OPEN

BRI EQ
AVA T 1Y

CREATING
OPENRULES
DECISION
MICROSERVICES

WITH
MAVEN, SPRINGBOOT, AND DOCKER

OpenRules, Inc.
www.openrules.com
July-2019

http://www.openrules.com/

OpenRules, Inc. OpenRules Web Services

TABLE OF CONTENTS

1o Lo [V ol o [T TR 3
7177 1o 1 TV i | o TN 3
What Should Be Pre-Installed.................ouuueeeeuueeeriiiirreeeeeeuuiiisiiiinreeeeeessisssiseesneennnsnsnns 4
Mavenizing OpenRules CoNfiguration...............cceeeeeeceereeenierieeesisssseensssssssnsssssssnssssssenns 4
Creating a Maven OpenRules Project in ECliPSeccouuveuivrievneiisrnenncsnsennncsssesnnssenns 6
Defining DeciSion MOMElcccuueeevieeenciiiineniisinnnniisiieneisssmssnsisssssmssesssssssssssssssssnns 7
VYo Lo [ToTo I [0 17 I 11 1 €T 4 {2 ol -2 11
Creating Spring Boot Web ApPlication...............ceevveeeeirrieeneiirinnnsiissnenecssnesnsssssssnansonns 16
Adding Service to Spring Boot Application...............eeeeueeeeeeeeenieenniereeneereeserensseseaseeennns 18
Testing Decision Service With POSTIMAN..........c..eeeeeeeeeneeereneeeenseseessereesessnssessassessaseeses 22
Testing Decision Service with a Java Clientceeeueeeeeeeeeeeeeeneeenenereenseeresseeeaseeees 24
Adding Another OpenRules DeciSion SEIVICe...........ccueueeeeeeeeeeneeennrereenerreeserennseesnseesnnns 25
Deploying Decision Service t0 DOCKEFcueueeeeeeeeeenieeeenerennsereessseneserenssessnsssssasessnnes 35
(0071 Tt 7 o 36
0ol T T Lol T IRY o o T o SN 36

20

OpenRules, Inc. OpenRules Web Services

INTRODUCTION

Nowadays microservices quickly become a highly popular architectural approach. They have
shown essential advantages over the legacy style of monolithic single applications:

e Easy deployment

e Simple scalability

e Compatible with Containers and cloud environments
e Minimum configuration

e Lesser production time.

It’s only natural to deploy Business Decision Models created and tested by business users as
decision microservices. This tutorial provides a sampling of how to build Decision Microservices

with Spring Boot and OpenRules and containerize them with Docker.

We will explain what you need to do to create, test, and deploy an OpenRules-based decision
service using SpringBoot and Docker. We will assume that you are familiar with Java and Eclipse

IDE and have a high-level understanding of the Spring framework and Docker.

Following step-by-step instructions below, you do the following:

e “Mavenize” the standard OpenRules configuration

e (Create a simple Maven project in Eclipse which will be used to invoke OpenRules-based

service with business logic represented in Excel decision tables

e Test this from Java

e Convert this decision service to a simple REST web application built using Spring Boot

and test it with POSTMAN using JSON

e Containerize this decision service using Docker and test it using POSTMAN and/or a

Java-based client.

30

https://github.com/spring-projects/spring-boot
http://openrules.com/
https://www.docker.com/

OpenRules, Inc. OpenRules Web Services

In the end, you will be ready to create and containerize your own OpenRules decision services.

WHAT SHOULD BE PRE-INSTALLED

We assume that you’ve already installed:

e Java 1.8 or later

e Eclipse IDE
e Maven

e OpenRules evaluation (or complete) version by downloading the workspace

“openrules.models”

o Docker Desktop.

When all these products are installed, start Eclipse with a new workspace called

“openrules.services”.

MAVENIZING OPENRULES CONFIGURATION

The standard OpenRulesinstallation workspace “openrules.models” contains a special
configuration project called “openrules.config” and a set of sample projects such as
“VacationDays”. Import the standard OpenRules configuration project “openrules.config” from

the workspace “openrules.models” to the already opened workspace “openrules.services”.

We are going to use Maven as our main building tool, so first we need to “mavenize” this
OpenRules configuration. We will install all jar-files from “openrules.config/lib” to the local
Maven’s repository, that is a directory on your computer where Maven holds all artifacts and

dependencies. To do that, first we will add the following “pom.xml” file to “openrules.config”:

40©

https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/
https://maven.apache.org/install.html
http://openrules.com/download_eval.htm
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://maven.apache.org/index.html

OpenRules, Inc. OpenRules Web Services

<?xml version="1.0" encoding="UTF-8"72>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/¥MLSchema-instance"
x=zi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.x=sd">
<modelVersion=4.0.0</modelVersion>
<groupld-com.openrules</groupld>
cartifactIdreconfig</artifactId>
<version>7.0.1-SHAPSHOT</version>
<packaging>pom</packaging>
<name>0penRules Config</name>
<description>Config project for Openrunles Library</description>
<properties>
<maven.compiler.source>l.8</maven.compiler.sources>
<maven.compiler.target>l.8</maven.compiler.target>
<openrules.version>7.0.1-SNAPSHOT</openrules.version>
</propercies>
<dependencies>
<dependency>
<groupld>com.openrules</groupld>
<artifactIdropenrules.all</artifactId>
<version>${openrules.version}</version>
</dependency>
<dependency>
<groupld>com.openrules</groupld>
<artifactId-openrules.tools</artifactId>
<version-${openrules.version}</version>
</dependency>

<!-- apache -->

<dependency>
<groupld>org.apache.poi</groupld:>
<artifactIdrpoi</artifactId:>
<wversion>3.10-FINAL< /version>

</dependency>

<dependency>
<groupldrorg.apache.poi</groupId:>
<artifactIdspoi-coxml</artifactId>
<version>3.10-FINAL</version>

</dependency>

<dependency>
<groupld>commons-beanntils</groupId:>
<artifactIdrcommons-beanutils</artifactId>
<wersion>l.6</version>

</dependency>

<dependency>
<groupldrcommons-lang</groupld>
<artifactIidrecommons-lang</artifactcId>
<version>2.3</version>

</dependency>

</dependencies>

<build>
<resources>
<resource>
<directory>rules</directory>
</resource>
</resources>
<fbuild:>
Ffprojectb

Note that along with necessary jar-files, we configured a rule repository called “rules” as a
“resource” folder, so that the content of this folder will be packaged into created jars along with
classes, properties files and other resources, and will be used by all decision services we plan to
add to this Maven configuration.

Now we will add the following file “install.bat” to “openrules.config”:

50

OpenRules, Inc. OpenRules Web Services

@echo off
cd %~dp@

set VERSION=7.0.1-SNAPSHOT
call mvn install -Dversion=%VERSION%

call mvn install:install-file -Dfile=lib/openrules.all.jar -DgroupId=com.openrules
-DartifactId=openrules.all -Dversion=%VERSION% -Dpackaging=jar -DgeneratePom=true

call mvn install:install-file -Dfile=1ib/com.openrules.tools.jar -DgroupId=com.openrules
-DartifactId=openrules.tools -Dversion=%VERSION% -Dpackaging=jar -DgeneratePom=true

echo Initialized
pause

Now you may right-click on this file and select “Open With System Editor” — alternatively you
may double-click on this file from File Explorer or just execute 4 commands used inside this file
directly from a command line. It will build OpenRules Config 7.0.1-SNAPSHOT in your local
Maven repository (but you don’t even need to look at it). Your Maven is ready to work with

OpenRules.

CREATING A MAVEN OPENRULES PROJECT IN ECLIPSE

Now we will create a Maven project for the OpenRules service “VacationDays”. From you Eclipse

File-menu, select File+New Project+Maven Project:

| & New Maven Project O X

| New Maven project —

| Select project name and location

Create a simple project (skip archetype selection)

Use default Workspace location

C_GitHub\openrules.docker\spring Browse...

[[] Add project(s) to working set

More...

» Advanced

@ < Back Finish Cancel

6©

OpenRules, Inc.

Click “Next” and enter the Artifact data as below. For the Parent project click on “Browse..”,

OpenRules Web Services

start typing “openrules” and make the selections as on the right image:

& New Maven Project

New Maven project

Configure project

il

Artifact

Group Id: ‘ com.openrules.samples

Artifact Id: ‘ VacationDays

Version: | 0.0.1-SNAPSHOT v]
Packaging: ‘ jar - |
Name: ‘ Vacation Days v |

Description: ‘ Calculate Vacation Days

Parent Project

Group Id: ‘ com.openrules

h |

Artifact Id: | config

h |

Version: | 7.0.1-SNAPSHOT -

» Advanced

Browse...| Clear

®

MNext = Finish | | Cancel |

DEFINING DECISION MODEL

We want to build a simple decision model that calculates the number of vacation days given to

S Select Parent Artifact

Group Id: # com.openrules

Artifact Id: »

config

Version: ‘ 7.0.1-SNAPSHOT

Enter groupld, artifactld or sha1 prefix or pattern (*):

‘openru

% Index downloads are disabled, search results

may be incomplete.

Search Results:

v [com.openrules config

B 7.0.2-SNAPSHQT [pom]
B 7.0.1-SNAPSHOT [pom]

Cancel

an employee based on the age and years of service. Here are the business rules:

Every employee receives at least 22 days.
Additional days are provided according to the following criteria:

The number of vacation days depends on age and years of senvice.

1) Only employees younger than 18 or at least 60 years, or employees
with at least 30 years of service will receive 5 extra days.

2) Employees with at least 30 years of service and also employees of age 60 or more,
receive 3 extra days, on top of possible additional days already given.

3) If an employee has at least 15 but less than 30 years of service, 2 extra days
are given. These 2 days are also provided for employees of age 45 or more.
These 2 exira days can not be combined with the 5 exira days.

70

OpenRules, Inc. OpenRules Web Services

You already can find the proper decision model implemented in the standard OpenRules
workspace “openrules.models” as a stand-alone project “VacationDays”. In that project the
decision model was defined in the rules repository called “rules” and use the standard

OpenRules templates defined in the configuration project “openrules.config”.

For the Maven-based decision services we already decided to use the common rules repository

|”

called “rules” which we added as a dependency to the file “openrules.config/pom.xml”. So, now
we will create the folder “rules” in our new Maven’s project “VacationDays”. Then we will add

two sub-folders to the folder “rules”:
e templates — a placeholder for the standard OpenRules templates
e vacationDays — a placeholder for our decision model “VacationDays”.

So, now we will copy files “openrules.config/DecisionTemplates.xls” and
“openrules.config/DecisionTableExecuteTemplates.xls” into the subfolder “templates”. Then we
will copy all Excel files from the folder “openrules.models/VacationDays/rules” to the subfolder

“vacationDays”. Here are Excel files and tables that implement vacation days calculation logic.

File “rules/vacationDays/Rules.xls”:

DecisionTableMultiHit Calculate\VacationDays

Eligible for | Eligible for | Eligible for

Extra 5 Days | Extra 3 Days|Extra 2 Days Vacation Days

= 22

TRUE += 5
TRUE += 3

FALSE TRUE += 2

DecisionTable SetEligibleForExtrabSDays

Years of Eligible for

AgeinYears| oo vice |Extra5Days

<18 TRUE
>= 60 TRUE
>=30 TRUE

FALSE

8©

OpenRules, Inc. OpenRules Web Services

DecisionTable SetEligibleForExtra3Days

Years of Eligible for
Service |Extra 3 Days

>=30 TRUE
>=60 TRUE
FALSE

Age in Years

DecisionTable SetEligibleForExtra2Days

Years of Eligible for
Service |Extra 2 Days
[15..30) TRUE

>=45 TRUE
FALSE

Age in Years

All decision goals, variables, and user Decision objects are defined in the file “rules/

vacationDays/Glossary.xls”:

Glossary glossary

Variable Name Business Concept Attribute

Age in Years age
Years of Service service
Eligible for Extra 5 Days eligibleForExtraSDays

— Employee —
Eligible for Extra 3 Days eligibleForExtra3Days
Eligible for Extra 2 Days eligibleForExtra2Days
Vacation Days vacationDays
DecisionObject decisionObjects
Business Concept|Business Object
Employee = decision_get("Employee™)

The structure of this decision model was defined in the file “DecisionModel.xls” in this

Environment table that used to look as below:

90©

OpenRules, Inc. OpenRules Web Services

Glossary xls

include |Ryles xis
..I_/openrules_config/DecisionTemplates xls

The third include-statement referred to the standard templates located two levels above the old
project “VacationDays”. Now we keep these templates in the subfolder “templates” that is on
the same level as the folder “vacationDays”. So, we need to adjust the Environment table as

follows:

Glossary xls

include |Ryles xis
_/templates/DecisionTemplates xls

The folder “rules/vacationDays” also include the file “Test.xls” that specifies Datatype
“Employee” and creates several test-cases with expected results. To make sure that the new
decision model still works, copy file “build.bat” and “run.bat” from
openrules.models/VacationDays/ to our new project “VacationDays”, and make the following
changes in them:

File “build.bat”:

set DECISION_NAME="Vacation Days"”

set INPUT_FILE_NAME=rules/vacationDays/DecisionModel.x1s|
set OUTPUT_FILE_NAME=rules/vacationDays/Goals.xls

[decho off

cd %~dp®

call ..\openrules.config\projectBuild

pause

File “run.bat”:

set DECISION_NAME="Vacation Days"

set FILE_NAME=rules/vacationDays/Test.xls
cd %~dp®e

call ..\openrules.config\projectRun

pause

These bat-files use openrules.config’s file projectBuild.bat and projectRun.bat. Both these files
referred to compiles classes using set CLASSES=./bin. However, in the Maven’s projects

compiled classes are created not in “bin”, but rather in “target”. So, we need in both these bat-

100

OpenRules, Inc. OpenRules Web Services

files replace the setting to

set CLASSES=./target/classes;./target/test-classes

Now, we can double-click on “build.bat” and it will build an execution path for this model and
will save it in the file “Goals.xls”. Then double-click on “run.bat” and it will execute all test-cases

producing the following results:

te SetEligibleForExtra3Days
Eligible for Extra 3 Days
SetEligibleForExtra2Days
Assign: Eligible for Extra 2 Days
Execute CalculateVacationDays
Conclusion: Vacation Days
Conclusion: Vacation Days
Conclusion: Vacation Days)
WValidating results for the test <Test E>
Test E was successful
Executed test Test E in 13 ms

RUN TEST: Test F 2@
Ewpcute SetEligihleFD ;
Eli“iblP For

Ell“lblP fot E&tra 3 Davs
SetEligibleForExtra2Days
Ell“lblP for E&tra 2 Days

Conclualon. Vacatlon Day-
Conclusion: Vacation Days
Conclusion: Vacation Days
Validating results for the test
Test F was successful
Executed test T F in 15 ms
1 test out of 6 failed!
Executed all tests cases in 125 ms - 20
done

To execute the same model from Java, we will create 3 Java classes:
e Employee.java —to define test-employees
e VacationDaysService.java — to specify our service
e Test.java —to test the service locally.

So first, we create a new Java package “com.openrules.vacation” in the folder “src/maim/java”:

11©

OpenRules, Inc.

S New Java Package O

Java Package m
Create a new Java package.

Creates folders corresponding to packages.

Name: | com.openrules.vacation |

[] Create package-info,java

Source folder: | VacationDays/src/main/java | Browse...

®

and then add a new class Employee:

S New Java Class O

Java Class @
Create a new Java class.

Dmmmman

Which method stubs would you like to create?
O public static void main(String[] args)
[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[] Generate comments

Source folder: | VacationDays/src/main/java | Browse...
Package: | com.openrules.vacation | Browse...
I Enclosing type: Browse...
Name: | Employee| |
Modifiers: @ public O package private protected

[Jabstract []final static
Superclass: | javalang.Object | Browse...
Interfaces: Add...

®

OpenRules Web Services

The class “Employee” will contain the same attributes that were used in the above Glossary and

the Datatype table “Employee”:

120

OpenRules, Inc. OpenRules Web Services

public- class Employee {

String- -id;

int vacationDays;

boolean eligibleForExtraSDays;
boolean eligibleForExtra3Days;
boolean eligibleForExtra2Days;
int age;

int service;

Then we will right-click on “Employee.java” and use “Source” + ”“Generate Getters and Setters” +

“Generate toString()” to complete this class. Here is the class “VacationDaysService”:

package com.cpenrules.vacation;

import com.openrules.ruleengine.Decision;
import com.openrules.ruleengine.OpenRulesEngine;
import com.openrules.vacation.Employee;

public class VacationDaysService {
OpenRulesEngine engine;
public VacationDaysService() {

string fileName = “classpath:/vacaticnDays/Goals.xls";
engine = new OpenRulesEngine(filelame);

}

public int run(Employee employee) {
string decisionName = "Vacaticn Days";
Decision decision = new Decision(decisionName,enginel;
decision.put(“FEEL", "On");
decision.put("Employee™, employee);
decision.execute();
return employee.getVacationDays();

Note, that we refer to main Excel file in the rules repository as “classpath:/Goals.xls”. It means
all Excel files that our folder “rules” also should be in the Maven classpath. This has been already

guaranteed when we added the dependency for “rules” to the “pom.xml”.

Now, we are ready to test our modified decision model “VacationDaysService”. The tests should
be placed to the automatically created folder “src/test/java”. So, we will add here a new
package “com.openrules.vacation”, and then we will add to this package a new class

“Test.java”:

13©

OpenRules, Inc. OpenRules Web Services

package com.openrules.vacation,

import- com.openrules.vacation.Employee;[]
public class Test {

public static void main(String[] args) {

VacationDaysService service = new VacationDaysService()
Employee employee = new Employee();
employee.setId("Robinson");
employee.setAge(47);
employee.setService(208);
service.run(employee);
System.out.println("VacationDaysService:

"

+-employee);

Right-click on the file “Test.java” and select “Run As Java Application”. It will produce the results

that look like below:

[INFO] Log - -- SetEligibleForExtraSDays

[INFO] Log - -- SetEligibleForExtra3Days

[INFO] Log - -- SetEligibleForExtra2Days

[INFO] Log - -- CalculateVacationDays

[INFO] Log - -Execute SetEligibleForExtraSDays

[INFO] Log - - Assign: Eligible for Extra 5 Days = false
[INFO] Log - -Execute SetEligibleForExtra3Days

[INFO] Log - - Assign: Eligible for Extra 3 Days = false
[INFO] Log - -Execute SetEligibleForExtra2Days

[INFO] Log - - Assign: Eligible for Extra 2 Days = true
[INFO] Log - -Execute CalculateVacationDays

[INFO] Log - - Conclusion: Vacation Days = 22

[INFO] Log - - Conclusion: Vacation Days += 24
VacationDaysService: Employee [id=Robinson, vacationDays=24|

We may consider that our decision service “VacationDays” has been tested as a stand-alone

application and is ready for further deployment. Our Eclipse project now looks as below:

14 ©

OpenRules, Inc.

~ ([= src/main/java
~ #i = com.openrulesvacation
[% Employeejava
[% VacationDaysServicejava
v | = srcftest/java
~ #i = com.openrulesvacation
[Testjava
[src/test/resources
B\ JRE System Library [JavaSE-1.8]
=, Maven Dependencies
~ [= rules
~ [= templates

5 DecisionTemplatesads
v [= vacationDays
5 DecisionModelxls
52 Glossary.xls
5 Goalsxls
52 Rules.xls
5 Testxls
= report
(g > srC
= target
5 build.bat
[pomxml
5 run.bat

~ g > VacationDays [openrules.docker master]

52 DecisionTableExecuteTemplates.xls

OpenRules Web Services

To complete its Maven’s installation, we should right-click on “VacationDays/pom.xml” and

select “Run As” + “Maven Install”.

Now it’s time to migrate this service to a REST web-based application using Spring Boot.

150

OpenRules, Inc.

OpenRules Web Services

CREATING SPRING BOOT WEB APPLICATION

The simplest way to create a Spring Boot project is to use Spring Initializr. To bootstrap your new

Spring Boot project, open https://start.spring.io/ and enter the following data:

Project

Language

Spring Boot

Project Metadata

Dependencies

2119 Pivntal Safbware
2018 Pivotal Software

pring.io is powered by

| Pivotal Web Services

See all

Maven Project Gradle Project
Java Kotlin Groovy
220M2 2.2.0 (SNAPSHOT) 2.1.5 (SNAPSHOT) 2.1.4 1.5.20

Group

com.service

Artifact
spring

Name
spring

Description

Demo project for Spring Boot

Package Name
com.service.spring

Packaging

Fewer options

Search dependencies to add Selected dependencies

Web, Security, JPA, Actuator, Devtools. Web [web]

Servlet web application with Spring MvVQ

and Tomcat

Reactive Web [web]

Generate Project - alt +

When you click on “Generate Project”, Spring Initializr will create and download the file

“spring.zip” into your Downloads folder. Extract the downloaded zip file into your Eclipse

16 ©

https://start.spring.io/
https://start.spring.io/

OpenRules, Inc.

workspace folder “openrules.services”

Maven Projects”:

& Import

OpenRules Web Services

. In the Eclipse select “File + Import Project + Existing

Select

Import existing Maven projects

Select an import wizard:
type filter text

» (= Java EE

~ (= Maven

1, Check out Maven Projects from SCM

L, Existing Maven Projects

[, Install or deploy an artifact to a Maven repository
w1, Materialize Maven Binary Project

% Materialize Maven Projects from SCM
» = Oomph

> [= Run/Debug

@ < Back

Finish

Cancel

< Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: | CA_GitHub\openrules.docker\spring

R

Projects:

[] fpomxml com.service:spring:0.0.1-SNAPSHOT;jar

[JAdd project(s) to working set
spring

» Advanced

Browse...

Select All
Deselect All
Select Tree

Deselect Tree

Refresh

@ < Back Next =

Finish

Cancel

It will create a new project “spring”. This project already contains the file “Application.java”:

170

OpenRules, Inc. OpenRules Web Services

package com.service.spring;
import org.springframework.boot.SpringApplication;

[@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(fpplication.class, args);

¥

}

This is the main application class with @SpringBootApplication annotation for our future Spring

Boot application. If you right-click on this file “Application.java” and select “Run as Java

Application” the Spring Boot will start the embedded Tomcat server, deploy the application on
the Tomcat, and will wait for HTTP requests on the port “localhost:8080”. But this application
doesn’t have any services yet. In the next section, we will add our VacationDaysService to this

web application.

To add different services to this application, we need to create a Java class called a REST
Controller that may include different services waiting to be executed upon the proper HTTP
request. We will call our REST Controller “VacationDaysController” and it will include our service
defined in the project “VacationDaysService”. To make sure that the Spring Boot project

III

“spring” is aware of our project “VacationDaysService”, right-click on “spring/pom.xml|” and

select Maven + Add Dependency. It will open this dialog:

18©

OpenRules, Inc. OpenRules Web Services

£ Add Dependency O x

Artifact Id: | VacationDays |
Version: 0.0.1-SNAPSHC| Scope: compile =

Enter groupld, artifactld or sha'l prefix or pattern (*):

apenrul

Index downloads are disabled, search results
may be incomplete.

Search Results:
= ;
_I com.openrules config
=

| com.openrulessamples VacationDays

Start typing “openrul” in the box “Enter groupld,...” and it will show available results. Select
“com.openrules.samples VacationDays” and Group ID, Artifact Id” and “Version” will be filled
out automatically. After you click OK, Eclipse will add the following dependency to the file

“spring/pom.xml”:

<dependency>

<groupId>com.openrules.samples</groupId>
<artifactId»VacationDays</artifactId>

<version>@.0.1-SNAPSHOT</version>
</dependency>

Of course, you could add them manually as well.

Now we can create a new Java class “VacationDaysController” in the same package

“com.service.spring” where SpringBoot placed the above class Application. Here is the initial

version:

19©

OpenRules, Inc. OpenRules Web Services

package com.service.spring;
import org.springframework.beans.factory.annotation.Autowired;

@RestController
public- class-VacationDaysController: {

@Autowired
private VacationDaysService vacationDaysService;

@RequestMapping(path="/vacationDays", method=' {RequestMethod.POST})
public-int calculateVacationDays((@RequestBody Employee employee) {
System.out.println("/vacationDays for " + employee);
return vacationDaysService.run(employee);

Here we use Spring Boot dependency injection facilities by adding an annotation @Autowired to
the definition of our service. When you type Eclipse will automatically add the corresponding
imports.
To handle the incoming HTTP requests for our service, this controller should include a method
that will accept an Employee object as a parameter and returns a calculated number of vacation
days for this employee.
The method “calculateVacationDays” will be automatically called when our web application
receives a POST request through the URL “/vacationDays” with a JSON object that has the same
properties as the class Employee. To define this functionality, we used Sprint Boot annotations
@RequestMapping and @RequestBody:

@RequestMapping(path="/vacationDays”, method={RequestMethod.POST})

public int calculateVacationDays(@RequestBody Employee employee) {...}

We are not done yet. To “autowire” this service, we need to inform Spring how to create an
instance of the class VacationDaysService. It’s usually done within a special class annotated of
the type @Configuration. So, we need to create a new class “ServiceFactory” annotated it with
@Configuration. For each service this class should include a method annotated with @Bean
that creates and returns an instance of the service. In our case it will be the method

“newVacationDaysService” as described below:

20©

OpenRules, Inc. OpenRules Web Services

package com.service.spring;

import-org.springframework.context.annotation.Bean;
import-org.springframework.context.annotation.Configuration;
import- com.openrules.vacation.VacationDaysService;

@Configuration
public-class ServiceFactory- {

@Bean

public-VacationDaysService newVacationDaysService() {
return new- VacationDaysService();

}

This completes the development of our Spring Boot application with one service that will be
called using URL “/vacationDays”.

To test our web application, right-click on “Application.java” and select “Run As Java
Application”. It will start the embedded Tomcat, deploy the latest version of our spring project,

and will wait to HTTP requests. Here is the protocol from the Eclipse’s Console view:

VAN N G S W U W
CON— T 2o 2 vy

LSV i N I O A O O A NG D D IR ED B

B PR I O U A P B A A A

_| |__/=/_/_/_/

:: Spring Boot :: (v2.1.4.RELEASE)
2019-06-23 08:14:49.064 INFO 30844 --- [main] com.service.spring.Application
2019-06-23 ©8:14:49.869 INFO 30844 --- [main] com.service.spring.Application
2019-P6-23 88:14:50.365 INFO 30844 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer

At the end of the protocol in the right bottom corner you should see that Spring started our
service:

210

OpenRules, Inc. OpenRules Web Services

: Starting service [Tomcat]

: Starting Servlet engine: [Apache Tomcat/9.0.17]
Initializing Spring embedded WebApplicationContext
Root WebApplicationContext: initialization completed in 1372 n
INITIALIZE OPENRULES ENGINE 7.©.1 (build ©6112018) for [classg
INCLUDE=DecisionModel.xl1s
[DecisionModel.xls] has been resolved to [classpath:/vacationl
Processing classpath:/vacationDays/DecisionModel.xls
INCLUDE=Glossary.xls
[Glossary.xls] has been resolved to [classpath:/vacationDays/C
Processing classpath:/vacationDays/Glossary.xls
INCLUDE=Rules.xls
[Rules.xls] has been resolved to [classpath:/vacationDays/Rule
Processing classpath:/vacationDays/Rules.xls
INCLUDE=../templates/DecisionTemplates.xls
[../templates/DecisionTemplates.x1ls] has been resolved to [cl:
Processing classpath:/templates/DecisionTemplates.xls
INCLUDE=DecisionTable${OPENRULES_MODE}Templates.xls
[DecisionTable${OPENRULES_MODE}Templates.xls] has been resolve
Processing classpath:/templates/DecisionTableExecuteTemplates.
*** Decision Vacation Days ***

: Decision Vacation Days has been initialized

: Initializing ExecutorService 'applicationTaskExecutor'

: Tomcat started on port(s): 8e8@ (http) with context path "'

: Started Application in 3.247 seconds (JVM running for 3.567)

Now our web application is running and waiting for HTTP requests.

To create HTTP requests for this web application, we will use POSTMAN, a popular tool that can

be downloaded for free from https://www.getpostman.com/. After installation and start, you

may fill out this POSTMAN’s form:

220

https://www.getpostman.com/

OpenRules, Inc. OpenRules Web Services

& Postman - O X
File Edit View Help

28 MyWorkspace ¥ &, Invite

No Environment v
localhost:8080/greeting [] localhost:8080/greeting ® A+ eee

localhost:8080/vacationDays

POST v localhost:8080/vacationDays “

(9) Body @ Cookies Cod
none form-data x-www-form-urlencoded @ raw binary GraphQL BETA JSON (applicat v
1+ {
2 “age": 55,
3 "service™: 22
4}
Body 3) Status: 200 OK Time: 10ms Size: 132 B
Pretty JSON ~ =
1 24
B R = " Bootcam Build Browse
3 P

In this form, we selected the method “POST” (from the drop-down list), typed the URL

“localhost:8080/vacationDays”, enter a simple JSON structure

{
“age”: 55
“service”: 22

After, a click on “Send”, the POSTMAN sent the proper HTTP request to our web application,
that executed our VacationDaysService and returned the calculated number of vacation days
“24” at the bottom of the form. We may enter different combinations of “age” and “service” to

make sure that our OpenRules-based VacationDaysService works as expected.

230

OpenRules, Inc. OpenRules Web Services

Now we may test our running service from any Java program similar to what we did with
POSTMAN. Spring has already prepared for us the place for all Java tests: the package
“com.service.spring” in the folder “src/test/java”. Let’s add a new Java class

“VacationDaysClient” to this package. It may look as below:

package com.service.spring;
import- java.io.BufferedReader;[]
public class VacationDaysClient: {

public static void main(String[] args) throws Exception:{
URL url = new URL("http://localhost:8088/vacationDays");

String json-=-"{"
+ "\"age\":55,"
+ "\"service\":22"
+ "}
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("POST");
connection.setRequestProperty("Content-Type", "application/json;utf-8");
connection.setDoOutput(true);
try(OutputStream os = connection.getOutputStream()) {
os.write(json.getBytes("utf-8"));
}

try(InputStream is = connection.getInputStream()) {
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
String line;
while((line = reader.readlLine()) !=-null) {
System.out.println(line);
}

As you can see, we create a string with the same JSON data as we used in POSTMAN. Then we
open a connection using the URL “http://localhost:8080/VacationDays”. When we write our
JSON data to the connection’s output stream, it sends the proper HTTP request to our service.
And then we simply read the produced results from the connection’s input stream.

As our service is still up and waiting, we may simply right-click on the “VacationDaysClient.java”
and select “Run As Java Application”. After executing the request, it will display the same 24

days.

240

OpenRules, Inc. OpenRules Web Services

Similarly to the service “VacationDays”, we can move more services from “openrules.models” to

our workspace “openrules.services”. Let’s start with the rules project Hello.

We will create a simple Maven project “Greeting”:

£ New Maven Project O x
New Maven project W

Configure project

Artifact

Group Id: | com.openrules.samples \/|
Artifact Id: | Greeting v|
Version: | 0.0.1-SNAPSHOT V]

Packaging: |jar v|

MName: | Greeting v|

Description: | Greeting a customer based on gender, marital status, and time of the day |

Parent Project

Group Id: | com.openrules v|
Artifact Id: | config \/|
Version: | 7.0.1-SNAPSHOT v Browse.. || Clear

» Advanced

®' < Back Mext = Cancel

Defining Decision Model

We can find the proper decision model implemented in the standard OpenRules workspace
“openrules.models” as a stand-alone project “Hello”. First, we create a new rules repository in
the folder “rules” in our new Maven’s project “Greeting”. We may copy the subfolder
“templates” from the VacationDays/rules/templates into “rules”. Then we will create a
subfolder “greeting” inside “rules”. Then we will copy all Excel files from the folder
“openrules.models/Hello/rules” to the subfolder “greeting”. Here are Excel files and tables that

implement vacation days calculation logic.

File “rules/greeting/Rules.xls”:

250

OpenRules, Inc.

DecisionTable DefineGreeting

If Then
Current Hour Greeting
[0..11) Good Morning
[11..17) Good Afternoon
[17..22) Good Evening
[22-24] Good Night

DecisionTable DefineSalutation

Condition Condition Conclusion

Gender Marital Status Salutation
Is Male Is Mr.
Is Female Is Married Is Mrs.
Is Female Is Single Is Ms.

Conclusion

DecisionTable DefineHelloStatement

Hello Statement

Is | Greeting + ", " + Salutation + " " + Name + "I"

All decision goals, variables, and decision objects are defined in the file

“rules/greeting/Glossary.xls”:

Glossary glossary

Variable

Business Concept

Attribute

Name

Gender

Marital Status

Current Hour

Customer

Greeting

Salutation

Hello Statement

name

gender

maritalStatus

currentHour

greeting

salutation

helloStatement

Business Object

DecisionObject decisionObjects

Business Concept

Customer

= decision.get("Customer")

The file “rules/greeting/DecisionModel.xls” contains the modified Environment table:

OpenRules Web Services

26 ©

OpenRules, Inc. OpenRules Web Services

Glossary xls

include |Rules.xis
_/templates/DecisionTemplates xls

The folder “rules/greeting” also includes the file “Test.xls” that specifies Datatype “Customer”
and creates several test-cases with expected results. To make sure that the new decision model
still works, we copy file “build.bat” and “run.bat” from openrules.models/Hello/ to our new
project “Greeting”, and make the following changes in them:

File “build.bat”:

set INPUT_FILE_NAME=rules/greeting/DecisionModel.xls
set DECISION_NAME="Hello Statement"

set OUTPUT_FILE_NAME=rules/greeting/Goals.xls

cd - %~dp®

call ..\openrules.config\projectBuild

pause

File “run.bat”:

set DECISION_NAME="Hello Statement”
set FILE_NAME=rules/greeting/Test.xls

cd- %~dp®
call ..\openrules.config\projectRun
pause

Double-click on “build.bat” and it will build an execution path for this model and will save it in
the file “Goals.xls”. Then double-click on “run.bat” and it will execute all test-cases producing

the expected results.

Adding a Java Interface

To execute the same model from Java, we will create 3 Java classes:
e Customer.java — to define test-employees
e GreetingService.java — to specify our service
e Test.java —to test the service locally.

So first, we create a new Java package “com.openrules.greeting” in the folder “src/main/java”

and then add a new class Customer:

package com.openrules.greeting;
public-class Customer {

String name;

String gender;
String maritalStatus;
int currentHour;

27©

OpenRules, Inc.

OpenRules Web Services

Then we will use Eclipse to generate Getters and Setters and toString() methods for this class.

Then we add a new class “GreetingService”:

package com.openrules.greeting;

import com.cpenrules.ruleengine.Decision;
import com.cpenrules.ruleengine.OpenRulesEngine;

public class GreetingService {
OpenRulesEngine engine;

public GreetingService() {

engine = new OpenRulesEngine(fileName);

¥

public String run{Customer customer) {
String decisionName = "Hello Statement™;

decision.put("FEEL", "On")};
decision.put("Customer", customer);
decision.execute();

return customer.getHelloStatement();

String fileMame = "classpath:/greeting/Goals.xls";

Decision decision = new Decision(decisicnName,engine);

To test this modified decision model, we will add here a new package “com.openrules.greeting”

to “src/test/java/, and then we will add to this package a new class “Test.java”:

public class Test {

public static void main(String[] args) {

Customer customer = new: Customer();
customer.setName("Robinson");
customer.setGender("Female");
customer.setMaritalStatus("Married");
customer.setCurrentHour(2e);

System.out.println(helloStatement);

GreetingService service = new GreetingService();

String helloStatement = service.generateGreetingFor (customer);

28 ©

OpenRules, Inc. OpenRules Web Services

Right-click on the file “Test.java” and select “Run As Java Application”. It will produce the results

that look like below:

[INFO] Log - -AUTOMATICALLY DETERMINED EXECUTION PATH for Hello Statement:
[INFO] Log - -- DefineGreeting

[INFO] Log - -- DefineSalutation

[INFO] Log - -- DefineHelloStatement

[INFO] Log - -Execute DefineGreeting

[INFO] Log - - Assign: Greeting = Good Evening

[INFO] Log - -Execute DefineSalutation

[INFO] Log - - Conclusion: Salutation Is Mrs.

[INFO] Log - -Execute DefineHelloStatement

[INFO] Log - - Conclusion: Hello Statement Is Good Evening, Mrs. Robinson!
G

ood Evening, Mrs. Robinson!

We may consider that our decision service “Greeting” has been tested as a stand-alone
application and is ready for further deployment. To complete Maven’s installation for this

project, we should right-click on “Greeting/pom.xml|” and select “Run As” + “Maven Install”.
Now it’s time to migrate this service to a REST web-based application using Spring Boot.

Adding Greeting Service to Spring Boot Application

We will continue to use the same Spring Boot project “spring” that we created earlier.

The file “Application.java” remains without changes. Now we want to add a new
“GreetingService” based on our project “Greeting”. To make sure that the Spring Boot project
“spring” is aware of our project “Greeting”, right-click on “spring/pom.xml”, select Maven + Add

Dependency, and fill out this dialog:

29 ©

OpenRules, Inc. OpenRules Web Services

& Add Dependency | e

Group Id: + com.openrules.

Artifact Id: + Greeting

Version: 0.0.1-SNAPSHC| Scope: compile ~

Enter groupld, artifactld or shal prefix or pattern (*):

openru

" Index downloads are disabled, search results

may be incomplete.
Search Results:
) com.openrules config

) com.openrules.samples Greeting
0 com.openrulessamples VacationDays

® | OK Cancel I

After you click OK, Eclipse will add the following dependency to the file “spring/pom.xml”:

<dependency>
<groupId>com.openrules.samples</groupId>
<artifactId>Greeting</artifactId>
<version>@.@.1-SNAPSHOT</version>

</dependency>

dependencies>

Now we can create a new Java class “GreetingController” in the same package

“com.service.spring” where we placed “VacationDaysController”. Here is this class:

300

OpenRules, Inc. OpenRules Web Services

package com.service.spring;
import-org.springframework.beans.factory.annotation.Autowired;[)

@RestController
public class GreetingController-{

@Autowired
private GreetingService greetingService;

@RequestMapping(- path="/greeting", method=- {RequestMethod.POST})
public String produceGreetingFor(@ReguestBody - Customer customer) {
return- greetingService.run{customer);

h

The method “produceGreetingFor” will be automatically called when our web application
receives a POST request through the URL “/greeting” with a JSON object that has the same
properties as the class Customer.

To “autowire” this service, we need to add the method “newGreetingService” (the name is up to
us) to the class “ServiceFactory”. This method will create and return an instance of

GreetingService. Here is the modified class “ServiceFactory”:

package com.service.spring;
import-org.springframework.context.annotation.Bean;[]

@Configuration
public-class ServiceFactory {

@Bean

public-VacationDaysService newVacationDaysService() {
return new-VacationDaysService();

¥

[@Bean

public GreetingService newGreetingService() {
return new: GreetingService();

¥

Now our Spring Boot application can handle two services: VacationDays and Greeting.
To test these services, we will start our application by right-clicking on “Application.java” and
select “Run As Java Application” — make sure that you stopped previous applications which use

the same port.

310

OpenRules, Inc. OpenRules Web Services

Now our web application is running and waiting for HTTP requests for services with URLs:

“localhost:8080/vacationDays” and “localhost:8080/greeting”. If you run POSTMAN with these
URLs and the proper JSON data, it will produce the expected results. We also may add a Java

client in the class GrretingServiceClient in src/test/java/:

package com.service.spring;
import java.io.BufferedReader;[]
public class GreetingServiceClient {

public-static- void main(String[] args) throws- Exception {
URL url-=-new URL("http://localhost:80808/greeting”);

String-json-=-"{"
+-"\"name\" :\"Robinson\","
+ "\"gender\":\"Female\","
+ "\"maritalStatus\":\"Married\","
+- "\"currentHour\": 7"

+

IR
»

HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("POST");
connection.setRequestProperty("Content-Type", "application/json;utf-8");
connection.setDoOutput(true);
try(OutputStream os = connection.getOutputStream()) {
os.write(json.getBytes("utf-8"));
¥
try(InputStream is = connection.getInputStream()) {
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
String- line;
while(- (line = reader.readline()) - !=-null.) {
System.out.println(line);

¥

When you run this class as Java Application, it will produce: "Good Morning, Mrs.
Robinson!”.
To prepare our SpringBoot application for further deployment, we need to right-click on

III

“spring/pom.xml” and select “Run As” + “Maven install”. It will install

openrules.services\spring\target\spring-0.0.1-SNAPSHOT.jar to the Maven’s repository. We just

need to check the “Maven install” will be completed with the message “BUILD SUCCESS”. Here is

the latest structure of the project “spring”:

320

OpenRules, Inc. OpenRules Web Services

- spring [openrules.docker master]
~ [> srg/main/java
~ f#} = com.service.spring
[} Applicationjava
[%} = GreetingController,java
[} ServiceFactory.java
[VacationDaysController,java
& src/main/resources
~ [srcftest/java
~ # com.service.spring
[% GreetingServiceClientjava
[} VacationDaysClientjava
B\ JRE System Library [JavaSE-1.8]
=, Maven Dependencies
=% report
> SIC
v (= target
= generated-sources
= generated-test-sources
= maven-archiver
= maven-status
= surefire-reparts
= spring-0.0.1-SNAPSHOT jar
= spring-0.0.1-SNAPSHOT jar.original
[pom.xml

Please note that the jar-file openrules.services\spring\target\spring-0.0.1-SNAPSHOT .jar
completely encapsulates everything we need to run our deployed decision services
“VacationDays”, “Greeting”, and any other services we may add. And you don’t need to run
“Application.java” from Eclipse. Let’s stop this application in Eclipse. Let’s open a command line

window in the folder “openrules.services\spring”. Now we may enter the following command:

C:_GitHub\openrules.services\spring>java -jar target\spring-0.8.1-SNAPSHOT.jar

It will start our REST web application, initialize both “Greeting” and “VacationDays” services, and

wait for HTTP requests. Here is the start protocol:

330

OpenRules, Inc. OpenRules Web Services

Starting Application v@.@.1-SNAPSHOT on DESKTOP-AORGQIG with PID 15888 (C:_GitHub\openrules.dock

Mo active profile set, falling back to default profiles: default

Tomcat initialized with port(s): 888@ (http)

Starting service [Tomcat]

Starting let engine: [Apache Tomcat/

Initializing g embedded WebApplicati)

Root WebApplicationContext: initialization completed in 1501 ms

INITIALIZE OPENRULES ENGINE 7.0.1 (build) for [classpath:/greeting/Goals.x1s]
INCLUDE=DecisionModel.xls

[DecisionModel.x1s] has been resolved to [classpath:/greeting/DecisionModel.x1s]
Processing classpath:/greeting/DecisionModel.xls

INCLUDE=Rules.xls

[Rules.x1s] has been resolved to [classpath:/greeting/Rules.xls]

[Glossary. &la] haa be
rocessing classpath

Processing classpath:/temp Pcl:ionTemplat
INC =DecisionTable : DE}Templates. &la
[DecisionTable${OPENRULES_MO enplatE5 x1s] has been resolved to [classpath:/templates/Decision

ssing classpath:/templates/DecisionTableExecuteTemplates._xls
cision Hello Statement
ecision Hello Statement has n initialized

INITIALIZE OPENRULES ENGINE 7.@.1 (build 12018) for [classpath:/vacationDays/Goals.xl1s]
INCLUDE=DecisionModel.xls
[DecisionModel.x1s] has been resolved to [classpath:/vacationDays/DecisionModel.xls]
Processing classpath:/vacationDays/DecisionModel.xls
INCLUDE=Glossary.xls
[Glossary.xls] has been resolved to [classpath:/vacationDays/Glossary.xls]
Processing classpath:/vacationDays/Glossary.xls

JE=Rules.x

x1s] has been re:olued to [cla::path:fvacationDayszules.xls]

. x1s] has been resolved to sspath: /templates/DecisionTemplates
Processing classpath) : ecisionTemplates.x
INCLUDE=DecisionTable EN S_MODE}Templates.xls
[DecisionTable$ MRULES E} TPmplatE5 x1s] has been resolved to [classpath:/templates/Decision

sing classpath:/templates/DecisionTableExecuteTemplates.xls
Decision Vacation Days
Decision Vacation Days has been initialized
Initializing Executo = e "applicationTaskExecutor’
Tomcat started on port(s] P80 (http) with context path
Started Application in 3.9 onds (JVM running for 4.341)

v

Now again we may send HTTP requests from POSTMAN or from our Java clients or from similar
programs, and they will work as before. You actually may move spring-0.0.1-SNAPSHOT .jar to
any other location and it will work as well. It’s also ready to be uploaded to AWS or another

cloud repository, and invoke our decision services remotely.

34©

OpenRules, Inc. OpenRules Web Services

Now it’s time to containerize our decision service using Docker. We are going to use the same
port, so let’s stop the running Application by clicking on the red rectangle in the Eclipse bar with

“Console”.

We need to add the following file “Dockerfile” to the folder “openrules.services/spring/”:

FROM openjdk:8-jdk-alpine
COPY target/spring-0.8.1-SNAPSHOT.jar /OpenRulesSampleServices.jar
EXPOSE - 8080

won

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar"," /OpenRulesSampleServices.jar"]

This file will be used to build a Docker image from the command line. To do this, we will use a
command line starting from the “openrules.services/spring/”.

Enter the following command:

ocker build -t openrules.samples

It will build the Docker image of our Spring application and will call it “openrules.samples”. Here

is the execution protocol:

: COPY target/spring-0.0.1-SNAPSHOT.jar /OpenRulesSampleServices.jar

wom now
»

: ENTRYPOINT ["java","-Djava.security.egd=file:/dev/. /urandom”,”-jar
Running in c@ac57a7bcb5e
ing intermediate container c@ac57a7bc5e
e74b8177b6.

J/OpenRulesSampleServices.jar™]

111y tagged openrules.samples:latest
SECURITY WARNING: You are building a Docker image from Windows against a non-Windows Docker host. All files and
ies added to build context will have '-rwxr-xr-x' permissions. It is recommended to double check and reset perm
or sensitive files and directories.

350

OpenRules, Inc. OpenRules Web Services

It will show the temporary name of the started docker’s process, and our application is ready
again to handle HTTP requests. We can do it either from POSTMAN or from VacationDaysClient
and still will receive the same results as before.

Now you can use orchestration tools such as Kubernetes for of the Docker containers with
OpenRules decision services. The created Docker images can be deployed to any cloud
environment that supports Docker containers: AWS, Google Cloud, MS Azure, IBM Cloud,

Rackspace, and many others.

In this tutorial we demonstrated how to migrate OpenRules decision models to Maven. Then we
created a Sprint Boot REST application with several OpenRules-based decision models deployed
as decision services. We had shown how to test this decision services using by sending HTTP

requests with JSON data using the POSTMAN or Java-based clients. And finally, we containerized

this Spring Boot web application using Docker.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this Discussion Group.

36 ©

https://docs.docker.com/docker-for-windows/kubernetes/
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

