
1

Practical Patterns for
Constraint Programming

Jacob Feldman, IntelEngine
Didier Vergamini, ILOG

Overview

4Constraint-based Decision Support
4Patterns for Constraint Programming

– How to plug in a constraint-based engine

– How to define a constrained problem

– How to resolve a constraint problem

– How a user interacts with a constraint-based

system

2

Constraint-based Decision
Support

The Challenges of Integrated
Decision Support
4Optimization
4Integration
4Interaction

3

Optimization

4Intrinsic complexity
4Moving target
4End-user support

Integration

4Business Application
4Constraint-based Intelligent Engines
4Full duplex

4

Interaction

4Dynamic costs
4Trade-off quality versus time
4Heuristics parameters
4What-if analysis
4Self-explanation

Three Classical Layers

Data Model

Object Model

Decision Model

ResolutionDefinition

Architecture
Interaction

5

Data Model / Decision Model

4Entities
4Relations
4Tables

4Variables
4Constraints
4Objectives
4Heuristics

Object Model

4Bridge between the data model and the
decision model(s)
4Interface piloted by the end-user and the

data flow

6

The hottest topic today

4We already have a technology and
supported tools.
4The hottest topic today is how to use them.

What experts say

4"A growing number of us feel we have
misplaced our collective attention for some
time. We no longer need to focus on tools,
techniques, notations and even code. We
already have in our hands the machinery to
build great programs. When we fail we fail
because we lack experience."

Ward Cunningham

7

Design Patterns

4Design Patterns is the newest and most
practical approach to give us what we need:
the way to share development experience.
4Pattern is an idea that has been useful in

practical context and will probably be
useful in others
4Book “Design Patterns: Elements of

Reusable Object-Oriented Software”:
Gamma-Helm-Johnson-Vlissides, 1995.

Design Patterns Format
4Name - a good name is vital
4Intent - what does it do?
4Also Known As - other well-known names
4Motivation - a typical scenario
4Applicability - when to be applied
4How Does It Work - participants, structure,

implementation, sample code
4Known Uses - examples found in real systems

8

Generic Patterns for
Constraint Programming

Architectural patterns

Problem Definition patterns

Problem Resolution patterns

User Involvement patterns

Architectural Patterns

4Batch Constraint Satisfaction
– Pattern “Batch Engine”
– Pattern “Pluggable Engine”
– Pattern “Engine Factory”

4Interactive Constraint Satisfaction
– Pattern “Interactive Engine”
– Pattern “Consistent Constrained Core”

9

Applying Constraint Technology
to Business Application
4Three layers of a constraint-based system:

– Client Application
– Constraint-based Intelligent Engine(s)
– Interface Between the Application and the

Engine

4The architectural patterns present the
Engines insights and different ways of
plugging them into an Application

Batch Constraint Satisfaction

Pattern “Batch Engine”
Pattern “Pluggable Engine”
Pattern “Engine Factory”

10

Pattern “Engine”
4Intent

– solve a complex constraint satisfaction problem
4Also Known As

– Solver, Planner, Scheduler
4Motivation

– Find a “good” solution for job scheduling and
resource allocation problem:

• A set of jobs with unknown starts and set of
resources with known capacities.

• A set of business constraints defined on jobs and
resources

J1 J2 J3

R1 R2 R3

�“Intuitive” structure
of the constrained
environment

�Different constraints
(demons) have
different views of the
constrained objects

�Engine creates and
modifies the state of this
environment

 Engine

Pattern “Engine”: Structure

11

Basic Participants for CP Patterns

4Domains
4Variables, Constrained Objects
4Constraints
4Reversible Actions
4Goals

x[0-100] y[1-100] z[0-100]

x < y x * y = t

t[0-100]

z + t = y

...

...

Constraints

4Extension of event-driven paradigm:
– event handlers for “non-GUI” events
– events defined on constrained objects:

construction, modification, destruction
4Basic functions

– Constructor
– Posting
– Initial Consistency Check
– Demons

12

Constraint sample:
ILOG Template (1)

class MyConstraintI: public IlcConstraintI
{
public:
 // Constructor

MyConstraintI(IlcIntVar x, IlcIntVar y);
 // post/propagate

void post();
void propagate() { xDomain(); yDomain(); }

 // demons
void xDomain();
void yDomain();

private:
…
};

Constraint sample:
ILOG Template (2)

IlcConstraint
MyConstraint(IlcIntVar x, IlcIntVar y)
{
 return

new (x.getManager().getHeap())
 MyConstraint(x, y);

}

13

Pattern “Batch Engine”:
Implementation
4Clear Separation between Problem

Definition and Problem Resolution
4Problem Definition

– Constrained Objects
– Static Constraints

4Problem Resolution
– Dynamic Constraints
– Search Algorithms (Goals)

Typical Problem Definition
4Creates a partition of independent sub-

problems
4Defines constrained objects with decision

variables
4Defines static constraints (usually in object

constructors)
4Defines objectives
4Detects symmetries

14

Typical Problem Resolution

4Builds Search Goals as building blocks for
different resolution strategies
4Adds additional decision variables
4Builds dynamic constraints
4Selects and executes resolution strategy
 (See problem resolution patterns)

Pattern “Batch Engine”:
Integration with Application

J1 J2 J3

R1 R2 R3

ENGINE

I
N
T
E
R
F
A
C
EAPPLICATION

J2

R1

J1

R3

J3

R2

15

Pattern “Batch Engine”:
Integration Sample

J1 J2 J3

R1 R2 R3

ENGINE

DB

I
N
T
E
R
F
A
C
E

DB

GUI

Application

Batch Constraint Satisfaction:
Pros and Cons
4Pros:

– Simplified development
– Clear demarcation between the engine’s

developer and actual customer problems (pros?)
4Cons:

– Inconsistency (uncontrolled manual overrides)
– Inefficiency (schedule “all”)
– Redundant Functionality (for GUI and Engine)
– Difficulties to interpret scheduling results

16

How to Plug In a Batch Engine

APPLICATION

INTERFACE

Intelligent
ENGINE

Pattern “Pluggable Engine”
4Intent

– Plugging the Engine into the existing or a new
application

4Also Known As
– Abstract Interface

4Motivation
– The engine should be independent of the

implementation details of the client application
– The same engine should be pluggable in

different system environments

IE

17

Pattern “Pluggable Engine” :
structure

An Interface Class

An Application Class
An Engine Class

Composition
Inheritance

* Reference to an Interface

4 Interface classes: virtual methods
4Application classes: concrete implementation of

interface classes
4Engine Classes: concrete engine implementation

Pattern “Pluggable Engine”:
Participants

EngineInterfaceApplication

Core

Engine

InterfaceObject
InterfaceObject

InterfaceObject

IlogEngine

EngineObject
EngineObject

EngineObject

ApplObject
ApplObject

ApplObject

ApplCore

18

Pattern “Pluggable Engine”:
Sample of Interface Classes
4Each interface class specifies mainly virtual
accessors & modifiers to application objects
(usually no data members). Sample:

class Resource {
public:
virtual Skill* getSkill() const = 0;
virtual void assignJob(Job* job) = 0;
virtual int getSelectionCost() = 0;… ..

};

Pattern “Pluggable Engine” :
Sample of Application Classes
4Concrete Subclasses of the Interface Classes:

class applResource : public Resource {
public:
Skill* getSkill() const { return _skill; }
void assignJob(Job* job);
private:
applSkill* _skill;
… ..

};

19

Pattern “Pluggable Engine”:
Sample of Engine Classes
4Engine based on ILOG Scheduler™
4Concrete ILOG-aware Classes

class ilogResource {
public:

 Resource* appl() const { return _resource; }
bool does(ilogJob* job); // may fail
… .
private:
Resource* _resource; // -> interface
IlcUnaryResource _unary_resource;
… .

};

Architecture with Multiple
Engines

ENGINE-N

I
N
T
E
R
F
A
C
EAPPLICATION

J2

R1

J1

R3

J3

R2
ENGINE-2

ENGINE-1

20

Pattern “Engine Factory”
4Intent

– Provide an interface for creating families of
related engines

4Also Known As
– Abstract Factory

4 Motivation
– Application can select an engine from the

family without specifying its concrete classes

Pattern “Engine Factory”:
Structure

Client Application AbstractEngineFactory
CreateEngineA()
CreateEngineB()

ConcreteEngineFactory
CreateEngineA()
CreateEngineB()

AbstractEngineA
run()
appl()

ConcreteEngineA
run()
appl()

21

Interactive Constraint
Satisfaction

Pattern “Interactive Engine”
Pattern “Consistent Constrained Core”

Scheduling Reality means
Instant Changes
4When it comes to managing jobs and

resources, change is the name of the game
4Users want to:

– Make changes quickly and easily
– Update and fine-tune schedule in a flash,

whether they’re altering jobs’ start, duration or
adjusting resources.

– Being warned by the system when they make
“impossible” assignments

22

Pattern “Interactive Engine”
4Intent

– The end user must be able to cooperate with the
constraint-based software in developing
solutions

4Also Known As
– Interactive Constraint Solver
– Constraint-Based Graphical Interface

4Motivation
– Add a user expertise while searching for a

better solution of the complex CSP

Pattern “Interactive Engine”:
A Typical Architecture

J1 J2 J3

R1 R2 R3

ENGINE

DB

GUI

Persistency Service

Consistent
Constrained
Core

Live Constrained Objects
and Constraints

23

Pattern “Interactive Engine”:
Motivation
4Users want to interrupt a Constraint

Solver after one or several search steps
4A Constraint Solver should make its

choices explicit to user with an
opportunity to reject, accept or modify
the choice
4VCR-like paradigm:

| |
Play Pause/Resume Forward Backward Stop

Pattern “Interactive Engine”:
Sample - Timetabling Engine
4Staff Planner (BBL, Alain Dresse)

Poll GUI Event

Solve?

Handle Event

No

Continue
Solving?

Yes

GUI

Poll & Handle
GUI Events

No

Yes

Execute
Engine Step

Interactive Engine

24

Pattern “Interactive Engine”:
Code Sample (from BBL)
ILCGOAL1(GoalSolve, InteractiveEngine*,engine) {
 engine->pollAndHandleUserActions();
 IlcGoal next_goal = engine->getUserActionGoal();
 if (!next_goal) next_goal = engine->getNextStep();
 return IlcAnd(next_goal,this); // recursion
}
void InteractiveEngine::solve() {
 IlcSolve(GoalSolve(this));
}

How To Plug In
An Interactive Engine

J1 J2 J3

R1 R2 R3

ENGINE

I
N
T
E
R
F
A
C
E

APPLICATION

J2

R1

J1

R3

J3

R2

Consistent Constrained Core

25

Interface as a two-way road

4Actions (events) from GUI to CCC
4Actions (events) from CCC to GUI

Pattern
“Consistent Constrained Core”
4Intent

– Create a constraint-based object-oriented
environment to support an interactive
constraint satisfaction

4Motivation
– Support different user views (GUI) in a

consistent state
– Allow a user to add/remove constrained objects
– Allow a user to activate/deactivate constraints
– Warn a user about possible inconsistencies in

his/her actions

26

Consistent Constrained Core:
Structure with known patterns

“Singleton”
Consistent Constraint Core

(CCC)

“Memento”
CCC State

activateConstraint()
deactivateConstraint()
saveState()
restoreState(memento)

getState()
setState()
state

“Command”

Engine Modifier (leaf)

execute()
unexecute()

Creates commands,
calls their execute()

Interactive Scheduling in LILCO
UNIX/NT Server

DB

Designer
Engine

Construction
Engine

“Thin”
Windows Client

MainFrame

MIS

Logical View
(DB)

Live
Constrained

Objects

Live
Business
Objects

Reservation
Engine

Logical
Views
(GUI)

Graphical
CRMS
Views

C
on

si
st

en
t C

on
st

ra
in

ed
 C

or
e

Logical
View
(MIS)

27

Consistent Constrained Core:
Integration Principles
4Consistent Constrained Core is built on top

of a concrete Constraint Solver (for
example, ILOG Solver/Scheduler)
4There are no universal constraint-based

GUI, but different GUI’s could be inherited
from the same Consistent Constrained Core
4Problem Definition uses the same

Constraint Solver

Consistent Constrained Core:
Integration Sample

ILOG Solver/Scheduler

Application:
Problem Definition

Library with the class
“Consistent Constrained Core”

Gantt Chart
based GUI

Spreadsheet
based GUI

28

Interactive Constraint Satisfaction:
 Pros and Cons
4Pros:

– Tight integration of GUI and Engines
– Efficiency
– What-if analysis support
– Ability of manual scheduling with controlled

constraint propagation
– Simplified interpretation of scheduling results

4Cons:
– Complex development

DEMO “CONSTRAINER”

4Demonstrates an implementation of a
simple Consistent Constrained Core
– small arithmetic problems
– small logical problems

4Uses two C++ libraries
– ILOG Solver™
– IntelEngine Constrainer™

4Acknowledgement
– Authors would like to thank Vince Moshkevich

for help in the GUI development

29

CONSTRAINER: Main Features

4C++ as a parser for a constraint
programming language
4An end user can activate / deactivate (!)

constraints
4Search goals as constraints
4Interactive constraint propagation

DEMO: Simple Arithmetic
Problem

4 Integer variables X, Y, Z
defined from 0 to 10

4Constraints: X<Y and
X+Y=Z

4New constraints may be
added/removed later

30

Sample of the solution code
main() {

IlcInit();
ViewCore core(“Demo”);
IlcIntVar x(0,10,"x"), y(0,10,"y"),
z(0,10,"z");
core.add(x); core.add(y); core.add(z);
core.add("x<y ", x<y);
core.add("x+y=z", x+y==z);
core.add("x>3", x>3);
core.add("x>4", x>4);
core.add("y<6", y<6);
core.add("z<10", z<10);
core.addDefaultGoals();
core.mainLoop();

 IlcEnd();
}

Live Demo: Arithmetic Problem

31

DEMO: Simple Arithmetic
Problem with Optimization

4Add a cost variable defined from 2 to 15
4Find a solution with a minimal cost
4Find a solution with a maximal cost
4Add/Remove different cost constraints

Sample of the solution code
… … .
IlcIntVar cost(2,15,”cost");
core.addObjective(cost);
core.add(”cost=x*y-2*z",cost==x*y-2*z);
core.add(”cost!=11",cost!=11);
core.add(”cost>8",cost>8);
… ..

32

Live Demo: Extended Arithmetic
Problem

Problem:World Chess Champion?

4Kasparov

4Karpov

4Fisher

33

DEMO: Logical Problem
 “Virtual World Chess Match”
4Kasparov, Karpov and Fisher played 7

games against each other.

4Kasparov won the most games.

4Karpov lost the least games.

4Fisher became a champion.

4Find a final score.

Chess tournament: solution (1)
// Define mutual Victories, Losses and Draws
IlcIntVar
V12(0,7,"1 won 2"), L12(0,7,"1 lost 2"), D12=7-V12-L12,
V13(0,7,"1 won 3"), L13(0,7,"1 lost 3"), D13=7-V13-L13,
V23(0,7,"2 won 3"), L23(0,7,"2 lost 3"), D23=7-V23-L23;

core.add(V12); core.add(L12);
core.add(V13); core.add(L13);
core.add(V23); core.add(L23);

34

Chess tournament: solution (2)
// Define personal Victories, Draws, Losses
IlcIntVar
V1 = V12 + V13, D1 = D12 + D13, L1 = L12 + L13,
V2 = L12 + V23, D2 = D12 + D23, L2 = V12 + L23,
V3 = L13 + L23, D3 = D13 + D23, L3 = V13 + V23;

// The first player won the most games
core.add("1 won most", V1>V2 && V1>V3);
// The second player lost the least games
core.add("2 lost least", L2<L1 && L2<L3);

Chess tournament: solution (3)
// Define Points
IlcIntVar
P1 = 2*V1 + D1, P2 = 2*V2 + D2, P3 = 2*V3 + D3;

core.add(P1); core.add(P2); core.add(P3);

// The third player became a champion
IlcConstraint champion = P3>P1 && P3>P2;
champion.setName("Player 3 got the most points");
core.add("3 is champion", champion);

35

Chess tournament:
Minimize/Maximize Victories
// Define Total number of Victories
IlcIntVar Victories = V1 + V2 + V3;
Victories.setName(“Victories”);
core.addObjective(Victories);

// Define default goals: Solution, Minimize, Maximize
core.addDefaultGoals();
core.mainLoop();

Live Demo: Chess Tournament

36

Generic Patterns for
Constraint Programming

Architectural patterns

Problem Definition patterns

Problem Resolution patterns

User Involvement patterns

Object Model with Relations

4Data model
– Entities
– Relations

4Object model
– Direct navigational model
– Template classes implementing relations
– Automated consistency management

37

Decision Models as Modal Views

4Different decisions need different models
4Potential many to many relations between

decision concepts (variables, constraints)
and objects
4Navigation in the object model induces

navigation in the decision model
4Results are stored back in the object model

Problem Definition Patterns
4How to Organize the Problem Definition
4Pattern “Data Validator”
4Pattern “Hard Constraints (rules)”
4Pattern “Frozen Constraints”

38

Separation of Problem Definition
and Problem Resolution
4The separation is a classical advantage of

CT. The question is “How to separate”?
4Where to keep knowledge about the

separated problem definition?
4How to distribute the problem definition

between 3 major layers:
– Application
– Interface
– Engine?

How to Organize the Problem
Definition
4The Interface via abstract methods defines

main Application’s objects the Engine
operates with.
4It is natural to ask the Interface to keep the

relationships between these objects too.
4Usually such relationships are defined via

concrete (non-virtual) methods inside the
Interface

39

Problem Definition using
 the Interface

E
N
G
I
N
E

INTERFACEAPPLICATION

J2

R1

J1

R3

J3

R2

Virtual Methods to
Access Application
Objects

Concrete Methods
Defined on
Application Objects

Example: define a machine setup
time for different products
4The Interface has virtual methods

machine(id) and product(id) to get concrete
Application’s machines and products
4The Interface has a concrete method

Machine::setupTime(Product p1,Product p2)
that can (and should!) be defined directly in
the Interface using other Machine’s and
Product’s virtual methods.

40

Separation of PD and PR: pros
and cons
4Advantages: well known, but today they are

considered as a common place
4Disadvantages:

– “fighting” with constraint propagation
– inefficiency
– dynamically posted constraints

4Alternatives/Complements:
– constraints as resolution select-methods

Pattern “Data Validator”

4Intent
– Checking data integrity versus different criteria

4Also Known As
– Filter

4Motivation:
– Before performing any kind of optimization,

you want to filter at any level all possible
“easy” inconsistencies.

41

Pattern “Data Validator” (2)

4Applicability
– Database level data validation
– Interface level data validation
– Engine level data validation

• Initial constraint propagation
• Quick search to prove a solution existence

Pattern “Hard Constraint”

4Intent
– Express mandatory characteristics of a solution

4Also Known as
– Rule

4Motivation
– A problem definition usually contains a core of

constraints that must be satisfied.
– In some cases, some properties have to be

satisfied as consequence of characteristics of
the problem.

42

Pattern “Hard Constraint” (2)

4Applicability
– Structural Constraints
– Relational Constraints
– Intrinsic Constraints

4Consequences
– Search tree pruning: faster solutions
– Search space very sparse: slower solutions

Pattern “Frozen Constraint”

4Intent
– Freeze possibilities for some part of the

problem
4Also Known As

– Manual Override
4Motivation

– An end-user always wants the possibility of
“freezing” some part of the problem, and search
for a solution, with additional constraints.

43

Pattern “Frozen Constraint” (2)

4Applicability
– Manual Overrides
– Consistency Checker
– Solution Checker

4 Engine provides 0-100% automation
– In practical constrained systems, a “good”

engine does about 60-80% of job, and a user
through “frozen constraints” improves the
solution “optimality” and “practicality”

Pattern “Frozen Constraint” (3)

4Consequences: Search Goals & Constraints
– “Batch” View:

 Constraint is a Goal
– “Interactive” View:

Goal is a Constraint
– Engine as a “heavy” constraint

44

Generic Patterns for
Constraint Programming

Architectural patterns

Problem Definition patterns

Problem Resolution patterns

User Involvement patterns

Problem Resolution Patterns

4Pattern “Hybrid Solvers”
4Pattern “Strategy”
4Pattern “Greed”
4Pattern “Slack”
4Pattern “Prioritization”
4Pattern “ Constraint Relaxation”

45

Pattern “Hybrid Solvers” (1)

4Intent
– taking advantage of complete resolution of

relaxed versions of a given problem

4Also Known As
– Cooperative Solvers
– Collaborative Solvers
– Redundant Solvers
– Constraint Programming!!!!

Pattern “Hybrid Solvers” (2)

4Motivation
– A problem is decomposed into sub-problems

that can be efficiently solved independently
– A solution to the global problem has to satisfy

all the sub-problems

46

Pattern “Hybrid Solvers” (3)

4Applicability
– Incremental resolution
– Trade-off between quality of resolution and

global heuristic
– Heuristic based on optimizing a given sub-

problem to find quicker good solutions
– Introduction of redundant constraints

Pattern “Hybrid Solvers” (4)

4Known Uses
– Ilog Solver and related components!
– Resource allocation: redundant constraint of

aggregated resources
– MILP: heuristic based on the “current solution”

of an optimization based on a SIMPLEX
algorithm

47

Integration with linear
programming
4Exploit the power of linear programming

through the resolution of a relaxed or
modified problem
– To prune the search space
– To obtain lower bounds on cost variables
– To guide the search

4Use constraint programming
– To take specific constraints into account
– To solve the overall problem

Application: reactive scheduling

LINEAR PROGRAMMING
Obtain a linear probe

CONSTRAINT PROGRAMMING
If the probe violates a resource constraint

THEN select two activities and branch on their
ordering

ELSE report success

CONSTRAINT PROGRAMMING
Propagate temporal and resource constraints

report failure if the
propagation detects

that there is no solution

report failure if the
linear program
has no solution

Confer Claude Le Pape

48

Pattern “Strategy” (1)

4Intent
– definition of family of algorithms

4Also Known As
– Policy

4Motivation
– Common encapsulation tackling different

situations

4Confer Gamma’s Strategy

Pattern “Strategy” (2)

4Structure

Strategy

AlgorithmInterface()

Context

ContextInterface()

StrategyA

AlgorithmInterface()

StrategyB

AlgorithmInterface()

StrategyC

AlgorithmInterface()

49

Pattern “Strategy” (3)

4Implementation:
– Search goals as inner classes, generated by

virtual member functions
– Selectors as virtual member functions

Pattern “Strategy” (4)

4Known Uses
– Generic Enumeration (Generate, Best Generate)
– Exhaustive Column Generation
– Directed Search for Scheduling and Resource

Allocation
• Job Selector
• Resource Selector

50

Pattern “Greed” (1)

4Intent
– Reduction or elimination of backtracking

4Also Known As
– Myopia

4Motivation
– Fast solution
– Local optimization

Pattern “Greed” (2)

4Structure

Greed
Iteration()

Iterator
First()
Next()

IsDone()
CurrentItem()

Strategy

AlgorithmInterface()

51

Pattern “Greed” (3)

4Applicability
– Grouping related decision
– Time phased reasoning
– Sequencing

Pattern “Greed” (4)

4Consequences
– Non exhaustive search, but can be locally

exhaustive
– Beware of greedy failures
– Optimization by local improvements

52

Pattern “Slack” (1)

4Intent
– Relaxation of an over constrained problem

4Also Known As
– Soft Constraint

4Motivation
– Failing in finding a solution to a given problem

is usually not enough; you want to be able to
propose solutions that respect “most of it”!

Pattern “Slack” (2)

4Applicability
– Very hard constraint satisfaction problem
– Real problems usually contains some

flexibility, because they are handled by
imperfect creatures

53

Pattern “Slack” (3)

4Known Uses
– Introduction of additional resources
– Relaxation of due dates
– Constraints as Boolean

4Consequences
– Very often specific solution search
– Additional optimization heuristics

Pattern “Slack” (4)

4Example: Map coloring (Ilog Solver User’s
Manual)
– Color the map of Europe with the constraint

that neighbors use different colors
– Use no more than 3 colors!!!

• Relax the constraints on Luxembourg borders
• Set the objective function on these slacks

54

Pattern “Prioritization” (1)

4Intent
– Prioritize problem-specific sequence of

constrained objects
4Also Known As

– Preference
4Motivation

– Need to take into account job’s priorities,
resource-to-resource preferences, resource-to-
job preferences, etc.

Pattern “Prioritization” (2)

4Applicability
– Different quality criteria
– Partitioning of the problem into different layers

4Known Uses
– Priority escalation: the closer the job’s due date,

the higher its priority
– Greedy use of the priorities
– Required Resource Sequencing

55

Pattern “Prioritization” (3)

4Deterministic Search based on a static or a
dynamic order
– Job Selectors
– Resource Selectors
– Sorting of Object Containers

Pattern “Constraint Relaxation”
(1)
4Intent

– Relax a non-satisfiable constraint

4Also Known As
– Valve

4Motivation
– Instead of optimizing by improving a solution,

you want to relax an over-constrained problem
until you find a solution

56

Pattern “Constraint Relaxation”
(2)
4Applicability

– Bounding a Counting constraint
– Bounding due date relaxation
– Adding additional resources

Pattern “Constraint Relaxation”:
Sample
IlcIntVar objective = …;
IlcInt lowerBound = objective.getMin();
IlcInt upperBound = objective.getMax();
IlcInt bound;
for (bound = lowerBound; bound <= upperBound; bound++)
{

// we add a constraint on the objective
IlcGoal goal = (objective == bound);
manager.add(goal);
if (manager.nextSolution())

break; // we have found a solution, we stop here
// we did not find a solution
// we remove the constraint on the objective
manager.restart();
manager.remove(goal);

}

57

Example: Multiple Assignment

Example: Multiple Assignment

Resource

Capacity
Skills

Task

Priority
Due Date
Duration
Required Skill
Required Qty

Skill

Resources

58

Multiple Assignment

4A task needs a resource to be scheduled
4A task cannot be scheduled after its due

date
4A task can remain unscheduled
4Resource capacities are hard constraints

Multiple Assignment: Objectives

4Minimize the number of unscheduled tasks
per priority level
4Maximize the use of resources
4Minimize the global “earliness” of the

solution

59

Multiple Assignment:
Simple Strategies
4Greedy search, no backtrack

– for each task, try all possibilities, and keep the
best

4Greedy by priority level
– no backtrack between priorities
– exhaustive search (with limit on the number of

backtrack) on each priority

Multiple Assignment:
Sample Source Code
4The source code illustrated some mentioned

above patterns is attached
4The latest version of the source code could

be requested from: vergamini@ilog.com
4You are encouraged to suggest

improvements and extensions

60

Generic Patterns for
Constraint Programming

Architectural patterns

Problem Definition patterns

Problem Resolution patterns

User Involvement patterns

Requirements

User Involvement Patterns

4Development-time
involvement
An end user should be
involved during the
entire life-cycle of the
constraint-based
system

4Run-time
involvement

Specification

Implementation

Actual Use

Foundation

61

User Involvement Patterns

4Pattern “Configurator”
4Pattern “Time versus Quality”
4Pattern “Multiple Objectives”
4Pattern “Snapshot”
4Pattern “What if”

Pattern “Configurator” (1)

4Intent
– Handling data not specific to the problem but to

the way it is going to be solved or optimized
4Also Known As

– Tweaker, Fine-Tuner

4Motivation
– Need to take into account user specific, and

data specific information. As well, the end-user
may help choosing the strategy.

62

Pattern “Configurator” (2)

4Applicability
– Iterative improvements
– Options of specific constraints
– Alternative search or improvement strategies
– Alternative objective
– Fine tuning
– What-if analysis

Pattern “Configurator” (3)

4Configuration parameters definition
– User profile
– Environment variables
– Configuration file (ini-file)
– Run-time parameters
– GUI

63

4Intent
– Setting an artificial limit to stop a search

4Also Known As
– Watchdog

4Motivation
– Need to be protected against problem not fitting

the tried heuristic,
– Often, a problem too hard need to be

considered as a problem without solution.

Pattern “Time versus Quality” (1)

Pattern “Time versus Quality” (2)

4Applicability
– Iterative improvements
– Optimization by iterative relaxation

4Implementation
– Based on CPU time
– Based on backtrack count
– Based of the “tried” percentage
– Prorated enumeration
– User interrupt

64

Pattern “Multiple Objectives”(1)

4Intent
– Giving the respective importance of different

optimization objectives
4Also Known As

– Weighted Cost
4Motivation

– When your objective is clearly decomposed
into comparable/incomparable sub-objective,
you want to give the user an opportunity of
tuning what his/her real objective is.

Pattern “Multiple Objectives”(2)

4Applicability
– Aggregation of the quality of the solution
– Several objectives without clear prioritization

4Sample Implementations
– GUI Sliders (input)
– Pie Chart, Bar Chart (output)

65

4Applicability
– How to compare “White” and “Sweet”

4Objective Weights
– Cost = Σ w[I] * cost[I]
 i

Incomparable Objectives

0 100%
White:
Sweet:
Heavy:

Pattern “Snapshot” (1)

4Intent
– Save all the data necessary to characterize a

solution.
4Also Known As

– Solution
4Motivation

– Need to keep track of one or several solutions
to a given problem together with the condition
of the search (parameters) to allow
improvement heuristics (semi-manual what-if,
local improvement techniques)

66

Pattern “Snapshot” (2)

4Applicability
– Elaborate comparison between different

solutions
– Heuristics based on perturbation of a solution
– Persistent mechanism
– Model validation on provided valid and invalid

solutions

Pattern “What if”

4Intent
– Allow the user helping in the solution search

4Also Known As
– Driver

4Motivation
– Combine the end-user expertise with the

computation power
– Limit exhaustive search, add “determinism”
– Take into account preferences not expressed in

the model

67

Pattern “What if”

4Implementation

– change weights and re-run the Engine
– set frozen assignments and re-run the Engine
– request a “different” solution

A Few Research Directions

4Dynamic Weighting
4Over-Constrained Problems
4Self-Explanatory Engines
4A User in A Choice Point

68

Dynamic Weighting

4Provocative conclusion:
– each data set requires a customized search

strategy?!

4Computing problem metrics up front
– Data Analyzer

– Dynamic selection of scheduling weights

– Dynamic selections of scheduling strategies

Over-Constrained Problems
4“..rather than searching for a solution to a

problem, we must, in a sense, search for a
problem we can solve”

Eugene Freuder

4Partial Constraint Satisfaction
4A lot of useful patterns could be found in

the book “Over-Constrained System”, ISBN
3-540-61479-6

69

Self-Explanatory Engines

4Engine Logs
– Commented “tries” and “failures”
– Configurable printing

4Explanation of failures
– where
– why
– when

Self-Explanatory Engines (2)

4Propagation trace

4 Interactive experiments
– Freeze “everything”

– Deactivate a selected constraint

– Activate a selected constraint

70

A User At a Choice Point

Choice
Point

Choice
Point

Chess as a model for the
Interactive CSP
4Man vs Man

4Man vs Computer

4(Man+Computer) vs (Man+Computer)

71

Choice Point Visualization

4A man with a computer in a choice point
4What to present to a human about the

current search situation:
– Search Size Estimate
– Search Time Estimate
– Search Complexity Estimate
– Preferable resulting positions (no knights, at

least one rook, a “boring” position, etc.)

Choice Point Visualization

4Dynamically configurable strategies
– “They tuned it to play against me personally”

 (Kasparov about the “Deep Blue”)

4Any chess position (choice point) has a
“shape” favorable or unfavorable at this
particular moment to this particular player
4 “I can hear the moves” (V. Nabokov. “The

defence”)

72

CP Pattern Development

4We just attempted to initiate CP patterns
development
4Horizontal (generic) CP Patterns
4Vertical (industry-specific) CP Patterns
4Other Patterns

– Tabu, GA, Lagrangian Relaxation, and much
more

Conclusion

4Consider not one but a Family of multi-
objective constraint-based engines

4Keep users involved during the entire
system life-cycle.

4Use common CP design patterns
4Join us in our efforts to build a library of

design patterns for CP

