
OpenRules, Inc.

www.openrules.com

May-2019

DEVELOPING DECISION

MICROSERVICES
WITH SPRING BOOT

AND OPENRULES

http://www.openrules.com/

OpenRules, Inc. OpenRules Web Services

2

TABLE OF CONTENTS

Introduction .. 3

What You’ll Build .. 3

Creating Simple Java-based Greeting Service in Eclipse .. 3

Creating Spring Boot Web Application ... 8

Adding Java-based Greeting Microservice ... 11

Testing Spring Boot Web Application .. 15

Moving Greeting Service to OpenRules .. 16

Converting OpenRules Decision Project to Spring Boot Microservice 19

Conclusion .. 22

Technical Support ... 22

OpenRules, Inc. OpenRules Web Services

3

INTRODUCTION

Nowadays microservices quickly become a highly popular architectural approach. They have
shown a great deal of benefits over the legacy style of monolithic single applications. Spring
Boot is an open source Java-based framework that is commonly used to create microservices. It
offers the following advantages:

• Easy deployment

• Simple scalability

• Compatible with Containers and cloud environments

• Minimum configuration

• Lesser production time.

This tutorial provides a sampling of how to build Decision Microservices with Spring Boot and

OpenRules.

WHAT YOU’LL BUILD

You will build a simple greeting service that greets a customer. Initially, you will create it in Java

and then add it to a simple web application built using Spring Boot. You will be able to test it as

a service using the standard JSON tests send over http requests. Then you will make your

greeting more sophisticated by moving the greeting logic to OpenRules-based Excel files. Then

you will make necessary changes in the Spring Boot web application to call the new OpenRules-

based greeting service. We will explain all installations and development details not assuming

any preliminary knowledge of the Spring framework – the only assumption is that you are

familiar with Java and Eclipse IDE. You will end up with a working decision microservice and will

be ready to create and deploy more OpenRules-based microservices.

CREATING SIMPLE JAVA-BASED GREETING SERVICE IN

ECLIPSE

We will assume that you’ve already installed Java 1.8 or later and Eclipse IDE. Start Eclipse with a

new workspace, and select File+New+Java Project:

https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://github.com/spring-projects/spring-boot
http://openrules.com/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/

OpenRules, Inc. OpenRules Web Services

4

When you click on “Finish” a new project GreetingService will be created. Right-click on the

subfolder “GreetingService/src”, select New Java Package and enter “com.openrules” as the

Name:

OpenRules, Inc. OpenRules Web Services

5

Right-click on this package, select New Java Interface:

OpenRules, Inc. OpenRules Web Services

6

Double-click to the created file a GreetingService.java and add to it one method

“generateGreetingFor”:

Create a New Java Class “Customer” in the same package “com.openrules”:

Right-click on “com.openrules”, select New+Class to create the class GreetingServiceJava that

implements the interface GreetingService:

OpenRules, Inc. OpenRules Web Services

7

Modify the created file “GreetingServiceJava.java” as follows:

To test this service as a stand-alone program, we may create another class Test.java:

OpenRules, Inc. OpenRules Web Services

8

Right-click on the file “Test.java” and select “Run As Java Application”. It will generate the

greeting:

Hello, Robinson!

Our simple greeting service in Java is completed and tested. Your Eclipse project looks as below:

Now it’s time to migrate this service to a web-based microservice using Spring Boot.

CREATING SPRING BOOT WEB APPLICATION

This section will give you a quick taste of Spring Boot by creating your own Spring Boot-based

microservice. The simplest way to create a Spring Boot project is to use Spring Initializr. To

https://start.spring.io/

OpenRules, Inc. OpenRules Web Services

9

bootstrap your new Spring Boot project got to https://start.spring.io/ and enter the following

data:

https://start.spring.io/

OpenRules, Inc. OpenRules Web Services

10

When you click on “Generate Project”, Spring Initializr will create and download the file

“spring.zip” into your Downloads folder. Extract the downloaded zip file into your Eclipse

workspace folder. In your Eclipse select ‘Import Project”/ “Existing Maven Projects”:

It will create a new project “spring”. This project already contains the file “Application.java”:

OpenRules, Inc. OpenRules Web Services

11

This is the main application class with @SpringBootApplication annotation for our future Spring

Boot application. If you right-click on this file “Application.java” and select “Run as Java

Application” the Spring Boot will start the embedded Tomcat server, deploy the application on

the Tomcat, and will wait for http requests on the port “localhost:8080”. But this application

doesn’t have any services yet. In the next section we will add our Java-based GreetingService to

this web application.

ADDING JAVA-BASED GREETING MICROSERVICE

To add different services to this application, you need to create a Java class called a REST

Controller that may include different services waiting to be executed upon the proper http

request. We will call our REST Controller “GreetingController” and it will include our

GreetingService defined in the project “GreetingService”. To make sure that the Spring Boot

project “spring” is aware of our regular Java project “GreetingService” we need to add it to the

classpath of our project “spring”. Right-click on “spring”, select “Properties”, and add

GreetingService as shown below:

OpenRules, Inc. OpenRules Web Services

12

Now create a new Java class “GreetingController” in the same folder “com.service.spring” where

SpringBoot placed the above class Application. Here is the initial version:

We will use Spring Boot dependency injection facilities by adding an annotation @Autowired to

the definition of our service. When you type Eclipse will automatically add the proper import:

OpenRules, Inc. OpenRules Web Services

13

To handle the incoming http requests for a greeting service, this controller should include a

method that will accept a Customer object as a parameter and returns a generate greeting

message as a response. Let’s add such a method by calling it “greetCustomer”:

Now, we need to enhance this simple Java method as we want it to be automatically called

when our web application receives an http POST request through the URL “/greeting” with a

JSON object that has the same properties as the class Customer (now it is just a Customer’s

name). Sprint Boot allows us to do it by adding the following annotations to the method

“greetCustomer”:

@RequestMapping(path=”/greeting”, method={RequestMethod.POST})

public String greetCustomer(@RequestBody Customer customer) {...}

Here is the complete implementation of the GreetingController (when you type the annotations,

Eclipse will automatically add the corresponding imports):

OpenRules, Inc. OpenRules Web Services

14

We are not done yet. Our “greetingService” will be @Autowired by Spring using a special class

annotated of the type @Configuration. So, you need to create a new class (call it

“DecisionFactory”) annotated it with @Configuration. For each service this class should include

a method annotated with @Bean that returns an instance of the service. In our case it will be

the method “buildGreetingService” as described below:

This completes the development of our Spring Boot application with one greeting that will be

called using URL “/greeting”.

OpenRules, Inc. OpenRules Web Services

15

To test our web application, right-click on Application and select “Run As Java Application”. It

will start the embedded Tomcat, deploy the latest version of our spring project, and will wait to

http-request. Here is the protocol from the Eclipse’s Console view:

TESTING SPRING BOOT WEB APPLICATION

To create http-requests for this web application, we will use POSTMAN, a popular tool that can

be downloaded for free from https://www.getpostman.com/. After installation and start, you

may fill out this POSTMAN’s form:

https://www.getpostman.com/

OpenRules, Inc. OpenRules Web Services

16

You should select the method POST (from the drop-down list), type the URL

“localhost:8080/greeting”, enter a simple JSON structure

 {
 “name”: “Robinson”
 }
and click on “Send”. The POSTMAN will send the proper http-request to our web application,

that will execute our GreetingService and will return the string “Hello, Robinson!” at the bottom

of the form.

Thus, our Spring Boot web application with a Java-based GreetingService works fine. Naturally,

Spring can deploy the same application not only with the embedded Tomcat but using any

container and any cloud environment such as AWS. While our application is too simple, but it

already demonstrates how to create Java-based microservices with Spring Boot.

MOVING GREETING SERVICE TO OPENRULES

Our Java-based greeting service doesn’t need any business logic to produce a greeting message

like “Hello, Robinson!”. Let’s make it a bit more sophisticated. Instead of “Hello, Robinson!” this

service should be able to produce greetings like “Good Morning, Mrs. Robinson!” if it is morning

and the customer Robinson is a married woman or “Good Afternoon, Mr. Robinson!” if it is

afternoon and Robinson is a man. The latest OpenRules installation “openrules.models” already

includes a sample decision project called “Greeting” that provides this functionality. However,

this is a stand-alone project, and we will need to convert it to a decision microservice that will

replace our GreetingServiceJava inside the Spring Boot web application. First, let’s migrate the

standard OpenRules project “Greeting” to our GreetingService project.

We will assume that you already installed an OpenRules evaluation version by downloading the

standard folder “openrules.models”. Let’s import two OpenRules projects “Greeting” and

“openrules.config” into our workspace using Eclipse File+Import+General+Existing Projects into

Workspace. Now you should see two new folders “Greeting” and “openrules.config” in our

Eclipse workspace. Follow these steps to migrate the project Greeting to our GreetingService.

Step 1. Copy “Customer.java” from the project Greeting to our project GreetingService. Now
along with the “name” the class Customer will also include the following attributes:

http://openrules.com/download_eval.htm

OpenRules, Inc. OpenRules Web Services

17

 ….

along with their getters and setters.

Step 2. Copy “GreetingResponse.java” from the project Greeting to our project GreetingService.

It will be used to save the results or our greeting decision in the following attributes:

 ….

Step 3. Copy the folder “rules” from the folder Greeting to our folder GreetingService. It

contains the decision model in the form of the following Excel files:

DecisionModel.xls

It contains only one Environment table that defines the structure of this decision model:

Glossary.xls

It contains two tables. The table Glossary

defines all decision variables distributed between two business concepts “Customer” and

“GreetingResponse” with attributes that correspond to our Java classes with the same names.

The table DecisionObject maps these business concepts and the corresponding Java objects:

OpenRules, Inc. OpenRules Web Services

18

Rules.xls

It contains three decision tables which define our greeting logic:

It also contains the file “Goals.xls” (that was automatically generated by build.bat) that defines

the top-level decision “DecisionHelloStatement”:

Step 4. Copy “Main.java” from the project Greeting to our project GreetingService. It was used

to test our stand-alone decision model:

OpenRules, Inc. OpenRules Web Services

19

Note that this method uses URL “classpath:/Goals.xls”. It means that the rules repository folder

“rules” should be in the project’s classpath. To make sure that it is true, check if the folder

“rules” has the same Eclipse icon as the folder “src”. If not, right-click on the folder “rules” and

select “Build Path + Use as Source Folder”.

Step 5. Copy “run.bat” from Greeting to GreetingService. Double-click on this file to make sure

that the decision model still works inside the new folder.

So, after these 5 steps our folder GreetingService includes a working OpenRules-based decision

project.

CONVERTING OPENRULES DECISION PROJECT TO SPRING

BOOT MICROSERVICE

Our Spring Boot web application uses the greeting service define in the class

GreetingServiceJava. Now you will use Main.java as a prototype to create a new Java class

OpenRules, Inc. OpenRules Web Services

20

GreetingServiceOpenRules that will replace GreetingServiceJava in our web application. Here is

its code:

As you can see, the constructor GreetingServiceOpenRules creates an instance of the OpenRules

class Decision similarly as it was done in Main.java. Then the overridden method

generateGreetingFor(Customer customer) runs this decision using the instance of the class

Customer that comes as a parameter (from an http request) and a new instance of

GreetingResponse to save the decision’s results.

To be able to run this microservice we only need to modify the class DecisionFactory in the

project “spring”:

OpenRules, Inc. OpenRules Web Services

21

We simply commented out GreetingServiceJava and replaced it with GreetingServiceOpenRules.

Now we can run our Spring Boot application with the new OpenRules service. To do that, right-

click on the class Application and select “Run as Java Application”. If you receive an error, you

may select “Debug as Java Application”, add breakpoints to suspicious Java classes and do

regular Eclipse-based debugging.

To test our decision microservice, open again PORTMAN, enter the JSON code as on the picture

below and click on “Send”:

OpenRules, Inc. OpenRules Web Services

22

As you can see, our OpenRules-based microservice produced the expected result “Good

Evening, Ms. Robinson!”.

CONCLUSION

In this tutorial we demonstrated how to create a Sprint Boot web application with a simple Java-

based greeting service. Then we replaced it to a little bit more sophisticated greeting service

that utilizes OpenRules. In a similar manner we can add any OpenRules-based service and take

advantage of the powerful Spring framework for creating decision microservices available from

any server or a cloud environment.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this Discussion Group.

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

