OPEN

BRI EQ
AVA T 1Y

DEVELOPING DECISION
MICROSERVICES
WITH SPRING BOOT
AND OPENRULES

OpenRules, Inc.
www.openrules.com
May-2019

http://www.openrules.com/

OpenRules, Inc. OpenRules Web Services

TABLE OF CONTENTS

1o Lo [V ol o [T TR 3
WRQAL YOU Il BUIIcueueaeeeeaeeeeeeeeeeiiiiiiiiiiiiiiiiiiiss s aaas 3
Creating Simple Java-based Greeting Service in Eclipse..........c.ccccvveuereuririveerensisnnasnn. 3
Creating Spring Boot Web APPliCAtioN.............ccceevveeririeeirinsiiieasisinssosensisssesossnsisssasesens 8
Adding Java-based Greeting MiCrOSEIViCeccovvvueiirrveneiirrerenisssssessssssssnssssssenanes 11
Testing Spring Boot Web ApPlicationcceueeuecirvveeniirneneniisnisensssssssnssissssnanssssenns 15
Moving Greeting Service to OPENRUIES..............ceveeeeriiriereriiiiirensiisinennsesssesessssssnnsenns 16
Converting OpenRules Decision Project to Spring Boot Microservice........................... 19
(0071 Tt 7 o 22
TECHNICAI SUPPOILeeeeeeeeeeeeeeeeeeeeeeeiereenirereserenaeernssessasessnsssssnssessasessnssassnsssssnsasens 22

20

OpenRules, Inc. OpenRules Web Services

INTRODUCTION

Nowadays microservices quickly become a highly popular architectural approach. They have
shown a great deal of benefits over the legacy style of monolithic single applications. Spring
Boot is an open source Java-based framework that is commonly used to create microservices. It
offers the following advantages:

e Easy deployment

e Simple scalability

e Compatible with Containers and cloud environments
e Minimum configuration

e Lesser production time.

This tutorial provides a sampling of how to build Decision Microservices with Spring Boot and

OpenRules.

You will build a simple greeting service that greets a customer. Initially, you will create it in Java
and then add it to a simple web application built using Spring Boot. You will be able to test it as
a service using the standard JSON tests send over http requests. Then you will make your
greeting more sophisticated by moving the greeting logic to OpenRules-based Excel files. Then
you will make necessary changes in the Spring Boot web application to call the new OpenRules-
based greeting service. We will explain all installations and development details not assuming
any preliminary knowledge of the Spring framework — the only assumption is that you are
familiar with Java and Eclipse IDE. You will end up with a working decision microservice and will

be ready to create and deploy more OpenRules-based microservices.

We will assume that you’ve already installed Java 1.8 or later and Eclipse IDE. Start Eclipse with a

new workspace, and select File+New+Java Project:

30

https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://github.com/spring-projects/spring-boot
http://openrules.com/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/

OpenRules, Inc. OpenRules Web Services

£ New Java Project O x
Create a Java Project @
Create a Java project in the workspace or in an external location.

Project name: GreetingService| |

Use default location

Location: | CA_GitHub\openrules.spring\GreetingService Browse...
JRE
(® Use an execution environment JRE: JavaSE-1.8 ~
(O Use a project specific JRE: jre1.8.0 201 ~

() Use default JRE (currently ‘jre1.8.0_201% Configure JREs...

Project layout

(O Use project folder as root for sources and class files

@ Create separate folders for sources and class files Configure default...

Working sets

[] Add project to working sets New...

Working sets; ~ Select...

@ < Back Mext = Cancel

T T = e =

When you click on “Finish” a new project GreetingService will be created. Right-click on the

subfolder “GreetingService/src”, select New Java Package and enter “com.openrules” as the
Name:

40©

OpenRules, Inc.

OpenRules Web Services

Java Package

£ New Java Package

Create a new Java package.

Creates folders corresponding to packages.

Source folder: | GreetingService/src | | Browse.,
Name: | com.openrules| |
[] Create package-info.java

® Finish | ‘ Cancel

Right-click on this package, select New Java Interface:

£ New Java Interface O x
Java Interface @

Create a new Java interface.
Source folder: | GreetingService/src | | Browse... |
Package: | com.openrules |
[] Enclosing type: Browse...
Name: | GreetingService{ |
Modifiers: @ public O package private protected
Extended interfaces: Add...

Remove
Do you want to add comments? (Configure templates and default value here)
[]Generate comments
@ Finish | | Cancel

50

OpenRules, Inc. OpenRules Web Services

Double-click to the created file a GreetingService.java and add to it one method

“generateGreetingFor”:

package com.openrules;
public interface GreetingService {

public String generateGreetingFor(Customer customer);

Create a New Java Class “Customer” in the same package “com.openrules”:

package com.openrules;
public class Customer {
String name;

public String getName() {
return name;

¥

public void setMame(String name) {
this_name = name;

}

Right-click on “com.openrules”, select New+Class to create the class GreetingServiceJava that

implements the interface GreetingService:

6©

OpenRules, Inc.

£ New Java Class O

Create a new Java class.

Source folder: | GreetingService/src | Browse...

Package: | com.openrules | Browse...

] Enclosing type: Browse...

MName: | GreetingServicelava |

Modifiers: @ public (O package private protected

[Jabstract []final static

Superclass: | Java.lang.Object | Browse...

Interfaces: O com.openrules.GreetingService Add..
Remaove

Which method stubs would you like to create?
public static void main(String[] args)
[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

[] Generate comments

| Java Class =
ié k_i)

Modify the created file “GreetingServicelava.java” as follows:

OpenRules Web Services

package com.openrules;

@Override

return "Hello,

public class GreetingServicelava implements GreetingService {

public String generateGreetingFor(Customer customer) {
+ customer.getName() +

>

To test this service as a stand-alone program, we may create another class Test.java:

70

OpenRules, Inc. OpenRules Web Services

public class Test {

public static void main(S5tring[] args) {
GreetingServicelava service = new GreetingServicelava();
Customer customer = new Customer();
customer.setMame("Robinson™);
customer.setGender("Female™);
customer.setMaritalStatus("Married™);
customer.setCurrentHour(20);

String helloStatement = service.generateGreetingFor(customer);

System.out.println(helloStatement);

Right-click on the file “Test.java” and select “Run As Java Application”. It will generate the

greeting:

Hello, Robinson!

Our simple greeting service in Java is completed and tested. Your Eclipse project looks as below:

w 122 GreetingService
&\ JRE System Library [JavaSE-1.8]
v [src

~ # com.openrules
[Customer,java
[# GreetingService.java
[GreetingServicelava,java
[% Testjava

Now it’s time to migrate this service to a web-based microservice using Spring Boot.

This section will give you a quick taste of Spring Boot by creating your own Spring Boot-based

microservice. The simplest way to create a Spring Boot project is to use Spring Initializr. To

8©

https://start.spring.io/

OpenRules, Inc.

OpenRules Web Services

bootstrap your new Spring Boot project got to https://start.spring.io/ and enter the following

data:

Project

Language

Spring Boot

Project Metadata

Dependencies
Seeall

2019 Pivotal Software
pring.io is powered by

| Pivotal Web Services

Maven Project Gradle Project

Java Kotlin Groovy

2.2.0 M2 2.2.0 (SNAPSHOT) 2.1.5 (SNAPSHOT)

Group

com.service

Artifact
spring

Name

spring

Description

Demo project for Spring Boot

Package Name
com.service.spring

Packaging
Jar War

Java Version
12 n 8

Fewer options

2.1.4 1.5.20

Search dependencies to add Selected dependencies

Web, Security, JPA, Actuator, Devtools...

Web [web]
Servlet web application with Spring MVQ

and Tomcat

Reactive Web [Web]

Generate Project - alt + &

90

https://start.spring.io/

OpenRules, Inc. OpenRules Web Services

When you click on “Generate Project”, Spring Initializr will create and download the file
“spring.zip” into your Downloads folder. Extract the downloaded zip file into your Eclipse

workspace folder. In your Eclipse select ‘Import Project”/ “Existing Maven Projects”:

& Import] »
Select g
Import existing Maven projects H

Select an import wizard:

type filter text

= Java EE ~
~ [= Maven
L, Check out Maven Projects from SCM
W], Existing Maven Projects
[, Install or deploy an artifact to a Maven repository
w1, Materialize Maven Binary Project
&3 Materialize Maven Projects from SCM
= Oomph
= Run/Debug]

@ < Back Finish Cancel

£ Import Maven Projects O b g

Maven Projects

Select Maven projects

Root Directory: ‘ C_GitHub\openrules.spring\spring w Browse...
Projects:
Jpomxml com.service:spring:0.0.1-SNAPSHOT jar Select All
Deselect All
Select Tree

Deselect Tree

Refresh

[JAdd project(s) to working set

spring

» Advanced

@ < Back Next > Cancel

It will create a new project “spring”. This project already contains the file “Application.java”:

100

OpenRules, Inc. OpenRules Web Services

package com.service.spring;
import org.springframework.boot.SpringApplication;

[@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(fpplication.class, args);

¥

}

This is the main application class with @SpringBootApplication annotation for our future Spring
Boot application. If you right-click on this file “Application.java” and select “Run as Java
Application” the Spring Boot will start the embedded Tomcat server, deploy the application on
the Tomcat, and will wait for http requests on the port “localhost:8080”. But this application
doesn’t have any services yet. In the next section we will add our Java-based GreetingService to

this web application.

To add different services to this application, you need to create a Java class called a REST
Controller that may include different services waiting to be executed upon the proper http
request. We will call our REST Controller “GreetingController” and it will include our
GreetingService defined in the project “GreetingService”. To make sure that the Spring Boot
project “spring” is aware of our regular Java project “GreetingService” we need to add it to the
classpath of our project “spring”. Right-click on “spring”, select “Properties”, and add

GreetingService as shown below:

110

OpenRules, Inc.

& Properties for spring

type filter text Java Build Path
Resource
Builders (® Source & Projects g Libraries % Order and Export
Coverage Required projects on the build path:
Java Build Path 1= GreetingService
Java Code Style
Java Compiler

Java Editor
Javadoc Location
Maven

Project Facets
Project Natures
Project References
Run/Debug Settings
Task Repository
Task Tags
Validation
WikiText

o
@

Apply and Close

OpenRules Web Services

Now create a new Java class “GreetingController” in the same folder “com.service.spring” where

SpringBoot placed the above class Application. Here is the initial version:

package com.service.spring;
import com.openrules.GreetingService;
public class GreetingController {

private GreetingService greetingService;

We will use Spring Boot dependency injection facilities by adding an annotation @Autowired to

the definition of our service. When you type Eclipse will automatically add the proper import:

package com.service.spring,

import com.openrules.GreetingService;

@RestController
public class GreetingController {

@Autowired
private GreetingService greetingService;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RestController;

12©

OpenRules, Inc. OpenRules Web Services

To handle the incoming http requests for a greeting service, this controller should include a
method that will accept a Customer object as a parameter and returns a generate greeting
message as a response. Let’s add such a method by calling it “greetCustomer”:

package com.service.spring;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RestController;

import com.openrules.Customer;
import com.openrules.GreetingService;

@RestController
public class GreetingController {

@Autowired
private GreetingService greetingService;

public String greetCustomer(Customer customer) {
return greetingService.generateGreetingFor(customer);

}

Now, we need to enhance this simple Java method as we want it to be automatically called
when our web application receives an http POST request through the URL “/greeting” with a
JSON obiject that has the same properties as the class Customer (now it is just a Customer’s
name). Sprint Boot allows us to do it by adding the following annotations to the method

“greetCustomer”:

@RequestMapping(path="/greeting”, method={RequestMethod.POST})
public String greetCustomer(@RequestBody Customer customer) {...}
Here is the complete implementation of the GreetingController (when you type the annotations,

Eclipse will automatically add the corresponding imports):

130

OpenRules, Inc.

OpenRules Web Services

package com.service.spring;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;

import com.openrules.Customer;
import com.openrules.GreetingService;

@RestController
public class GreetingController {

@Autowired
private GreetingService greetingService;

return greetingService.generateGreetingFor(customer);

¥

}

@RequestMapping(path="/greeting", method= {RequestMethod.POST})
public String greetCustomer(@RequestBody Customer customer) {

We are not done yet. Our “greetingService” will be @Autowired by Spring using a special class

annotated of the type @Configuration. So, you need to create a new class (call it

“DecisionFactory”) annotated it with @Configuration. For each service this class should include

a method annotated with @Bean that returns an instance of the service. In our case it will be

the method “buildGreetingService” as described below:

package com.service.spring;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import com.openrules.GreetingService;
import com.openrules.GreetingServicelava;

@Configuration
public class DecisionFactory {

@Bean
public GreetingService buildGreetingService() {
return new GreetingServicelava();

h

¥

This completes the development of our Spring Boot application with one greeting that will be

called using URL “/greeting”.

14©

OpenRules, Inc.

OpenRules Web Services

To test our web application, right-click on Application and select “Run As Java Application”. It

will start the embedded Tomcat, deploy the latest version of our spring project, and will wait to

http-request. Here is the protocol from the Eclipse’s Console view:

L O B Y WA Y
CON_ T2 vy
WOt oy
S R I T I T W BV AV A v}
I_I |__t=t_t_ i/
Spring Boot (v2.1.4_.RELEASE)
2019-04-28 17:49:52.379 INFO 20200 --- [main]
2019-04-28 17:49:52.382 TINFO 20200 --- [main]
2019-04-28 17:49:53.475 INFO 20200 --- [main]
2019-04-28 17:49:53.499 INFO 20200 --- [main]
2019-04-28 17:49:53.499 TINFO 20200 --- [main]
2019-84-28 17:49:53.591 INFO 20200 --- [main]
2019-04-28 17:49:53.591 INFO 202060 --- [main]
2019-04-28 17:49:53.841 INFO 20200 --- [main]
2019-084-28 17:49:54.292 INFO 20200 --- [main]
2019-04-28 17:49:54.295 INFO 20200 --- [main]
2019-04-28 17:50:06.461 INFO 20200 --- [nio-8080-exec-1]
2019-04-28 17:50:06.461 INFO 20200 --- [nio-8080-exec-1]
2019-04-28 17:50:06.466 INFO 20200 --- [nio-808@-exec-1]

com._service.spring.Application
com.service.spring.Application
0.s.b.w.embedded. tomcat. TomcatWebServer
o.apache.catalina.core.StandardService
org.apache.catalina.core.StandardEngine
0.a.c.c.C.[Tomcat].[localhost].[/]
o.s.web.context.ContextLoader
o.s.s.concurrent. ThreadPoolTaskExecutor
0.5.b.w.embedded. tomcat. TomcatWebServer
com.service.spring.Application
0.a.c.c.C.[Tomcat].[localhost].[/]
0.s.web.servlet.DispatcherServlet
o.s.web.servlet.DispatcherServlet

: Starting Application on DESKTOP-£
: No active profile set, falling be
: Tomcat initialized with port(s):
: Starting service [Tomcat]

: Starting Servlet engine: [Apache
: Initializing Spring embedded Webf
: Root WebApplicationContext: initi
: Initializing ExecutorService ‘apg
: Tomcat started on port(s): 8080 (
: Started Application in 2.229 secc
: Initializing Spring DispatcherSer
: Initializing Servlet 'dispatchers
: Completed initialization in 4 ms

To create http-requests for this web application, we will use POSTMAN, a popular tool that can

be downloaded for free from https://www.getpostman.com/. After installation and start, you

may fill out this POSTMAN'’s form:

localhost

POST

none
!
b

W R e

Body

Pretty

:8080/greeting

localhost:8080/greeting

¥ localhost:8080/greeting

form-data

“name”: "Robinson”

E1 Hello, Robinson!

(9) Body @
x-www-form-urlencoded @ raw binary a v
Status: 2
Auto ¥ 55

No Environment v ®

P
1
El
[1]
I
7
e
N
[1]
R
m
.
[=]

[]

o

(=1

Q

15©

https://www.getpostman.com/

OpenRules, Inc. OpenRules Web Services

You should select the method POST (from the drop-down list), type the URL

“localhost:8080/greeting”, enter a simple JSON structure

{

“name”: “Robinson”

}
and click on “Send”. The POSTMAN will send the proper http-request to our web application,

that will execute our GreetingService and will return the string “Hello, Robinson!” at the bottom
of the form.

Thus, our Spring Boot web application with a Java-based GreetingService works fine. Naturally,
Spring can deploy the same application not only with the embedded Tomcat but using any
container and any cloud environment such as AWS. While our application is too simple, but it

already demonstrates how to create Java-based microservices with Spring Boot.

Our Java-based greeting service doesn’t need any business logic to produce a greeting message
like “Hello, Robinson!”. Let’s make it a bit more sophisticated. Instead of “Hello, Robinson!” this
service should be able to produce greetings like “Good Morning, Mrs. Robinson!” if it is morning
and the customer Robinson is a married woman or “Good Afternoon, Mr. Robinson!” if it is
afternoon and Robinson is a man. The latest OpenRules installation “openrules.models” already
includes a sample decision project called “Greeting” that provides this functionality. However,
this is a stand-alone project, and we will need to convert it to a decision microservice that will
replace our GreetingServicelava inside the Spring Boot web application. First, let’s migrate the
standard OpenRules project “Greeting” to our GreetingService project.

We will assume that you already installed an OpenRules evaluation version by downloading the

standard folder “openrules.models”. Let’s import two OpenRules projects “Greeting” and
“openrules.config” into our workspace using Eclipse File+lmport+General+Existing Projects into
Workspace. Now you should see two new folders “Greeting” and “openrules.config” in our
Eclipse workspace. Follow these steps to migrate the project Greeting to our GreetingService.

Step 1. Copy “Customer.java” from the project Greeting to our project GreetingService. Now
along with the “name” the class Customer will also include the following attributes:

16 ©

http://openrules.com/download_eval.htm

OpenRules, Inc.

public class Customer {

String name;

String gender;
String maritalStatus;
int currentHour;

along with their getters and setters.

OpenRules Web Services

Step 2. Copy “GreetingResponse.java” from the project Greeting to our project GreetingService.

It will be used to save the results or our greeting decision in the following attributes:

public class GreetingResponse {

String greeting;
String salutation;
String helloStatement;

Step 3. Copy the folder “rules” from the folder Greeting to our folder GreetingService. It

contains the decision model in the form of the following Excel files:

DecisionModel.xls

It contains only one Environment table that defines the structure of this decision model:

Rules xls
include Glossary xls
I/openrules_config/DecisionTemplates xls
Glossary.xls

It contains two tables. The table Glossary

Glossary glossary

Hello Statement

Variable Business Concept Attribute

Name name
Gender gender

: Customer -
Marital Status maritalStatus
Current Hour currentHour
Greeting greeting
Salutation GreetingResponse |salutation

helloStatement

defines all decision variables distributed between two business concepts “Customer” and

“GreetingResponse” with attributes that correspond to our Java classes with the same names.

The table DecisionObject maps these business concepts and the corresponding Java objects:

170

OpenRules, Inc. OpenRules Web Services

DecisionObject decisionObjects

Business Concept Business Object
Customer ‘= decision._get("Customer")
GreetingResponse | = decision get("GreetingResponse™)
Rules.xls

It contains three decision tables which define our greeting logic:

DecisionTable DefineGreeting
If Then
Current Hour Greeting
[0..11) Good Morning
[11.17) Good Afternoon
[17..22) Good Evening
[22-24] Good Night
DecisionTable DefineSalutation
Condition Condition Conclusion
Gender Marital Status Salutation
Is Male Is Mr.
Is Female Is Married Is Mrs.
Is Female Is Single Is Ms.
DecisionTable DefineHelloStatement
Conclusion

Hello Statement

Is | Greeting + ", " + Salutation + " " + Name + "I"

It also contains the file “Goals.xIs” (that was automatically generated by build.bat) that defines

the top-level decision “DecisionHelloStatement”:

Decision DecisionHelloStatement
ActionExecute

Decision Tables
DefineGreeting
DefineSalutation
DefineHelloStatement

Step 4. Copy “Main.java” from the project Greeting to our project GreetingService. It was used

to test our stand-alone decision model:

18©

OpenRules, Inc. OpenRules Web Services

import com.openrules.ruleengine.Decision;
public class Main {
public static void main(String[] args) {

String fileName = "classpath:/Goals.x1s";

String decisionMame = "DecisionHelloStatement";

Decision decision = new Decision(decisionName,fileMName);
decision.put("FEEL", "On");

decision.put(”report", "On"};

Customer customer = new Customer();
customer.setMame("Robinson"};
customer.setGender("Female");
customer.setMaritalStatus("Married");
customer.setCurrentHour(28);

GreetingResponse response = new GreetingResponse();

decision.put("Customer”, customer);
decision.put("GreetingResponse", response);
decision.execute();

decision.log("\nProduced Hello Statement: + response.getHelloStatement());

Note that this method uses URL “classpath:/Goals.xls”. It means that the rules repository folder
“rules” should be in the project’s classpath. To make sure that it is true, check if the folder
“rules” has the same Eclipse icon as the folder “src”. If not, right-click on the folder “rules” and
select “Build Path + Use as Source Folder”.

Step 5. Copy “run.bat” from Greeting to GreetingService. Double-click on this file to make sure
that the decision model still works inside the new folder.

So, after these 5 steps our folder GreetingService includes a working OpenRules-based decision

project.

Our Spring Boot web application uses the greeting service define in the class

GreetingServicelava. Now you will use Main.java as a prototype to create a new Java class

190

OpenRules, Inc.

OpenRules Web Services

GreetingServiceOpenRules that will replace GreetingServicelava in our web application. Here is

its code:

package com.openrules;

import com.openrules.ruleengine.Decision;

Decision decision;
public GreetingServiceOpenRules() {

String filelame = "classpath:/Goals.x1s";
String decisionName = "DecisionHelloStatement”;
decision = new Decision(decisionMame,fileName);
decision.put("FEEL", "On");
decision.put("report”, "On");

h

@0verride

public String generateGreetingFor(Customer customer) {
decision.put("Customer", customer);
GreetingResponse response = new GreetingResponse();
decision.put("GreetingResponse", response);
decision.execute();
return response.getHelloStatement();

)

public class GreetingServiceOpenRules implements GreetingService {

As you can see, the constructor GreetingServiceOpenRules creates an instance of the OpenRules

class Decision similarly as it was done in Main.java. Then the overridden method

generateGreetingFor(Customer customer) runs this decision using the instance of the class

Customer that comes as a parameter (from an http request) and a new instance of

GreetingResponse to save the decision’s results.

To be able to run this microservice we only need to modify the class DecisionFactory in the

project “spring”:

200

OpenRules, Inc.

package com.service.spring,

import com.openrules.GreetingService;
import com.openrules.GreetingServiceOpenRules;

@Configuration
public class DecisionFactory {

@Bean

ffreturn new GreetingServicelava();
return new GreetingServiceOpenRules();

¥

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

public GreetingService buildGreetingService() {

OpenRules Web Services

We simply commented out GreetingServicelava and replaced it with GreetingServiceOpenRules.

Now we can run our Spring Boot application with the new OpenRules service. To do that, right-

click on the class Application and select “Run as Java Application”. If you receive an error, you

may select “Debug as Java Application”, add breakpoints to suspicious Java classes and do

regular Eclipse-based debugging.

To test our decision microservice, open again PORTMAN, enter the JSON code as on the picture

below and click on “Send”:

localhost:8080/greeting ® localhost:8080/greeting X A e
localhost:8080/greeting
POST v localhost:8080/greeting
(9) Body @
none form-data x-www-form-urlencoded @ raw binary
1= f
2 "name": "Robinsen",
3 “gender”: "Female",
4 "maritalStatus”: "Single”,
5 "currentHour": 20
5)
Body (3)
Pretty Auto ¥ 5
1 Good Evening, Ms. Robinson!

No Environment v ©

210

OpenRules, Inc. OpenRules Web Services

As you can see, our OpenRules-based microservice produced the expected result “Good

I”

Evening, Ms. Robinson

In this tutorial we demonstrated how to create a Sprint Boot web application with a simple Java-
based greeting service. Then we replaced it to a little bit more sophisticated greeting service
that utilizes OpenRules. In a similar manner we can add any OpenRules-based service and take
advantage of the powerful Spring framework for creating decision microservices available from

any server or a cloud environment.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this Discussion Group.

22©

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

