[Is| TRUE |=time| Flight 2 Arrival 0 1

Is | TRUE |[Is| TRUE |=time| Flight 2 Arrival 1 1

52 ©

OpenRules, Inc. OpenRules® Getting Started

Comparing Boolean Values

If a decision variable has type "boolean”, e.g. “Employee is Veteran”, you can check if it’s

true by using the following conditions:

Condition If
Employee Is Veteran or Employee Is Veteran
s | TRUE TRUE

You can use the following boolean values:

e True, TRUE, Yes, YES
e False, FALSE, No, NO

You also may compare two Boolean decision variables as below:

Condition
Company 1 Eligibility
ls | Company 2 Eligibility

Checking if a Decision Variable is Undefined

If you want to check if a decision variable is undefined, you may compare it with a

special value null. Here are examples e.g.

Condition Condition
Variable Name Variable Name
null Is | null

Only decision variables of types String, Date, Integer, Double, Boolean, or any custom
type can be compared with null. It you try to compare a decision variable of a primitive

type such as int, double, or boolean with null, you will receive a syntax error.

For variables of the type String or Date you may use the operator “Is Empty”:

Condition
Variable Name
Is Empty | TRUE

Other Condition Types

530

OpenRules, Inc. OpenRules® Getting Started

There are several convenience condition types described in the examples below.

ConditionBetween

ConditionBetween
Amount
10 | 20

This condition of the type “ConditionBetween” check if the variable “Amount” is more

or equals to 10 and less or equals to 20.
ConditionVarOperValue

When your decision table contains too many columns it may become too large and
unmanageable. In practice, large decision tables have many empty cells because not all
decision variables participate in all rule conditions even if the proper columns are
reserved or all rules. For example, here is a decision table taken from a real-world
application that has more than 20 conditions (not all of them shown) with many empty

rule cells:

DecisionTable classificationRules

Condition Condition Condition
C_OTH_EXPNS_AMT|A_ESTATE_TAX_AMT Attribute
== 395 == 10054 Oper WValue High = 66
Is Low = 63
== 53 Is Low = 49
Is Low = a6
Is Low = 78
Is Other = 56

To make this decision table more compact, instead of the standard column’s structure

with two sub-columns

Condition

Variable Mame

Oper | Value

we may use another column representation with 3 sub-columns:

54 ©

OpenRules, Inc. OpenRules® Getting Started

ConditionVarOperValue
Variable Oper Value
Variable Name | Oper | Value

This way the above table will be replaced may with a much more compact table that

may look as follows:

DecisionTable classificationRules

ConditionVarOperValue ConditionVarOperValue ... | ConditionVarOperValue Conclus
Variable Oper Value Variable Oper Value ... |Variable Oper Value
C OTH EXPNS AMT]| >= 398 |A ESTATE TAX A>=| 10054 Attnbute | Oper| Value | Is High = B6E
E_PRTSCRP TOT L{ <=| -6955 |AGI TPl RATIO |[<= |0.95933 Is Low =] 62
C_OTH_EXPNS_AMT| >= 53 |ORD DIVIDENDS |<= | 6617 s Low =] 4t
TAXABLE INC TPl Rf{<= [0.81044T|TENT TAX AMT |>= | 301630 ls Low = [Bt
DIVIDENDS _AND INT|<=] 12348 |EXTNSN PYMNT |<= | 30000 ls Low =[] Tt
s Other =] 5¢

P.S. Similarly, instead of a column of the type “Conclusion” you may use a column of the
type “ConclusionVarOperValue” with 3 sub-columns that represent a variable name, an

operator, and a value.

Conditions on Collections

In practice, business rules deal not only with separate decision variables but also with
collections of decision variables such as arrays, lists, sets, or maps. OpenRules provides

necessary constructs to use collections in conditions and conclusions.
Condition with Collection Operators

For example, this is a fragment of the decision table from the sample project

“UpSellRules™

DecisionTable DefineUpSellProducts
Condition Condition Condition

Customer Profile | Customer Products | Customer Products

Is

Cne | Bronze Silver [Include| Product 1 Do Mot Product 2
Include

Of

Is Product g,

Cne | Bronze, Silver |Include FJU%UC;;' IDUINdm Product 7,

Of rodu NEUCE) Product 8

55 ©

OpenRules, Inc. OpenRules® Getting Started

Here the variable “Customer Profile” is a regular variable of the type String, and the
first condition simply checks if the value of the variable “Customer Profile” is one of two
strings “Bronze” or “Silver”. However, the variable “Customer Products” is an array of
strings that identifies all products this customer already has. So, the second condition
checks if this array includes product “Product 1” (the first rule) or if it includes the
products “Product 1” and “Product 3” (the second rule). The third condition checks if this
array doesn’t include product “Product 2” (the first rule) or if it doesn’t include the

products “Product 6”, “Product 77, and “Product 8” (the second rule).

The following operators can be used for conditions defined on a variable and a collection:

For integer and real numbers, and for strings. Checks if a
Is One Of value is among cell values listed through a comma.
Synonyms: Is One, Is One of Many, Is Among, Among.

For integer and real numbers, and for strings. Checks if a
Is Not One Of | value is NOT among cell values listed through a comma.
Synonyms: Is not among, Not among.

Starts With | To compare if a decision variable starts with one of values
One Of listed through commas. For example, “House” starts with one
of the values “hou, mo”.

Does Not Compare if a decision variable starts with one of values listed
Start With through commas and returns TRUE is it DOES NOT. For
One Of example, “House” does not start with one of values “Mo, Wo”.

The following operators can be used for conditions defined on two collections:

To compare two collections. Returns true when the first
Include collection includes all elements of the second collection.
Synonyms: Include All

This operator is opposite to the operator “Include”. Returns
true when even one element of the first collection is not

Exclude) .
present in the second collection. Synonym: Does Not

Include

56 ©

OpenRules, Inc. OpenRules® Getting Started

To compare a collection with another collection. Returns true
when the first collection and the second collection have
Intersect common elements.

Synonyms: Intersect With, Intersects

Returns true when the first collection and the second

Does Not collection do not have common elements.
Intersect
Synonyms: Does not Intersect With, Exclude All

When these operators deal with strings, they are case sensitive. You may control case
sensitivity of all these operators by setting the property “model.ignoreCase” to FALSE

or TRUE (in the Environment table or in “project.properties”).

You may control case sensitivity of a particular operator by adding [Ignore Case] or

[Case Sensitive] at the end of the operator.

If the decision variables do not have an expected type for the specified operator, the

proper syntax error will be diagnosed.

Note that the operators Is One Of, Is Not One Of, Include, Exclude, Intersect, and
Does Not Intersect work with values separated by commas. Sometimes a comma could
be a part of the value and you may want to use a different separator. In this case, you
may simply add your separator character at the end of the operator. For example, if you
want to check that your variable “Address” is one of “San Jose, CA” or “Fort Lauderdale,
FL”, the comma between City and State should not be confused with a separator. In this
case, you may use the operator “Is One Of #” or “Is One Of separated by #” with an
array of possible addresses described as “San Jose, CA#Fort Lauderdale, FL”. Instead of

7N

the separator “#” you may use any non-alphabetic character after a space, e.g.
What can you use as values of the above operators? There are 3 possible options:

1) Constants, e.g., Bronze, Silver or Product 6, Product 7, Product 8 in the above

decision table

2) Decision variables, e.g., Var 1, Var 2, Const 2, Var 3

570©

OpenRules, Inc. OpenRules® Getting Started
3) A single decision variable that represents a collection defined somewhere else (in a
test data or another decision table).

A sample project “ArrayOperators” from the standard installation provides good

examples of different cases.
ConditionMap

If the decision variable is a map (e.g. an instance of Java class HashMap) the following

condition

ConditionMap
My Map
keyl | values

will check if the map-variable “My Map” contains a pair (“keyl”,’values5”).

Table Conclusions

Simple Conclusions/Actions
There are two most used types of conclusions specified by the keywords “Conclusion” or

its synonyms “Action” or “Then”, e.g.:

Conclusion Conclusion Action Then
Eligibility Amount Eligibility Amount
s | TRUE = 20 TRUE 20

The columns of the type “Conclusion” may have two sub-columns: one for an operator

like “Is” or “=” and another - for a value.

The following operators can be used inside decision table conclusions:

Assigns one value to the conclusion decision variable.
Synonyms: =, ==

Is

[[13 b

When you use or “=="inside Excel, you have to put an
apostrophe in front of them to avoid confusion with Excel’s

formulas.

58 ©

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc.

OpenRules® Getting Started

. Takes the conclusion decision variable, adds to it a value
Assign . ..
Plus from the rule cell and saves the result in the same decision
u .
variable. Synonym: +, +=
. Takes the conclusion decision variable, subtracts from it a
Assign .
. value from the rule cell and saves the result in the same
Minus .. .
decision variable. Synonym: -, -=
. Takes the conclusion decision variable, multiplies it by a
Assign .
. value from the rule cell and saves the result in the same
Multiply L .
decision variable. Synonym: *, *=
. Takes the conclusion decision variable, divides it by a value
Assign . ..
L. from the rule cell and saves the result in the same decision
Divide .
variable. Synonym:/, /=

The accumulation operators +, -, *, and / are usually used in scorecards such as then

decision table above.

You may assign string using simple conclusion columns like in these decision tables:

DecisionTable DefineHelloStatement

If

DecisionTable DefineGreeting Conclusion

Current Hour

[0..11)

Then
Greeting Hello Statement
Good Maorning Is | Greeting + ", " + Salutation + " " + Name + "I"
or

You may assign numbers (integer, real, BigDecimal) using simple conclusion columns

like in these decision tables:

DecisionTable DefinePhaseOfTheMoonRisk

Condition Conclusion

Phase of the Moon Phase of the Moon Risk
Is Mew Moon Is 0.01
Is Half Moon Is 0.25

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance

(140 - Patient Age) * Patient Weight / (Fatient Creatinine Level * 72)

59 ©

OpenRules, Inc. OpenRules® Getting Started

(13 [T

You may use in the action cells to assign an empty string or a

(double quotes) or
space character to a String variable.

Conclusions on Collections

When you want to assign some values to decision variables that are collections (such as

arrays or lists) you can use the following operators:

Are Assigns one or more values listed through commas to the
conclusion variable that is expected to be an array/collection

Adds one or more values listed through commas to the
Add conclusion variable that is expected to be an array/collection.
Synonyms: +

Adds one or more values listed through commas to the

Add conclusion variable that is expected to be an array but making
Unique | sure that these values are not present in the array/collection.
Synonyms: +unique, +u

For example, if the decision variable “Offered Products” is an array (or a list) of strings,

you use the following conclusion to assign to 3 products:

Conclusion

Offered Products

Product 2,
Are Product 4,
Product 5

If after this conclusion you will also apply the following conclusion

Conclusion

Offered Products

Product 7,

Add) broduct 8

then the value of the variable “Offered Products” will become

{ “Product 2”, “Product 4”, “Product 57, “Product 77, “Product 8" }

60 ©

OpenRules, Inc. OpenRules® Getting Started

Displaying Messages

There is a special conclusion types “Message” and “ActionPrint” for displaying
messages directly from decision tables. For example, the following action displays the
message “Employee is eligible to 27 vacation days”:

Message
Display
Employee is eligible to 27 vacation days

But if you want instead of hard-coded 27 days to display the actual number of vacation
days already calculated in the decision variable “VacationDays”, you may use this

action:

Message
Display
Employee {{Name}} is eligible to {{VacationDays}} vacation days

The expressions {{Name}} and {{VacationDays}} will be replaced with their actual values.
By using “{“ and “}}” around variable names you explicitly say that you want to use their
values.

After the message, OpenRules will also print [produced by <name of the decision table>].

The action “Message” displays messages only when the property “trace=0n” (in the file
“project.properties”). If “trace=0Off" and you still want to show certain messages, e.g.
critical errors, you may use “ActionPrint” instead of “Message”.

Displaying Rule Numbers
Sometimes, you want your message to refer to the rule that was applied. To do this, you

may associate unique names with all rules in the column of the type "#" and then refer

to these names in the Message column using SRULE_ID like in the following example:

D onTable ap

G if Then Message
Rule Id X Message
Ruig 1 1 2 Executed rule
Rule 2 2 1 <$RULE_ID>

The message will be shown as “Executed rules <Rule 1>” or “Executed rules <Rule 2>”.

61©

OpenRules, Inc. OpenRules® Getting Started

Expressions

OpenRules allows you to use expressions (formulas) in the decision table cells.
OpenRules supports the following expressions:

e Simple formulas

e Compositions of decision variables

e Java Snippets.

Formulas
You may use naturally looking formulas that contain the names of your decision variable
and traditional operation signs (+, -, *, /, and more) along with brackets to define the

order of the operations. Here is a simple example:

Action
Taxablelncome
AdjustedGrossincome - DependentAmount

That will assign a difference between values of AdjustedGrossIncome and
DependentAmount to the variable TaxableIncome. Here is a more complex formula from

the example “PatientTherapy” that calculates Patient Creatinine Clearance:

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance
(140 - Patient Age) * Patient Weight / (Patient Creatinine Level * 72)

When your resulting decision variable has type “String” you can use the operator “+” to
concatenate different strings (or even numbers). For example, this conclusion

DecisionTable DefineHelloStatement

Conclusion
Hello Statement

ls | Greeting + ",

+ Salutation + + Mame +

will use the values of decision variable “Greeting”, “Salutation”, and “Name” (defined in
the Glossary of the standard project Hello) to define a Hello Statement that may look
like “Good Afternoon, Ms. Robinson!”.

Alternatively, you may explicitly use string interpolation by taking decision variable

62 ©

OpenRules, Inc.

OpenRules® Getting Started

names the double curly braces, “{{“ and “}}”. It will allow you not to use pluses and

quotations and simply write:

DecisionTable DefineHelloStatement

Conclusion

Hello Statement

Is

{{Greeting}}, {{Salutation}} {{Name}}!

You also can use some simple functions like min(x,y) and max(x,y) like in the following

actions borrowed from the standard project 1040EZ:

Action Action Action
LineC LineD LineE
max(LineA LineB}| 4750 |min(LineC.LineD)

Here is a partial list of supported operators and functions:

Numbers

Add
Subtract
Multiply
Divide
Power: x v

Negate

Feature

Syntax

regular

integer or real

numbers

X+y

pow(x,y)

Examples

10, 465.25, -25, 3.14

3+2

3/2

5**2

63©

OpenRules, Inc.

OpenRules® Getting Started

Comparison

Logical "and"

Logical "or"

Absolute value

Maximum
between two
numbers

Minimum
between two
numbers

Floor

Ceiling

n_n

ex

Rounding

Square root

X<y

X <=y

X=Yy
x<>yorx!l=y

X>=y

X>y

xandy

Xory

abs(x)

max(x,y)

min(x,y)

floor(x)

ceil(x)

PI

exp(x)

round(x)

sqrt(x)

2 <> 3 [produces 1]
2 1= 2 [produces 0]

1 and 1 [produces 1]
1 and O [produces 0]
0 and O [produces 0]
1 and 1 [produces 1]
1 and O [produces 1]
0 and O [produces 0]

abs(-5) [produces 5]
abs(5) [produces 5]

max(5,6) [produces 6]

min(5,6) [produces 5]
floor(3.5) [produces 3]
floor(-3.5) [produces -3]

ceil(3.4) [produces 4]
ceil(-3.4) [produces -3]

The mathematical constant "m"
exp(1) = 2.7182818284590451

round(3.5) [produces 4]
round(-3.5) [produces -4]

sqrt(9) [produces 3]

64 ©

OpenRules, Inc. OpenRules® Getting Started

OpenRules also supports many other operators and functions defined in the standard Java
class Math.

Composing Decision Variable Names

All decision variables used in decision tables or test tables should be defined in the
glossary. However, you may compose new complex decision variables out of the existing
ones without declaring them in the Glossary. For example, a sample project
"HelloNestedLocation" has two business concepts “Location” and “Customer” defined in

this Glossary:

Glossary glossary

Variable Business Concept Attribute Type
City city String
Street Location street String
State state String
Mame name String
Gender gender String
Marital Status maritalStatus String
Current Hour currentHour Integer
Customer's Location Customer location Location
—SetestSustemers-boeatden leegtdanstate Cirhag
Greeting greeting String
Salutation salutation String
Hello Statement helloStatement String

To produce a greeting like: "Good Afternoon, Ms. Kaye in CA!", a user could create the

following table:

DecisionTable DefineHelloStatement

Action
Hello Statement

{iGreeting]}. {{Salutation}} f{Mame}} in {{State of Customer's Location}}!

However, starting with Release 10 it is not necessary to define “State of Customer's
Location" in the Glossary. This expression uses a special qualifier “of” and OpenRules
can automatically recognize that you refer to the “State” of the “Customer’s Location”.
So, you may remove the proper variable from the Glossary. Similarly, you may write

{{City of Customer's Location}}.

65 ©

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

OpenRules, Inc.

OpenRules® Getting Started

The corresponding test data may be defined in the following table:

DecisionData Customer customers

Marital City of Customer's | State of Customer’s | Current
Name Gender . .
Status Location Location Hour
Robinson Female Married Edison MJ 20
Green Male Single Frederick WD 11
Kaye Female Single Los Angeles CA 14

Instead of the qualifier "of" you may use a special divider "::". For instance, in the above
table you may write {{Customer's Location:: State}} instead of {{State of Customer's

Location}}.

When your glossary includes multiple nested objects, the qualifier "of" and divider "::"
may be used multiple times inside the expressions. For instance, the standard sample
“DepartmentsEmployeesLocations” deals with the concept Department which includes
decision variable Manager of the type Employee. So, you to refer to his/her salary inside
a decision table, you may simply write "Salary of Manager of Department" or

"Department :: Manager :: Salary".

Functions for Collections of Objects

OpenRules supports various functions for collections of objects that allow you to avoid
using iteration loops for the calculation of typical collection characteristics. A typical

sample project “AnalyzeEmployees” is included in the standard installation. It has the

following glossary:

66 ©

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

v glossary

Variable Name E‘;ﬁ:gﬁeﬁ Attribute Type
Company Name companyMName String
Employees Company |employees Employee[]
Selected Zip Codes selectedZipCodes String[]
Name name String
Age age int
Gender gender String
Marital Status Employee |maritalStatus String
Locations locations Location(]
Number of Children children int
Salary salary double
Location Id id String
Street Location street String
Zip Code zipCode String
State state String
Total Number of Employees totalNumberOfEmployees int
Total Number of Children totalNumberOfChildren int
Average Number of Children per Employee] averageMumberQfChildren double
Average Salary averageSalary double
Max Salary maxSalary double
Min Salary minSalary double
Total Salary totalSalary double
High Salary Results |highSalary double
Employee Salaries employeeSalaries double(]
First Employee firstEmployee Employee
Last Employee lastEmployee Employee
Number of High-Paid Employees numberOfHighPaidEmployees int
High-Paid Employees highPaidEmployees Employee(]
Number of Single Employees numberOfSingleEmployees int
Employees at Selected Zip Codes employeesAtSelectedZipCodes String[]
Distinct Employee States distinctStatesOfEmployees List=String>

The “blue” decision variables represent input information. As you can see, the concept
“Company” contains an array “Employees”. The concept “Employee” besides various
characteristics of one employee (Name, Age, Gender, Salary, Number of Children)

includes an array “Locations” as an employee may live in multiple locations.

The “red” decision variables represent the output of this decision model which should
calculate their values. Of course, it could be done using decision tables for “for-each”

loops (see below). However, it is much simpler to do it using the following decision table

“ApplyFunctions”:

67©

OpenRules, Inc. OpenRules® Getting Started

Decision ApplyFunctions

ActionAssign

Variable Value
Total Number of Employees Count of Employees
Total Number of Children Sum of Number of Children of Employees
Average Number of Children per Employee |Tatal Number of Children / Total Mumber of Employees
Average Salary Average of Salary of Employees
Max Salary Max of Salary of Employees
Min Salary Min of Salary of Employees
High Salary Max Salary * 0.8
Employee Salaries Array of Salary of Employees
Distinct Employee States DistinctlList of State of Locations of Employees
Total Salary Sum of Salary of Employees
First Employee First of Employees
Last Employee Last of Employees

As you may guess, the expression
Count of Employees
returns the total number of employees inside the collection “Employees”. The
expressions
Max of Salary of Employees
Average of Salary of Employees
returns the maximum and average salaries among all employees.
The expression
Sum of Number of Children of Employees
calculates the total number of children for all employees.
The expression First of Employees returns the first employee in the array Employees,

and Salary of First of Employees returns his/her salary.

The expression
Array of Salary of Employees
returns an array of all salaries for all employees (the array’s type is defined in the
glossary as double[]).
As an employee may have residences in different locations in different states, we may
construct a list of all states (without duplications) where employees have residencies:
DistinctList of State of Locations of Employees

And we don’t need to use nested loops.

68 ©

OpenRules, Inc. OpenRules® Getting Started

The first words inside these expressions are called functions and currently OpenRules
supports the following functions on collections:
Count, Sum, Max, Min, Average, Array, List, Set,
DistinctArray, DistinctList, First, and Last.

You may use combinations of such functions as in these examples:
Average of Array of Salary of Employees
Count of DistinctList of State of Locations of Employees.

It is convenient to use these functions inside the “ActionAssign” as in the above

decision table.

Java Snippets
You may use so-called “Java Snippets” inside decision table cells. They should start with
a sign “:=” like in this example:

DecisionTable DefineHelloStatement

Conclusion
Hello Statement

s = 3{Greeting} + ", " + ${Salutation} + " " + H{Name} + "I"

Similarly, the expression that calculates “Patient Creatinine Clearance” could be written

using the following Java snippet:

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance

= {140 - §{Patient Age]}) * H{Patient Weight} / (3{Fatient Creatinine Level} * 72}

In these examples, the ${Greeting} or ${Patient Age} refer to the value of the decision

variable “Greeting” and “Patient Age”.

Java snippets allow users familiar with the basics of Java to write any arithmetic and
logical formulas using valid Java expressions placed directly in the decision table cells

but preceding by a sign “:=”. However, Java snippets are less friendly compared with

69 ©

OpenRules, Inc. OpenRules® Getting Started

simple expressions and business people may ignore this section.

To make Java snippets more readable to business users, OpenRules allows you to refer
to the values of decision variables as ${variable name}. For instance, ${Amount}
returns the value of the decision variable “Amount” with the type specified in the
glossary (e.g., int or double). ${DOB} will return the actual date of birth. You also may
refer to the entire business concept as ${business concept}. For instance, you may

refer to the attribute “age” of the employee as ${Employee}.getAge().

It's possible to hide a Java snippet inside a special table of the type “Method”, e.g.:

Method double CreatinineClearanceFormula(Decision decision)

double pcc = (140 - 5{Patient Age}) * ${Patient Weight} / (${Fatient Creatinine Level} * 72);
return decimal{pcc,2);

Then we may call this method from this decision table:

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance

:= CreatinineClearanceFormula(decision);

Inside Java snippets you may use regular operators "+", "-", "*" "/" "%" and any other
valid Java operators. You may freely use parentheses to define the desired execution
order. You also may use any standard or 3rd party Java methods and functions, e.g.

:= Math.min(${Line A}, ${Line B})
If you want to use the value of a decision variable such as “Customer Location” inside a
decision table cell, you may simply write "Customer Location" in this cell (with or

without quotes). You even may simply write $Customer Location.

While being more technical, Java snippets remove any limits from the expressive power
of OpenRules. They allow using complex Java constructs like loops, functions, recursion,

etc. They allow using any Java libraries created by your programmers or by 34 parties.

Dealing with Dates

Here are examples of columns that assign dates:

70©

OpenRules, Inc. OpenRules® Getting Started

Action Conclusion
Scheduled Date Selected Date
10/15/2020 = [Current Date

When you need to apply arithmetic operations with date variables such as calculating
the number of years, months, or days between dates, you still need to use OpenRules
Java snippets. For these purposes, you may use static methods of the class "Dates"
included in the standard OpenRules library "com.openrule.tools". For example, you may

use the following Java snippet inside a condition cell of your decision table:
:= Dates.years($D{Datel}, $D{Date2}) >= 2

It checks that a number of years passed between the variables "Datel" and "Date2" is at

least 2 years. You may calculate the age of the person from its birthday as follows:

DecisionTable DefineAge

Action
Age
-:= Dates.yearsToday($D{Date of Birth})

Similarly use the following methods:
Dates.months(Date d1, Date2 d2)
Dates.monthsToday(Date date)
Dates.days(Date d1, Date d2)
Dates.daysToday(Date d).

The standard library "com.openrule.tools" also includes methods that produce new
dates:

addHours(date, hours)
addDays(date,days)
addMonths(date,months)
addYears(date,years)
setYear(date,year)
setMonth(date,month)
setDay(date,day)

today()
newDate(year,month,day)
newDate("yyyy-mm-dd")

710

OpenRules, Inc. OpenRules® Getting Started

You also may get integer values of year, month, and day by calling Dates methods

getYear(date), getMonth(date), and getDay(date).

All these methods can be used for dates arithmetic like in this example:

Decision DefineDates

ActionAssign
Variable Value
Age = Dates.yearsToday(5{Date of Birth})
Date of Birth plus 6 Years = Dates._addY'ears(3{Date of Birth}.6)
Today = Dates.today()

You just need to remember to add an "import.java" statement that points to

"com.openrules.tools.Dates" to your Environment table.

GLOSSARY

You've already seen many examples of the “Glossary” table that is in the heart of any

decision model.

Standard Glossary
Usually the table “Glossary” contains 4 columns:
e Decision Variable
e Business Concept
e Attribute

e Type.

Here is a typical table of the type Glossary from the sample project “PatientTherapy”:

72 ©

https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/

OpenRules, Inc. OpenRules® Getting Started

Glossary glossary

Decision Variable Business Attribute Type
Concept

Encounter Diagnosis encounterDiagnosis String
Hecommended Medication recommendedMedication|String
Hecommended Dose DoctorVisit recommendedDose String
Drug Interaction Warning warning String
Patient Therapy patientTherapy String
Fatient Name name String
Patient Age age int
Patient Weight weight double
Patient Allergies Patient |allergies String[]
Patient Creatinine Level creatinineLevel double
Patient Creatinine Clearance creatinineClearance double
Patient Active Medication activeMedication String

Column “Decision Variable”
This column should be always the first one as it defines the names of all decision

variables exactly as they are used inside the decision tables. The names of decision
variables should start with a letter or underscore and can contain only letters, digits,

spaces, underscores, hyphens, and apostrophes (no other special characters allowed).

It is recommended to associate with the decision variables that represent goals/sub-goal

hyperlinks to the decision tables that specify their logic.

Column “Business Concept”

This column should be defined as the second one — it associates different decision
variables with the business concepts to which they belong. Usually, you want to keep
decision variables that belong to the same business concept together and merge all rows

in the column “Business Concept” that share the same concept.

Column “Attribute”

This column should be defined as the third one — it defines the technical names of
decision variable that used for the integration of the decision model with input/output
objects. The names of the attributes cannot contain spaces and usually follow the
“Camel” naming convention for Java and JSON attributes. Usually business people

should coordinate this column with their IT counterparts.

730©

https://en.wikipedia.org/wiki/Camel_case

OpenRules, Inc. OpenRules® Getting Started

Column “Type”

This column specifies the types of the decision variables. The typical types are:
e Integer or int - for integer numbers
e Double or double — for real numbers (or Float/float)
e String — for text variables
e Date — for dates

e Boolean or boolean — for logical variables with values TRUE (Yes) or
FALSE (No).

You may add [] after the type, e.g. String[] to say that this is an array of strings.
While it’s not important for business users to even know this, but these types are
valid Java types. Actually, any Java types can be used in the column “Type”.

The column “Type” may even use the names of Business Concepts specified in
this or other decision model glossaries or defined in 34 party Java classes.

Optional Glossary Columns

Your Glossary may contain various optional columns after the column “Type” — their

order is not important.

Column “Description”

The optional column “Description” provides a plain English description of the decision

variable. It’s always a good practice to have the column “Description” in your glossary.

Column “Used As”

This optional column “Used As” allows you to set certain restrictions on how the
decision variables are used by the decision model. If your glossary doesn’t include this
column, then all (!) decision variables (except those defined in the Glossary’s formulas)

will be included in the decision model output (response).

This column may restrict decision variable using the following properties or their

combinations:

74 ©

OpenRules, Inc. OpenRules® Getting Started

*= in — defines a variable as the decision model’s input
* required — states that the input variable must have a value
* out — defines the variable as the decision model’s output

= const — defines the variable as a constant.

These properties can be listed in the column “Used As” separated by commas. Below is

the description of the most useful combinations of these properties.

The property “required” triggers the validation of the decision variable. If the
corresponding variable is undefined, OpenRules will produce an error at the execution
time. A variable is considered undefined in the following situations:

e If the variable is defined using standard types such as String, Integer,
Double, Boolean, etc. or custom business concepts defined in the glossary or
Java, then it is undefined when its value is nul!

e If a numeric decision variable is defined using Java primitive types such
as int, long, double, or boolean then it is undefined if its value is zero. In this
cases the attribute “required” is ignored for undefined variables.

You may specify the default value for the potentially undefined variable in the column

“Default Value” (see below).

The property “out” tells OpenRules that this variable will be calculated within the
decision model and should be included in the generated output such as the outgoing

JSON structure.

If the cell of the column “Used As” is empty (no properties are defined), then the
corresponding decision variable will be treated as a temporary variable that will not be

included in the generated output.

The column “Used As” may be effectively used for security and performance
improvement reasons. Only decision variables that are marked as out will be included

in the output of the secure decision service and sent over the network back to the client.

Column “Default Value”

75 ©

OpenRules, Inc. OpenRules® Getting Started

The column “Default Value” defines the default values of the decision variables which

are required as an input but come to the decision model undefined (null). For example,

in the following glossary

Variable Name E:;::::: Attribute Type [:f::::t Used As
Id id Siring In required,out
Vacation Days vacationDays Integer out
|Eligible for Extra 5 Days eligibleForExtra5Days Boolean out
Eligible for Extra 3 Days |Employee |eligibleForExtra3Days Boolean out
|Eligible for Extra 2 Days eligibleForExtra2Days Boolean out
Date of Birth dateOfBirth Date in,required
Start Date of Service startDate Date |1/1/2017| in required,out
MaxAge - maxAge Integer 120 const
MinAge Settings minAge Integer 16 const
Age in Years __ Dates yearsToday($D{Date of Birth}) Integer const
Years of Service B Dates yearsToday($D{Start Date of Service}) | Integer

decision variable “Start Date of Service” has type Date and is a required input variable.

If its actual input value is null, then the date 1/1/2017 will be used.

The constants MaxAge and MinAge are specified as 120 and 16 and can be used in
decision tables as regular decision variables instead of hard-coded numbers.
In this glossary, these constants are not marked as out. Therefore, they both (and as a

result, the entire concept “Settings”) will not be included in the outgoing JSON.

Formulas inside Glossary

Some decision variables can be calculated inside decision models using Glossary’s
formulas instead of attributes. For example, in the above glossary, two last rows have a
special indicator “:=” in the column “Business Concept”. It means the values for the
proper two decision variables “Age in Years” and “Years of Service” will be calculated by

using formulas (Java snippets) specified in the 34 column:

Age in Years Dates. yearsToday(${Date of Birth}) Integer
Years of Service ' Dates yearsToday(${Start Date of Service}| Integer

These variables will be automatically calculated as the number of years from today until
“Date of Birth” and “Start Date of Service” correspondingly.
By default, the values of decision variables defined by formulas are being recalculated

whenever these variables are used inside the decision service. However, you can notice

76 ©

OpenRules, Inc. OpenRules® Getting Started
that the above glossary specifies “Age in Years” as const in the column “Used As”. It
directs OpenRules to calculate the value of the variable “Age in Years” only once at its
first read and will never recalculate it again. Sometimes it could save recalculation time
and improve the overall performance.

Note. If a decision variable is defined in the Glossary using a formula, it should not be

used in DecisionTest tables. It also will not be included in the JSON response.

Context-Specific Columns “Used As”

Sometimes you want to treat the same decision variables differently in different
contexts. Let’s assume that when the above service is invoked from “Premise” we want
its response to show all involved decision variables. However, when it is invoked from
“Cloud” we want the response to include only Employee’s Id and the calculated vacation
days and omit all other variables. It can be important for performance and/or security
reasons.

To satisfy such requirements, we may introduce two different “Used As” columns, one
for “Premise” and another for “Cloud”. We also may add a special decision variable
“Invocation Source” with possible values “Premise” or “Cloud”. Here is the properly

adjusted glossary:

Glossary glossary

Business Default | Used As for Used As for

R — Concept e — TYP® | Value | Promise Cloud
Id id String in,required,out | in,required,out
Vacation Days vacationDays Integer out out
|Eligible for Extra 5 Days eligibleForExtra5Days Boolean out
|Eligible for Extra 3 Days Employee |eligibleForExtra3Days Boolean out
Eligible for Extra 2 Days eligibleForExtra2Days Boolean out
Date of Birth dateOfBirth Date in,required in,required
Start Date of Service startDate Date |1/1/2017| in,required,out in,required
MaxAge maxAge Integer 120 const const
MinAge Settings [minAge Integer 16 const const
Invocation Source invocationSource String | Premise in,out in
Age in Years o Dates.yearsToday($D{Date of Birth}) Integer const const
Years of Service " Dates yearsToday($D{Start Date of Service}) | Integer

You can see, a new decision variable “Invocation Source” belongs to the business
concept “Settings” with the default value “Premise”. The column “Used As” has been
replaced by two columns: “Used As for Premise” and "Used As for Cloud”. To direct
OpenRules which UsedAs-column to choose, you can use the following decision table

with the predefined name “UsedAsSelector”:

77©

https://openrules.files.wordpress.com/2021/08/glossary10.png

OpenRules, Inc. OpenRules® Getting Started

DecisionTable UsedAsSelector

If ActionUsedAs
Invocation Used As List
Source
Cloud Used As for Cloud

Used As for Premise

Now, OpenRules will dynamically decide which UsedAs-column to use based on the
value of the decision variable “Invocation Source”. It will select “Used As for Cloud” if
Invocation Source is Cloud and “Used As for Premise” in all other cases.

In this decision table you can use any decision variable instead on “Invocation Source”
(or even combinations of decision variables) and use any UsedAs-list specified in the
glossary. Only the name of the decision table “UsedAsSelector” is predefined.

The standard workspace “OpenRulesSamples” includes the decision project

“VacationDaysWithAdvancedUsedAs” that demonstrates the use of multiple
UsedAs-lists.
Column “JSON Name”

The optional column “JSON Name” describes custom names that can be used in JSON

tests instead of attribute names. For example, the glossary

Glossary glossary

Variable Name %::"';; Attribute JSON Name Type

Id id String

i vacationDays jours de vacances int
Eligible for Extra & Days eligibleForExtrasDays boolean
Eligible for Exira 3 Days | Employee |eligibleForExtra3Days boolean
Eligible for Extra 2 Days eligibleForExtraZDays boolean
Age in Years age dge en années int
Years of Senice Senice années de semice int

allows you to use the following JSON:

78 ©

https://openrules.files.wordpress.com/2021/08/glossary12.png
https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc.

Column “Business Concept JSON Name”

OpenRules® Getting Started

The optional column “Business Concept JSON Name” describes custom names that

can be used in JSON tests instead of the names of business concepts. For example, the

sample project "VacationDaysdson" included in the standard installation, uses the

following glossary:

Glossary glossary

Business Business Used
Variable Name Concept Attribute Concept JSON Name Type As
JSON Name
Id id String | in,out
Age in Years age dge en années int in
Years of Service senvice années de senice int in
Vacation Days Employee |vacationDays I"employée |jours de vacances int out
Eligible for Extra 5 Days extrabDays boolean | tmp
Eligible for Extra 3 Days extraiDays boolean | tmp
Eligible for Extra 2 Days extraZDays boolean | tmp
Mom de . .
Company Name companyName . . Fentreprise String | in,out
Company I entreprise
. . . . Jours de vacances .
Minimum Vacation Days minimumDays - Integer | in,out
minimum

It specifies two business concepts "Employee" and "Company" and their JSON

names in French are defined as "lI' employée" and "l' entreprise" in the column

"Business Concept JSON Name". French names for their attributes are defined in

the column "JSON Name".

You can deploy this decision model as a REST service using "runLocalServer.bat".

Then if you test it with POSTMAN, you will get the following results:

79©

OpenRules, Inc.

OpenRules® Getting Started

POST v http://localhost:8080/vacation-days-model ‘ m
Params Auth Headers (10) Body ® Scripts Tests Settings Cookies
raw v JSON Beautify
1 4
2 ‘1" employése" @ 1
3 "id" + "A",
F. | "jours de wvacances" : @,
g5 "Zgs en années” ; 44,
& "années de service” i 2B L
7 I
g ‘1" entreprise”: {1
= “Mom de 1l'entreprise”: "XYEZ",
1@ "Jours de vacances minimum®: 22
11 :
12 1
Body 20006 - 483ms - 403B @ [EE o
Pretty Raw Preview Visualize JSON ~ = « g Q
1 4
2 "decisionStatusCode”: 2088,
3 "rulesExecutionTimeMs": 8.3155,
F. | "responze”: 3
g5 ‘1" entreprise”: {
& ‘Wom de 1 entreprise”: "X¥ZI",
7 ‘Jours de vacances minimum™: 22
B ir
= ‘1" emplovée": I
18 id"r A,
11 'Sge en annses": 48,
12 ‘annéssz de service": 25,
13 'jours de wvacances": 24
14 [
15 1
16 1

Instead of French, you may use any other language or English names with spaces

and other special characters not allowed in the column "Attribute".

Column “Domain”

The optional column “Domain” describes acceptable values (domain) of the decision

80©

OpenRules, Inc. OpenRules® Getting Started

variable. Only Rule Solver actually uses this column while in other products it is just for

information.

Multiple Glossaries

Usually, a business model has one glossary. But if it’s too big, you may split it into
several tables of the type “Glossary”. For example, the sample project
“InsurancePremium” contains 3 files “GlossaryClient.xlsx”, “GlossaryDriver.xlsx”, and
“GlossaryCar.xlsx” with separate Glossary tables for glossaryClient, glossaryDriver, and

glossaryCar.

B1G DECISION TABLES

When decision models use really big decision tables with tens and even hundreds of
thousands of rules, the performance of the regular decision engine may go down. It
becomes unacceptable especially when such tables need to be executed a million times a
day. In many practical cases such large decision tables were simply moved from a
database or from large CSV files to rules. Why do people do it? Because, after
appreciating the simplicity and power of decision tables, they prefer to treat every row in

their DB tables as a rule, so they can easily understand, change, and add more rules.

Using Tables “BigDecision” and “BigDecisionTable”

To handle big decision tables, OpenRules offers special types of decision tables
“BigDecision” and “BigDecisionTable”. They look like regular decision tables but
instead of the keyword “Decision” or “DecisionTable” they use “BigDecision” or
“BigDecisionTable”. However, they are being evaluated using a completely different

execution mechanism that is based on a self-balancing binary search algorithm adjusted

to the logic of decision tables. And this mechanism improves the performance of big

decision tables 10 or sometimes 100 times!

Let’s consider an example of a big decision table included in the standard installation as

the “OpenRulesSamples/MedicalServiceCoverage” decision project:

810

https://rulesolver.com/
http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

il BigDecizionTable DetermineMedicalServiceCoverage

2 1 " 1 I I I I Then Then | Then
Place Of Service Type Prodect Group is Dateof | Dateol | Covered Copay Coinsu

3 Service Size | MNetwork|Covered | Service | Service In Full rance
4 = = = = E] = = €= = = =

5 inpatient dentalaccidental PRODUCT123 L L /3015 |12/31/2023 L] Copay XX 2]

G Quipatient dentalAccidental PRODUCTL2S L ¥ ¥ 1/1/0015 |13/31/3023 L Copay XX M
T Office gentalAccidental PRODUCT123 L Y ¥ /1/2015 |12/31/2023 N Copay XX N

B Inpatient dentslAccidentsl PRODUCT123 L M ¥ 1/1/2015 |12/31/2023 L] N il

9 QOutpatient dentalAccidental PRODUCT123 L M L rL/2015 |12/31/2023 L] M ¥
10 Office dentalAccidental PRODUCTLZ3 L N ¥ 1/1/3015 |12/31/2023 L) N i)
11 Inpatient Acupuncture PRODUCT123 L Y M 1/1/2015 |12/31/2023 L M M
12 O#fice BEupuncture PRODUCT123 L Y L] 1/1/2015 |12/31/302% L] N N
13 Dutpatient acupuncture PFRODUCT123 L ¥ N 1/2015 |12/31/2023 L N M
14 Inpatient atupuncture PRODUCTL3 L M N LIAL/P0L5 | 12/31/2023 L N M
15 O¥fice adultimmunizations | PRODUCT12E L] M 171/2015 |12/31,/2028 L] M]
16 Quipatient adultimmunizations | PRODUCT12S L L] L] 1/1/0015 |12/31/0023 L Ll N
AU Fa UAdLELIETIL U IS ST U T Y FRALAI L L T " A LJEFLD | LLfILFENLD " L L
16372 Office transgendersurpery PRODOOL 2 L)] 17172008 J12/8072028]]]
16373 npatient transpenderSurgerny PRODOL2 N N L/1/2005 |12/31/2023 N N N
16374 Outpatient PRODOSS N N 17172015 |12/31/2023 N N N
16375 Office PRODGEE N] 1712015 |12/31/72023] M]
16376 MOT_FOUNCE NOT_FOUND NOT FOUND

The actual table contains more than 16K rows (rules) and is located in the Excel file
“Rules.xlsx” which occupies almost 3 MB. So, it is quite a big table. However, if you
deploy and execute this table for different test cases, it will constantly show a great

performance under 1 millisecond!

Please note there is an optional 4th row that for regular decision tables may contain any
operator common for all rows in the proper columns. If this row is omitted, all operators

GK_”»

are assumed to be “=".

Condition columns of the 4th row may contain only comparison operators “=", “>”, “<”,

“>=" “<=". Action columns of the 4th row may operators “=”, +, +=, -, -=, * *=/ /=,

b

Cells may contain constants, single decision variables defined in the glossary, or strings

with interpolations like {{Greeting}}, {{Name}}.

You always may change the keyword “BigDecisionTable” to “DecisionTable” and it will

continue to work (but probably slower).

The above BigDecisionTable is an example of a single-hit decision table. If you change

82 ©

OpenRules, Inc. OpenRules® Getting Started

the above “BigDecisionTable” to “BigDecision”, it will find and execute several rules that
satisfy your test criteria, and the latest satisfied rule will override previous rules. For
multi-hit big decision tables, it can be useful to use increment/decrement operators “+”

“»

or in the 4th row of the Action columns. For instance, in large scorecards, you may
execute only a limited number of satisfying rules to accumulate a score in the Action

column.

Thus, BigDecision/BigDecisionTable could be a good choice when your decision table
contains thousands or even tens of thousands of rows. However, when it contains
hundreds of thousands of rows, even Excel itself becomes much slower to search and
requires much more time and memory to be downloaded in OpenRules. In this case, we
recommend our customers to switch from the Excel to external files in CSV or fixed-

width formats.

Using Decision Tables with CSV Files

It 1s easy for customers to save their Excel tables in CSV (Comma Separated Values)
format using text files with the extension “.csv”. Then, instead of adding the rows from
such CSV files directly into Excel-based BigDecisionTable, a customer may simply
indicate where those rows are coming from. For example, the above decision table can be

presented as follows:

DecisionTable DetermineMedicalServiceCoverage [MedicalCoverage.csv]

Condition | Condition | Condition | Condition [Condition | Condition | Condition | Condition| Action Action Action
Place Of | Service Group In Date Of | Date Of |Coveredin .
) Plan . Is Covered)) Copay |Coinsurance
Service Type Size MNetwork Service | Service Full
= = = = = = B <= = = =

Date Of | Date Of
Service Service
Min Max

As you can see, now the first (signature) row contains a reference to the CSV file

“MedicalCoverage.csv” where all “rules” are coming from:

DecisionTable DetermineMedicalServiceCoverage [MedicalCoverage.csv]

83©

https://datatracker.ietf.org/doc/html/rfc4180
http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls

OpenRules, Inc. OpenRules® Getting Started

This way you keep only business logic in an Excel-based decision table plus a reference
to a CSV file with rules that become your data. For example, this table specifies that the
“Date Of Service” should be between “Date Of Service Min” and “Date Of Service Max”.
However, all rows inside the CSV file represent not rules but rather their thresholds

(data!).

In the above table the CSV file is assumed to be in the same folder where the xls-file
with the above table is located. However, you can use any valid URL path, e.g.
[/data/MedicalCoverage.csv] would tell OpenRules that this CSV file is in the sub-
folder “data” of the folder that contains the file “RulesWithCSV .xlsx”.

The CSV file itself looks as below:

Place:0f-Service, Service -Type, Plan, Group: Size, In-Network, Is:-Covered, Date . Of - Service -Min,Date -0Of - Service -Max, Covered-in:Full, Copay, Coinsurance
Inpatient,dentalhccidental, PL123,L,Y,Y,1/1/2015,12/31/2023,H, Copay - Minimal , N
Cutpatient,dentallccidental,PL123,L,¥,¥,1/1/2015,12/31/2023,N,Copay-Minimal ,N

Office,dentalfhccidental, PL123,L,Y,Y,1/1/2015,12/31/2023,H, Copay ‘Minimal , N

Inpatient,dentalkccidental, PL123,L,N,¥,1/1/2015,12/31/2023, N, N, ¥
Cutpatient,dentaldccidental,PL123,L,N,¥,1/1/2015,12/31/2023,4,N,Y

Office,dentalAccidental, PL123,L,N,Y,1/1/2015,12/31/2023,N,N,Y

Inpatient,acupuncture, PL123,L,Y,N,1/1/2015,12/31/2023,N, N, N
Cffice,acupuncture,PL123,L,Y,N,1/1/2015,12/31/2023,N, N, N

Cutpatient, acupuncture, PL123,L,Y,N,1/1/2015,12/31/2023,8, N, N

Inpatient,acupuncture, PL123,L,N,N,1/1/2015,12/31/2023,N, N, N
Office,adultImmunizations,PL123,L,N,N,1/1/2015,12/31/2023,N,N,N
Outpatient,adultImmunizations,PL123,L,N,N,1/1/2015,12/31/2023,N,N, N
Inpatient,adultImmunizations,PL123,L,Y,Y,1/1/2015,12/31/2023,N,Copay -Minimal N

Cmcpatient, adultImmunizacions, PL123,L,Y,Y,1/1/2015,12/31/2023,H, Copay -Minimal, N
Office,adultImmunizations,PL123,L,Y,¥,1/1/2015,12/31/2023,N,Copay-Minimal ,N
Inpatient,adultImmunizations,PL123,L,N,Y,1/1/2015,12/31/2023,H,8,Y

Cutpatient,adultPhysicalRoutine, PL123,L,N,Y,1/1/2015,12/31/2023,N,H,Y

Office,adultPhysicalRoutine, PL123,L,N,¥,1/1/2015,12/31/2023,N,N,¥

Inpatient,adulcPhysicalRoutine, PL123,L,Y,,1/1/2015,12/31/2023, Ineligible POS, Ineligible P05, Ineligible POS
Cutpatient,adultPhysicalRoutine, PL123,L,Y,Y,1/1/2015,12/31/2023,N,Copay -Minimal , N
Office,adultPhysicalRoutine, PL123,L,Y,Y,1/1/2015,12/31/2023,N,N, N

Inpatient,adultPhysicalRoutine, PL123,L,N,,1/1/2015,12/31/2023,Ineligible POS, Incligible P05, Ineligible POS
Cutpatient,allergyInjection,PL123,L,N,¥,1/1/2015,12/31/2023,N,N,Y

Office.alleravTndentinm . PLIZ23 . TL.N. Y. 1 /1/2015.12/31 /2023 . N.N. Y

The first row of this CSV file contains a list of all column names separated by commas:
Place Of Service,Service Type,Plan,Group Size,In Network,Is Covered,Date Of Service

Min,Date Of Service Max,Covered in Full,Copay,Coinsurance

Another good example of using a big decision table with large CSV files can be found in

the standard installation project “OpenRulesSamples/ICD10”. It uses this big decision

table

84 ©

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

BigDecisionTable SearchCSV [ICD10Codes.csv]

Condition Condition Action
Diagnosisl Diagnosis2 Errors
= = 4=
Column 1 Column 2 {{Diagnosisl}} cannot be reported together with
Column 2 Column 1 1iDiagnosis2}}

to find incompatible pairs of diagnoses defined in the CSV-file “ICDCodes.csv” that

contains ~70,000 pairs such as:

Column -1, Column - 2
B4g8.5,A05.1
K75.0,A06.4
K75.0,KB3.0%8
E75.0,E75.1
GOT7,L0E6.6
GO07,B43.
07,054,
G07,817.
G07,817.

BICT AAE

%]

e s R
=

Note that Diagnosisl and Diagnosis2 are decision variables described in the Glossary

while Column 1 and Column 2 are titles of the two columns described only in the first

row of the CSV file “ICDCodes.csv”.

You may use the following table of the type BigDecision to find finds out if the decision
variable “Diagnosis Code” is “Found in Column 1” and accumulates all matching codes
from the Column 2 in the decision variable “Matches in Column 2” which is defined in

the glossary as an array of strings:

BigDecision AnalyzeCodesinFile [ICD10Codes.cav]

Condition Condition Action Action Action Action
Diagnosis Code | Diagnosis Code | Foeundin Column 1 | Matches in Column 2 | Found in Column 2 | Matches in Column 1
= = = &= = +=

Column 1 TRLUE Column 2
Column 2 TRUE Column 1

Note that here the action column “Found in Column 2” contains value “TRUE” in the cell

of the second row (value “FALSE” is also allowed).

The following table demonstrates how to determine a Row Number inside the CSV file in

which the decision table condition is satisfied for the very first time:

85 ©

OpenRules, Inc. OpenRules® Getting Started

BigDecisionTable FindCodelnColumn2 [ICD10Codes.csv]

Condition Action Action
Diagnosis Code | Found in Column 2 Row Number
Column 2 TRUE #

Here we use ‘#” to specify the found row number assuming the row numeration starts
with 1. If this table cannot find the proper value in Column 2 of the CSV file, the Row

Number will be 0 (meaning not found).

Keeping your rules (data) in external CSV files works exactly like it would work if these
“rules” were located inside the Excel decision table. However, it is not only convenient
for a user from the maintenance perspective, but brings two huge advantages:
e Performance: OpenRules handles large tables with data coming from
CSV files almost in no time
e Memory: your decision model does not require a lot of memory

anymore!

You can use CSV files in the described way for both types of OpenRules decision tables:

regular decision tables and Big Tables.

Using Decision Tables with Fixed-Width Files

Instead of a CSV file, your rules (data) may come a fixed-width text file such as below:

20080601 EMw 0001 1995% Jones 45, 500
20050601 Enw 0002 2003 Chau 75,200
20060102 Lexus 0003 2006 smith 25,365
20070930 Mazda 0004 2007 Mukherjee 35,000
20090909 Toyota 0005 2009 Barker 400

Data in a fixed-width text file is arranged in rows and columns, with one entry per row.
Each column has a fixed width, specified in characters, which determines the maximum
amount of data it can contain. No delimiters are used to separate the fields in the file.
Instead, smaller quantities of data are padded with spaces to fill the allotted space, such
that the start of a given column can always be specified as an offset from the beginning

of a line.

86 ©

http://openrules.com/my/HugeTable/Rules.xls
http://openrules.com/my/HugeTable/Rules.xls

OpenRules, Inc.

OpenRules® Getting Started

Let’s take the previous example but instead of the CSV file use the corresponding fixed-

width file:

CSV File “ICD10Codes.csv”

Fixed-width File “ICD10Codes.txt”

148.5,R05.1
K75.0,0h06.4
K75.0,K83.09
¥K75.0,K75.1
GO7,R06.6
GO7,B43.
GO7,R54.
GO7,R17.
GO7,A17.

BICT AAE

38

e R s R
=

Column -1, Column - 2

Column - 1, Column ﬂ
6,6

A43.5-RA05.1
K75.0-A0c.4
K75.0-K83.09
K75.0-E75.1

=07 Ale.&
=07 B43.1
=07 ALS4.82
=07 Al7.81
=07 A1T7.1
ME1 ANR_R

As you can see, we added two lines at the beginning of the fixed-width file:

1) First line with column names (exactly as for the CSV file)

2) Second line with column widths listed through commas.

It is important that each column has enough characters as defined by the column’s

width. If the actual width is smaller than the required width, you need to add the

corresponding number of spaces (including in the last column).

To tell OpenRules that you want to use file “ICD10Codes.txt” instead of file

“ICD10Codes.csv”, you may simply make the proper change in your decision table:

BigDecisionTable SearchCSV [ICD10Codes. bxt]

Condition Condition Action
Diagnosisl Diagnosis2 Errors
= = 1=
Column 1 Colummn 2 {{Diagnosisl}} cannot be reported together with
Column 2 Column 1 {{Diagnosis2}}

OpenRules will use the file extension “.txt” to figure out that the file in square brackets

is a fixed-width file. You may download and run sample “ICD10WithFixedWidth” from

the standard installation “OpenRulesSamples”.

87©

https://openrulesdecisionmanager.com/building-decision-services/install-samples/

OpenRules, Inc. OpenRules® Getting Started

Using Decision Tables with Databases

Instead of keeping your data in Excel, in a CSV file, or in a fixed-width file, OpenRules
allows you to get your data directly from a relational database. These capabilities are
provided by OpenRules “RuleDB” product by empowering Excel-based business rules

with run-time RDBMS communication mechanisms.

Let’s consider an example of how it works by migrating an SQL query to OpenRules.

Consider this SQL query defined on the classic MySQL Sample Database:

SELECT c.customerNumber,c.customerilame,o.status,p.amount
FROM customers C
LEFT JOIN orders o
OM c.customerNumber=o0.customerNumber
LEFT JOIN payments p
ON c.customer
WHERE
o.status is not NULL AND p.amount is not NULL AND
p.amount > 380888 AND o.status = "In Process’;

[
f

LS

f

!

[
m
[

DataSaL SelectedOrders

Relation Table Alias ON WHERE
FROM customers c

LEFT JOIN orders o |c.customerNumber=o.customerNumber | o.status is not MULL

LEFT JOIN payments p |c.customerNumber=p.customerMumber | p.amount is not NULL

We moved only the technical part of the query that usually resides in FROM and JOIN
statements. However, the WHERE part of the query also contained the technical (not
business) information such as

o.status is not MULL AND p.amount is mot NULL

that we added to the WHERE-column of our table “SelectedOrders”.
The business part of the query

p.amount > 58688 AND o.status = 'In Process'

does not depend on the way we select the records and can be migrated to the regular

decision table:

88 ©

http://ruledb.com/
https://www.mysqltutorial.org/mysql-sample-database.aspx/

OpenRules, Inc. OpenRules® Getting Started

DecisionTable DefineTotals

Condition Condition Conclusion Conclusion

Total Number of

Payment Amount Order Status Selected Orders Total Amount

= 80000 Is In Process + 1 + | Payment Amount

These business rules should be applied to every order selected from the data source

“SelectedRecords”. It can be done by the iteration rules defined in this table:

DecisionTable DefineCustomerFinancials
Actionlterate

Data Source Rules
SelectedOrders DefineTotals

To glue everything together, as usual with OpenRules we need to specify the Glossary:

Variable Business Concept Attribute Type
Customer Number c.customerNumber String
Customer Name SelectedOrders c.customerName String
Order Status o0.status String
Payment Amount p.amount double
Total Number of Selected Orders Totals totalNumberOfSelectedOrders int
Total Amount totalAmount double

Note that here the business concept “SelectedOrders” is the same as defined above in the
DataSQL table and its attributes use exactly the same names as defined in the query’s
SELECT statement (with aliases ‘¢, ‘0’, and ‘p’).

Our decision model capable of talking to the Sample Database “classicmodels” is

completed.

DEALING WITH COLLECTIONS OF OBJECTS

Real-world decision models frequently use collections of business objects such as
employees of the company or charges inside a bill. OpenRules provides business-friendly
capabilities to deal with such collections including arrays and lists of objects. They allow
a user to define which decision tables to execute against a collection of objects and to

calculate values defined on the entire collection.

89 ©

OpenRules, Inc. OpenRules® Getting Started

Iteration over Collections of Objects

Standard sample projects "AggregatedValues" and "AggregatedValuesWithLists”
demonstrate how to iterate over collections of business objects. The business concept
Employee is defined in the Java class Employee with different customer attributes such
as name, age, gender, maritalStatus, salary, and wealthCategory. Another class
Department defined the business concept Department that include employees defined as

a collection of employees using an array Employee|[] or ArrayList<Employee>.

We want to process all employees in each department to calculate such Department’s
attributes as "minSalary", "totalSalary", “salaries”, “richEmployees”
“numberOfHighPaidEmployees”, and other attributes, which are specified for the entire

collection. Each employee within any department can be processed by the following

rules:
Decision Evaluate [for each Employee in Employees]
Condition Action Action Action Action Action Action Action Action
Total Max Min |Number of| Number Of : Wealth Rich
SE L Sala Sala Sala Employees L7 st e e Catego Employees
y y y ploy Employees egory ploy
+ | Salary |Max|Salary|Min |Salary| + 1 Add | Salary
==| 120000 + 1 Is [HighPaid | Add |Employee
< | 120000 Is | Regular

Pay attention that we use here a multi-hit table of the type “Decision”, so all satisfied
rules will be executed. The first one unconditionally calculates the Total Salary,
Maximal and Minimal Salaries, etc. The second rule defines Employee’s Wealth
Category, increases the Number of High-Paid Employees inside the department using
the accumulation operator "+", and adds this employee to the collection “Rich

Employees”.

The above decision table will be executed “for each Employee in Employees” as defined

in its signature row:

Decision Evaluate [for each Employee in Employees]

This iteration provides business users with an intuitive way to apply rules over

90 ©

OpenRules, Inc. OpenRules® Getting Started

collections of business objects (without the necessity to deal with programming loops).

When you need to iterate through arrays/lists of the basic types such as String][], int[],
double[], etc. instead of the business concepts you may use the corresponding decision
variables. For example, the standard project “ICD10” the object Claim has a decision

variable “Diagnoses” of the type String][]:

Glossary glossary

Variable Name ?:Ifr::eeﬁ Attribute Type Used As

Claim Id id String in
Diagnoses Claim diagnoses String(] in
Errors BITOrS String(] out
Found Intermediate found boolean

Already Selected Diagnoses alreadySelected String[]

Diagnosis diagnosis’ Strin

DiaSnusisE Temp diagnnaia.? String

In this project, we need to iterate through the array “Diagnoses” twice using the nested

loops defines as follows:

Decision lterateDiagnoses

[for each Diagnosis1 in Diagnoses; for each Diagnosis2 in Diagnoses]

Condition Condition Action ActionExecute
. . . . Already Selected
Diagnosisl Diagnosis2 ready Rules
Diagnoses

Is Mot | Already Selected

Add | Diagnosisi
One Of Diagnoses

Is Not | Already Selected
One Of Diagnoses

SearchCsV

BigDecisionTable SearchCSV [ICD10Codes.csv]

Condition Condition Action
Diagnosisl Diagnosis2 Errors
= = 3=
Column 1 Column 2 {{Diagnosisl}} cannot be reported together with
Column 2 Column 1 1iDiagnosis2}}

Here the first decision table “IterateDiagnoses” iterates over the array of Diagnoses for
the first time using a temporary decision variable “Diagnosis 1”7 and for the second time
using temporary decision variable “Diagnosis 2” (they are defined only withing these
loops). To make sure that these variables are different, it uses an intermediate array

“Already Selected Diagnoses”. For each unique pair (Diagnosisl; Diagnosis2) it executes

91©

OpenRules, Inc. OpenRules® Getting Started

the decision table “SearchCSV” that does a highly efficient search in the CSV file
“ICD10Codes.csv”.

We can essentially simplify this decision model by using a special action-column
“ActionNestedLoops”. Instead of the above table “IterateDiagnoses” we can use the

following table:

Decision lterateDiagnoses

ActionNestedLoops

Array Element 1 Element 2 Rules

"Diagnoses” "Diagnosisl" |"Diagnosis2" SearchCsV

You will get the same results but without an intermediate check for uniqueness of pairs
(Diagnosis1; Diagnosis2). You can even remove “Already Selected Diagnoses” from the

Glossary.

You may use the standard column of the type "ActionNew" to add a new object to a
collection of objects. For example, you may create a new instance of the type "Booking",

define its attributes, and add it to the collection "Bookings" using them the following

table:

Decision AddNewBooking

ActionMew Action Action Action Action Action
Booking Booking

C Business Booking Name Passenger Flight B:Dnlun_g Bookings
oncept Name Name Number Arrival Time
: {{Passenger Mame}}-| Passenger . Flight Arrival :
Booking {Flight Number}} Name Flight Number Time Add | Booking

Sorting Collections of Objects

OpenRules allows you to easily sort arrays (or lists) of your business objects. You can use
regular decision tables that define how compare any two elements of such arrays and

add [sort <ArrayName>] at the end of its signature row. Let’s look at this sample:

92 ©

OpenRules, Inc. OpenRules® Getting Started

DecisionTable SortPassengers [sort Passengers]

Condition Condition Condition ActionPrefer
p Status of Status of Passenger? Miles of Passengeri Passenger
assengerl
s ls One Of|SILVER, BRONZE Passenger!
Is GOLD ls = |Miles of Passenger2| Passengeri
ls ls GOLD = |Miles of Passenger2 =
Is Is < |Miles of Passenger2| Passenger?
Is Is GOLD Passenger?
Is ls BROMNZE Passenger
s SILVER Is » |Miles of Passenger?| Passengerl
s Is SILVER = |Miles of Passenger? Same
Is ls < |Miles of Passenger2| Passenger?
ls ls One Off GOLD,SILVER Passengerd
ls ls = |Miles of Passenger2| Passengeri
Is BRONZE Is BROMZE = |Miles of Passenger?| Passenger=
Is s < |Miles of Passenger?| Passenger?

This table is taken from the standard project “SortPassengers” that shows how to sort
the array of "Passengers" using their frequent flier status and a number of miles. For
each pair of passengers “Passengerl” and “Passenger2” it selects a preferred passenger
in the last column of the type “ActionPrefer”. When the statuses of both passengers are
the same, the number of frequent miles serves as a tiebreaker. When even the miles are

[

the same, you may use or “Same” (or any other word different from Passengerl and
Passenger2). There is no need to define “Passengerl” and “Passenger2” in the glossary

that simply looks as below:

Glossary glossary

Variable Business Concept Attribute Type
Passengers Problem passengers Passenger[]
MName name String
Status status String
Passenger .
Score score int
Miles miles int

Here the array “Passengers” by itself is a decision variable defined inside the business

concept "Problem". The glossary does not include variables "Passengerl" and
"Passenger2" as they are local variables used only inside the table “SortPassengers”.
Their names are formed by the type “Passenger” of the array of “Passengers” plus the

numbers 1 and 2.

This and a more complex project "FlightRebooking" can be found in the standard

93 ©

OpenRules, Inc. OpenRules® Getting Started

workspace OpenRulesSamples. Another sample project "SortProducts" demonstrates
how to sort arrays of objects defined in the Java class Product that need to be

Comparable.

DECISION MODEL TESTING

OpenRules provides all necessary tools to build, test, and debug your business decision
models. The same people (subject matter experts) who created decision models can
create test cases for these models using simple Excel tables or objects coming from the
outside world (from Java, XML, or JSON). You've already seen test cases in the

introductory example. Now we will explain how to create and use test cases.

Building Test Cases

You can use predefined OpenRules tables of the types “DecisionTest” and “DecisionData”
to create executable test cases for your decision models.

Test Cases in “DecisionTest” Tables

Look at the decision model "PatientTherapy" included in the standard installation

"OpenRulesSamples". The simplest way to provide data for testing this decision model is

the following table of the type "DecisionTest" that describes 3 test cases:

|ActionDefine e ActionDefine [ActionDefine|ActionDefine| ActionExpect | ActionExpect ActionExpect
Define | Define
Test | Encounter |Patient|Patient] Patient F:::tt':r:t c:;‘;:?:le Recommended|Recommended|Drug Interaction
ID | Diagnosis | Age |Weight| Allergies Medication Level Medication Dose Warning
Test Acut Penicillin 500mg every 24 LCDuﬂmadm and
918 Si cute 58 73 Coumadin 2.00 Levofloxacin hours for 14 evol D.XECLIH Ca;
inusitis Streptomycin days result .|n reduce
effectiveness of
250mg every 24
Test ,.?-\cut.e. 65 83 1.80 Amaxicillin hours for 14 MNone
2 Sinusitis
days
TS| Disbetes | 27 | 110 188 None

Blue columns of the type "ActionDefine" provide test values for input decision variables.

94 ©

https://openrulesdecisionmanager.com/building-decision-services/install-samples/
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases1.png

OpenRules, Inc. OpenRules® Getting Started

Reddish columns of the type "ActionExpect" provide expected values for the proper
output decision variables. If the expected values do not match the actual values
produced during the decision model execution (using test.bat) OpenRules will display

mismatches. For instance, if in the Test 2 you replace the expected Recommended

Medication to "Levofloxacin", you will receive the following error:

This table is self-explanatory. The only column that requires an explanation is "Patient
Allergies" that defines a text array of the type String[] with potentially many allergies.
So, here we used two sub-rows to represent two allergies and cells in all other columns
for the Test 1 were merged. Of course, you can add as many sub-rows as you need.

Alternatively, you may list all allergies separated by commas inside a one cell as below:

ActionDefine

Patient Allergies

Penicillin, Streptomycin

Active/lnactive Test Cases

You also may select which test cases you want to test at any moment. You may use the
column of the type “ActionActive” to mark the active test cases like in the example

“CreditCardApplication” below:

DecisionTest testCases]

|ActionActive |ActionUseObject |ActionUseObject| ActionExpect |ActionExpect | ActionExpect
Applicant Applicant
TestiD| Active | Applicant | Application | Demographic | Credit Card | APRIC2HON
Suitability Eligibility
Test 1 applicants(0] applications[0] Suitable Eligible Accepted
Test 2 X applicants[1] | applications[1] Suitabla Eligible Accepted
Test 3 applicants(2] applications[Z] Suitable Ineligible Rejected

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases3-1.png
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases2.png

OpenRules, Inc. OpenRules® Getting Started

Here we marked only the second test case as “active” and during the execution, only this
test case will be tried. If all cells in the column “ActionActive” are empty, then all tests

will be executed.

You are not limited anymore to one DecisionTest table with the name “testCases”. You
may create multiple DecisionTest tables with different names (they should be unique)
and OpenRules will execute active test cases within all of them.

Test Arrays in “DecisionData” Tables

In more complex cases, it is more convenient to define separate data tables one for each

business concepts. For instance, here is the data table for all test-patients:

DecisionData Patient patients

. Patient | Patient Patient Pati.e I.“ Patient Active
Patient Name . . Creatinine . .
Age Weight Allergies Medication
Level
Penicillin
John Smith 58 78 2.00 Coumadin
Streptomycin
Mary Smith 65 83 1.80
Larry Green 27 110 1.88

In the left top corner this table specifies its type "DecisionData" following the business

concept "Patient" (defined in the Glossary) and the names of the array "patients".

Similarly, you may define an array “visits” that provides data for the business concept

"DoctorVisit":

DecisionData DoctorVisit visits
Encounter Diagnosis

Acute Sinusitis
Acute Sinusitis
Diabetes

You can use these two arrays "patients" and "visits" to define the same test cases as

above but in a more compact way:

96 ©

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases4.png
https://openrulesdecisionmanager.com/business-decision-models/decision-model-patient-therapy/
https://openrules.files.wordpress.com/2021/09/patienttherapytestcases5.png

OpenRules, Inc. OpenRules® Getting Started

DecisionTest testCases

|ActionUseObject |ActionUseObject] ActionExpect ActionExpect ActionExpect
Test Patient DoctorVisit RHD"!mE." ded Recommended Dose Drug Inte.ra{:ﬂ{:rn
1D Medication Warning

Coumadin and
500mg every 24 hours | Levofloxacin can result in

Test 1 patients[0] visits[0] Levofloxacin for 14 days reduced efiectiveness of
Coumadin
: . I 250mg every 24 hours
Test 2 patients[1] visits[1] Amoxicillin for 14 days Mone
Test 3 patients[2] visits[2] Mone

Here instead of 6 columns "ActionDefine" we use only 2 columns of the type
"ActionUseObject". Their cells refer to the elements of the arrays "patients" and
"visits" using indexes starting with [0], e.g. patients[0] refers to the first element of the

array patients, and visits[2] refers to the third element of the array visits.

Note. All keywords “ActionDefine”, “ActionExpect”’, and “ActionUseObject” are

case-sensitive.

References Between DecisionData Tables

Here is an example from the project “OrderPromotion” from the standard installation

“OpenRulesSamples”. The following DecisionData table defines an array of order items:

DecisionData Orderltem orderltems

ltem Id Inside | Order ltem
Orderid-ltemid Order Qty
AAA-1108 1108 5
AAA-1112 1112 3
AAA-2639 2639 B
AAA-2456 2456 7
BBB-2639 2639 4
BBB-1108 1108 7

And this DecisionData table defines an array of order that specifies which order items

from the array “orderItems” belong to which orders:

97 ©

https://openrules.files.wordpress.com/2021/09/patienttherapytestcases6-1.png

OpenRules, Inc. OpenRules® Getting Started

DecisionData Order orders
=orderltems

Order Id Order ltems

AAA-1108
AAA-1112
AAA-Z2639
AAA-24506

BBEB-2639
BEB-1108

BBB

The 214 column in the 24 row includes the reference “>orderItems”. It tells OpenRules
that the names such as “AAA-1112” or “BBB-2639” are actually the references (“primary
keys”) to the proper rows in the array “orderItems”. In the second column each Order

Item Id starts with a new line (in Excel use Alt+Enter).

Alternatively, you may put Order Items Ids in separate sub-rows in the second column

and merge the proper cell in the first column:

DecisionData Order orders
=orderltems

Order Id Order ltems
AAA-1108
AAA1112
AAA-2639
AAA-2456
BBB-2639
BBB-1108

ADN

BEBEB

Note. Instead of defining test data in Excel, you may read data from relational databases

by using special tables of the type “DataSQL” — see http://RuleDB.com.

Building and Testing Decision Model
Configuration File “project.properties”

After you complete the design of your decision model and its test cases, you need to
adjust the standard file “project.properties”’. An example of such a file was provided for

the introductory model as follows:

model.file="rulezs,/DecizionModel . xlsx"
test.file="rules/Test.xlsx"

98 ©

http://ruledb.com./

OpenRules, Inc. OpenRules® Getting Started

Usually, you need only two properties:
e model.file — it is usually the file “DecisionModel.xlsx” that describes the
structure of your model in the Environment table
e test.file — the name of the file that contains your test cases (it could be omitted if

using test your model directly from Java)

There could be several optional properties:
e run.class — the name of a Java class that will be used instead of the standard
OpenRules class; see an example in the project “HelloJava”;
e trace=0On/Off — to show/hide all executed rules in the execution protocol;
e report=0On/Off — to generate or not the HTML-reports that show all executed
rules (and only them) with explanations why they were executed,;

More properties could be added for different deployment options.

Build and Run

To build and run your decision model, you need to double-click on the standard file
“test.bat”. If you run it for the first time or made any changes in your decision mode,
first it will build your model. During the “build” OpenRules will do the following:
e analyze the decision model for errors and consistency.
e if everything is OK, it will automatically generate Java code for your model used
for testing and execution.
e if OpenRules finds errors in your design, it will show them in red in the execution
protocol.

¢ Runs the generated code against your test cases.

Error Reporting

OpenRules is trying to find as many errors as possible in your decision model and report
them in friendly business terms. For example, let’s get back to the introductory decision
model “VacationDays” and make a mistake 1in the decision table
“CalculateVacationDays” by omitting a space in the name of the decision variable

“Eligiblefor Extra 5 Days”. OpenRules will catch the error and will show it as follows:

99 ©

OpenRules, Inc. OpenRules® Getting Started

We highlighted the error message. As you can see OpenRules reports that the variable
“Eligiblefor Extra 5 Days” not found and points to the exact place in your Excel files
where the error occurred. It is a very important feature of OpenRules, as the generated
Java code keeps track of the original Excel tables and produces all messages and

explanations in the business terms used by the decision model author in Excel.

P.S. The generated Java code will be used internally to deploy and execute your model.
As a business analyst, you even don’t have to look at them or to know where they are
located. Nobody ever should modify the generated files as they will be automatically re-

generated when you modify your decision model.

Testing Decision Model

You can fix the error in the file Rules.xlsx by adding a space between the words
“Eligible” and “for” and double-click on “test.bat” again. It will re-build your decision
model and execute it against all test-cases. Here is an execution protocol (for the first

test case only):

100©

OpenRules, Inc. OpenRules® Getting Started

setElipibleFo
THEN ‘Eli

hle for Extra &

11e +;r
ble fo

The protocol shows all executed actions and their results. Along with the execution
protocol, “test.bat” also produces the explanation reports in the folder “report” using a
friendly HTML format. It shows all executed rules and values of the involved decision

variables in the moment of execution — see the above example.

DECISION MODEL DEPLOYMENT
OpenRules provides all the necessary facilities to simplify the integration of business
decision models with modern enterprise-level applications. Tested decision models may
be easily deployed on-premises or on-cloud. The deployment type is usually defined by
the property "deployment" in the file "project.properties". It can take the following

values:

e aws-lambda - for AWS Lambda functions

101©

OpenRules, Inc. OpenRules® Getting Started

e azure-function - for MS Azure functions

e rest - for RESTful services using OpenRules REST

e spring-boot - for RESTful services using SpringBoot
e java (default) - for Java APIL.

Examples of new deployment capabilities are presented in the Vacation Days sample

projects included into the standard installation "openrules.install". Now it has the

following projects:

VacationDays - a basic decision project that contains mainly an Excel-based
decision model in the rule repository "rules". The major decision model properties

are now located in the table "Environment" of the file "DecisionModel.xlsx":

Environment

include Glossary xlsx
Rules.xlsx
model.name VacationDaysModel
model goal Vacation Days
model_package vacation.days
model_precision 0.001

The file "project.properties" only refers to the decision model files and execution
proj prop y
properties:
model . file="rules/DecisionModel .. xlsx"
test.file="rules,/Test.xlsx"

trace=0Cn
report=_0n

All other Vacation Days projects refer to the same rules repository and demonstrate

different deployment options.

VacationDaysdJava - a basic decision project that demonstrates Java integration. It
uses "Employee.java" in src/main/java instead of automatically generated Java class

in the folder "target". Its "project.properties" file looks as follows:

test.file="../VacationDays/rules/Test.xlsx"
model.file="../VacationDayvs/rules/DecizionModel. . xlsx"
run.class=vacation.days.SampledsonEnployees

102©

OpenRules, Inc. OpenRules® Getting Started

It includes many well-commented examples of Java programs such as

"SamplesdJsonEmployees" which demonstrates OpenRules Java API.

e VacationDaysLambda - a decision project that demonstrates how to deploy the
decision model "VacationDays" as an AWS Lambda function. Its "project.properties"

file looks as follows:

model.file=". . /VacationDays/rules,/DecisionModel . .xls"
test.file="../VacationDays/rules,/Test.xls"

model . package=vacation.days. lamkda

report=_Cn

trace=Cn

deployment properties

deployment=aws-lambda

aws.lambda . bucket=openrules—-demo-lambda-bucket
aws.apl.stage=test

aws.lambda.region=us-east-1
aws.lambda.runtime=javall
aws.lambkda . memorySize=512
aws.lambda.timeout=15

Note that the "model.package" defined in the "project.properties" overrides the one
in the Environment table. Look at the automatically generated test cases in the
JSON format in the folder "jsons". You may use them in POSTMAN after you call
"deployLambda.bat". There is a new batch file "buildLambda.bat" that packages
the decision model as one zip-file "target/VacationDaysLambda-1.0.0.jar" to be used

for custom AWS Lambda deployment.

e VacationDaysAzure - a decision project that demonstrates how to deploy the
decision model "VacationDays" as an MS Azure function. Its "project.properties" file

looks as follows:

model.file=". . /VacationDays/rules/DecisionModel . xls"
test.file="../VacationDays/rules/Test.xls"

model .package=vacation.davys.azure

report=0mn

trace=Cn

deployment=azure—-function
azure.authlLevel=ANONTHMCOUIS

103©

OpenRules, Inc. OpenRules® Getting Started

All Azure configuration information is specified in the file "pom.xml".

¢ VacationDaysRest - a decision project that demonstrates how to deploy the
decision model "VacationDays" as a RESTful web service (currently OpenRules
REST utilizes Undertow). It requires only a minimal configuration, and produces
decision services with small memory footprints and high efficiency. Its

"project.properties" file looks as follows:

model.file=". . /VacationDays,/rules/DecisionModel . xls"
test.file=../VacationDays/rules,/Test.xls

model .package=vacation.davys.rest

trace=Cn

report=0n

deployment=rest

e VacationDaysSpringBoot - a decision project that demonstrates how to deploy the
decision model "VacationDays" as a RESTful web service using SpringBoot. Its

"project.properties" file looks as follows:

model.file=". ., /VacationDays/rules/DecizionModel . xlzs™
test.file=../VacationDays/rules/Test.xls

model .package=vacation.days.springboot

trace=Cmn

report=_Cn

deployment=spring-boot

You also may package your decision model as a Docker image making it ready to be
deployed to any of the following container registries:

o Google Container Registry (GCR)

e Amazon Elastic Container Registry (ECR)

e Docker Hub Registry

e Azure Container Registry (ACR).

You may find more details how these projects work in the User Manual for Developers.

RULES-BASED SERVICE ORCHESTRATION

OpenRules provides business users with abilities to build and deploy operational

104 ©

https://www.docker.com/
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf

OpenRules, Inc. OpenRules® Getting Started

decision microservices. It empowers business users with an ability to assemble new
decision services by orchestrating existing decision services independently of how they
built and deployed. The service orchestration logic is a business logic too, so it is only
natural to apply the decision modeling approach to orchestration. To orchestrate
different services, you may create a special orchestration decision model that
describes under which conditions such services should be invoked and how to react to

their execution results.

OpenRules decision tables have special action-columns of the type “ActionExecute”
that is usually used to execute different services upon certain conditions without
worrying how they were implemented and deployed. To describe such external services

OpenRules added a special new table “DecisionService”. You may download a special

workspace “openrules.Joan” that implements a library of decision services described in

the Loan Origination example from the DMN Section 11.

The workspace “openrules.loan” contains several decision models with two main goals

“BureauStrategy” and “Routing” deployed as external decision services:

-
Loan Origination Result
{ACCEPT/DECLINE)
7
* ,
Service : -
Bureau Strategy Routing SEnvice
(BUREAL/DECLINE/THROUGH) (DECLINE/REFERIACCEPT)
\ v, \ J
| |
r S l/' y
Affordability Affordability
Pre-Bureau Post-Bureau
(TRUE/FALSE) (TRUE/FALSE)
I o Glossary - I
™y i
Risk Category Risk Category
Pre-Bureau Post-Bureau
(DECUNEHIGHMEDIUMLOW/VERY LOW) _{DEW&WEDMWNER‘(LOW)
ey
I I
~ 'S
Application Risk Score Application Risk Score
(0-900) (0-900)
. »y \ s

The high-level goal “Loan Origination Result” is an example of the orchestration
decision models.

If you open this decision model in OpenRules Explorer, it will be displayed using the

105 ©

https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrules.wordpress.com/2017/06/21/loosely-coupled-decision-models-for-loan-origination/
http://www.omg.org/spec/DMN
https://openrules.files.wordpress.com/2020/10/loanoriginationgoals.png

OpenRules, Inc. OpenRules® Getting Started

following diagram:

Loan Origination Result

RoutingService

BureauStrategyService - -- - _ - - _ Application } ----------

This decision model is not aware of the internal structure of these two decision services
which are shown as green rectangles. However, we can see the decision table
“LoanOriginationResult” that invokes these services and business concepts (pink

rounded rectangles) used by these services.

You may find more information about service orchestration in the User Manual for

Developers.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or this Discussion Group.

Read more.

106 ©

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForDevelopers.pdf
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
https://openrulesdecisionmanager.com/technical-support/

