
CP-based Social Scheduling

Jacob Feldman, Eugene Freuder, Leonid Ioffe, James Little, Oscar Manzano

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{j.feldman | e.freuder | l.ioffe | j.little | o.manzano}@4c.ucc.ie

Abstract
This demonstration will showcase how CP-based schedulers
can be plugged into popular social utilities such as Google
Apps or Facebook. In particular, we will demonstrate a CP-
based meeting scheduling plug-in for Google Calendar that
enriches social event management tools with automatic
scheduling facilities.

Introduction
Social applications revolve around people and their
relationships. They not only enhance social experiences
but “can solve real world tasks where the social graph
assists us in making decisions. They can be useful to
facilitate meetings, purchases, recommendations,
information management” (see Social Design Best
Practices, http://code.google.com/apis/opensocial).
Nowadays millions of people are using social utilities such
as Facebook, MySpace, Google Apps, and others to setup
meetings and to coordinate different events with friends
and colleagues who work, study and live around them.
Even large enterprise-oriented systems such as IBM Lotus
Notes transfer themselves into social utilities to take into
consideration real-life interests and personal schedules of
corporate employees (http://www-306.ibm.com/software
/lotus/products/connections).

The majority of social utilities provide powerful while
friendly web interfaces that help users to put events,
meetings, and other common activities into shared
calendars. However, the actual event/meeting scheduling
and rescheduling remains a prerogative of human
administrators with manual selection of time and location
that may or may not satisfy all participants. As was
pointed at ICAPS-2007, “current status still remains behind
automatic scheduling abilities being incorporated into these
systems” (http://abotea.rsise.anu.edu.au/satellite-events-
icaps07/demos/5/ra.pdf). Automatic scheduling is
especially important for organizations that have multiple,
frequently overlapping meetings. Manual meeting
rescheduling with repetitive renegotiations between
different participants becomes the real issue.
At the same time automatic meeting scheduling with
various temporal and resource constraints is one of the
most studied area of Constraint Programming (CP) with
multiple success stories. So, why do we not see CP-based

schedulers being incorporated in social utilities? Below we
concentrate on this question and offer an architectural
approach for CP-based “Social Scheduling” that is
intended to work with different social networks utilizing
different CP solvers. To demonstrate the proposed
architecture, we have implemented a CP-based plug-in for
Google Calendar that enriches social event management
tools with automatic scheduling capabilities.

Scheduling in Social Environment

There are many off-the-shelf event management products
with powerful build-in automatic meeting schedulers.
However, they operate outside of social networks and do
not have access to the information about actual people
availability. A big problem for adaptation of these
products in the social context is their “heavy weight” –
offering too many scheduling capabilities they request too
much from their potential users. Instead of looking at the
social world from a scheduling perspective, it is necessary
to recognize that contrary to manufacturing or airline
businesses the social world does not consider a scheduler
as a mission-critical component.

To be accepted by the social environment, an automatic
scheduler should become a simple pluggable component
that will be invoked only when necessary with minimum
effort and maximal utilization of information already
provided by humans to different social networks.
Simplicity and intuitiveness of the scheduling user
interface is a key for success. Today trivial “meeting
schedulers” that just offer to all participants several
timeslots to choose from are among the most popular
scheduling tools. They are less concerned about
scheduling power but more about natural integration with
calendaring, broadcasting, notification, and other services
already provided by social utilities.

CP may play extremely well in this context. Here CP’s
ability to dynamically formulate a scheduling problem by
adding/removing custom constraints “on-the-fly” and not
worrying about the scheduling algorithm become the real
value. A CP-based scheduler would be able to address real
scheduling and resource allocation issues that are beyond
the reach of simplified meeting schedulers. This is

especially important for social networks that integrate
corporate and personal events. For example, for a
recurring meeting that goes over 12 weeks the current
Google scheduler will produce a “No match” answer if a
particular location is not available during last two weeks.
The advanced CP scheduler will schedule the first 10
weeks and find a replacement location for the last two
weeks or will produced an appropriate warning.

The automatic scheduler should be able to validate manual
scheduling decisions, provide warnings and
recommendations, and propose automated solutions. It
should avoid "no match" responses, but rather produce
“explanations” and possible alternatives. The scheduler
should be highly interactive and customizable. Specialized
constraints should enable the creation of bespoke
schedulers to reflect the needs of individuals, groups,
and/or organizations such as working hours, time zones or
preferred blocked days or day parts. Some constraints
might be acquired with machine learning methods to
personalize painlessly. The scheduler should be reactive
and proactive; changes in personal calendars maintained by
potentially different social utilities should “propagate” and
trigger appropriate scheduler actions of the centralized
scheduler. The automatic scheduler should try to minimize
changes in previously scheduled events. The scheduler
could be “always on”, producing warnings and
recommendations in response to changes.

The above requirements are not unusual for CP-based
online schedulers. Practical social event scheduling
scenarios do not create really challenging constraint
satisfaction and optimization problems – most of them
could be handled by standard search algorithms provided
by almost any CP solver. The real challenge is in setting
up an architecture that incorporates CP-based schedulers
into existing social networks while satisfying the described
requirements.

Architecture

At the high level the proposed architecture for a social
scheduling framework is presented in Figure 1. We try to
keep the architecture vendor-neutral so it can work with
different social utilities and different CP solvers.
However, today Google Calendar is dominating the online
personal calendar space being actively used inside different
social networks. Google even initiated a common
OpenSocial API for social applications across multiple
websites. While other social utilities also provide their
own event management applications with powerful
collaborative interfaces (see Facebook and MySpace
“Events”), Google Calendar Server is the one that allows
external applications not only to read events but also to
modify them programmatically. An ability to change event
attributes and to add new ones is essential for automatic
schedulers. Google Calendar Server and our own Event
Scheduling Server play a key role in the described

architecture. While we will receive events from different
social utilities we will use Google Calendar Server as a
placeholder for all events controlled by our advanced
scheduler. From an event scheduling perspective all users
are divided in two categories:

• Event Participants: also known as meeting guests
who collaborate with others only through native
web interfaces such as Google Calendar or
Facebook/MySpace Events

• Event Administrators: who also have access to a
more powerful Event Scheduling GUI and might
define different event constraints and preferences
and execute an automatic event scheduler to find
the optimal start times and locations.

The Event Scheduling Server has three major functions:

• Interaction with a special Event Scheduling GUI
• Communication with involved social utility servers
• Implementation of an automatic event scheduler.

Through the Event Scheduling GUI event administrators
are able to see and modify all events that are currently
under their control defining earliest start and latest finish
times, durations, required and optional participants, etc.
They are kept informed about all automatically discovered
conflicts in people and location availabilities, are able to
setup priorities for conflicting events, and to launch an
automatic scheduler to resolve the conflicts. The scheduler
is implemented using a generic CP API and may switch
between different underlying open source or commercial
CP solvers without changes in the scheduler code (see
http://cpinside.com).

Use Case Scenario

Let’s consider a scenario when a company ABC decides to
improve its multi-departmental meeting scheduling with
commonly used software taking into consideration real-
world availability of its employees. It may choose any
calendaring software from Lotus Notes to Google

Calendar. We will assume that for this demo Google was
selected. The ABC meeting administrator (“admin”)
creates two Google calendars:

• ABC Meetings Calendar – for company events
only. All ABC employees could see all events they
are involved in and accept/reject participation in
these events via the native Google Calendar
interface. Only ABC meeting administrator(s)
could make changes in this calendar using either
the native interface or an advanced Event
Scheduling GUI

• ABC Personal Events – another Google calendar
where ABC’s employees are supposed to put their
personal events such as vacations, business trips or
doctor visits to inform the company about their
unavailability. Only employees themselves could
change these events.

Additionally ABC’s employees may use other social
utilities to keep the company informed about their
unavailability. For example, in Facebook people may
create private events and invite an ABC admin to attend
them. Alternatively, they may let the company know that
all their public Facebook events of a certain category
should be considered during ABC meeting scheduling.
People share with their employer only email addresses
under which they are known on the selected social
networks, but they remain in complete control which
events to share and which to hide.

Now let’s look at how the admin communicates with the
system. The admin always may use the standard Google
Calendar GUI to access the ABC own Scheduler:

The admin will be asked to enter authorization requisites
and if the authorization phase passed successfully, the
Event Scheduling Server will be launched (if it was not
launched earlier) on the company’s own web application
server. Next, the Scheduling Server will download all
active company meetings of this admin from the Google
Server. All non-ABC events in which participants of the
downloaded ABC meetings are possibly involved will also

be downloaded from the Google Server. Similar personal
events could be downloaded from other social utilities.
The scheduler will be automatically executed to validate all
downloaded meetings and events against currently active
constraints and preferences. Finally, the admin will be
presented with a scheduling GUI that may look like the one
in Figure 4.

On this screen the admin can see all downloaded ABC
events and their status, along with possible warnings and
errors generated by the automatic scheduler. All
participants who may have scheduling conflicts will be
marked in yellow or red based on the seriousness of the
conflict, e.g. unavailability of an optional meeting attendee
could be ignored (based on a system setting).
Unavailability reasons including events downloaded from
participants personal calendars might also be presented to
the admin. From this view the admin may:

- Modify meeting priorities
- Change scheduling makespan, constraints and

preferences, working hours and other company-
level settings

- Re-Schedule all or only selected meetings by
calling the CP-based Scheduler

- Broadcast all changes back to the Google Calendar
with the proper notifications

- Download the latest changes from all social utilities
servers

- Open and update individual meetings.

The admin may also deal with one meeting at a time like as
in Figure 3:

The Single Meeting View allows the admin to enter
additional meeting scheduling attributes such as “Earliest
Start”, “Latest Finish”, “Duration”. Manual event
schedulers usually do not support these attributes and force
a user to enter exact start and end event times. It is
important this information will be attached to the standard
meeting events and saved on the Google Server during

Figure 2: Launching Event Scheduler from Google
Calendar Figure 3: Admin GUI – Single Meeting View

broadcasting. If the admin, after making changes, decides
to launch the scheduler directly from this view, only this
particular meeting will be rescheduled considering all other
meetings as frozen.

Implementation

Our current meeting scheduler demonstrates a possible
implementation of the 3rd layer described in the Figure 1.
We use mainly Java-based development tools to implement
3 major components:

- Event Scheduling GUI
- Event Scheduling Server
- Automatic Event Scheduler.

To support the vendor-neutral architecture described in
Figure 1 we have developed a Java package that constitute
the BOM (business object model) for our event scheduling
problem. This is a simple API that allows a developer to
express all business concepts and functions in generic
terms without any knowledge of a concrete implementation
of social networks and an actually used scheduler. It
contains interfaces and partial implementations for such
concepts as Meeting, MeetingGuest, Meeting Admin that
could be naturally extended to GoogleMeeting or
LotusMeeting.

The current implementation uses:
• Apache Tomcat (http://tomcat.apache.org) as a

foundation for our own Event Scheduling Server. While
we could apply any web development technique to
implement the GUI, we have chosen OpenRules
(http://openrules.com) because it allowed us to quickly
represent the above graphics using simple Excel forms,
to concentrate on the interaction logic naturally
represented in business rules, and to automatically
deploy the resulting web application on the Tomcat
server.

• Java API (http://code.google.com/apis/calendar) for
Google Calendar that provides an authorized access to

the Google Server, allows our server to download all
events visible to the admin, attach our own data to the
standard Google events and save them back on the
Google Server, and finally broadcast all changes
introduced on our server. To receive events from other
social utilities we applied Java APIs provided again by
Google.

• CP-Inside framework recently developed by Cork
Constraint Computation Centre (http://cpinside.com)
that allowed us to represent the event scheduling
problem using a generic Java CP API. As a result, the
same implementation of our event scheduling problem
successfully works with different underlying CP solvers
such as Choco (http://choco.sourceforge.net) and ILOG
JSolver (www.ilog.com). While the underlying CP
solvers do not provide direct scheduling facilities they
work well with a basic scheduling component built on
top of the CP-Inside API. The efficiency of the resulting
Meeting Scheduler and the overall system has been
satisfactory.

The implemented prototype has shown that the proposed
non-intrusive approach for plugging CP-based components
into modern social networks does not introduce an
significant overhead or affects their scalability and
efficiency, which otherwise would become a barrier for
real-world acceptance. While this demonstration
concentrated on meeting scheduling, a similar approach
may be applied for vacation scheduling, for scheduling of
business trips at various locations, for generation of
personalized TV schedules, and other tasks that deal with
multiple combinations of business and personal events
inside social networks.

Acknowledgements: This material is based upon works
supported by Enterprise Ireland under Grant CFTD/06/209
and by the Science Foundation Ireland under Grant No.
05/IN/I886.

Figure 4: Event Scheduling GUI

