

OpenRules, Inc.

www.openrules.com

May-2014

RULE SOLVER™
Constraint Programming

with

OpenRules® 6.3.1

USER MANUAL

http://www.openrules.com/

OpenRules, Inc. Rule Solver™, User Manual

2

Table of Contents

Introduction ___ 4

Document Conventions __ 5

Rule Solver as Inferential Rule Engine _______________________________________ 6

Simple Examples __ 6

Simple Decision Model “DecisionHello” ___ 6

Decision Model __ 7

Solution with Rule Engine __ 8

Solution with Rule Solver ___ 11

Simple Decision Model “DecisionLoan” __ 14

Decision Model ___ 14

Solution with Rule Engine ___ 19

Solution with Rule Solver ___ 20

Decision Modeling with Rules Solver ___ 22

Rule Solver
™

 Benefits ___ 22

How Rule Solver
™

 Works __ 22

Generating CSP ___ 23

Adding Constrained Variables __ 24

Adding Constraints __ 24

Posting Data Constraints __ 25

Posting Problem Constraints ___ 25

Solving the Problem __ 26

Using Templates __ 27

Using JSR-331 ___ 28

Decision Execution Reports __ 28

OpenRules Solver Execution Report __ 29

Decision "DetermineLoanPreQualificationResults" _______________________________________ 29

Wed Apr 23 16:41:58 EDT 2014 __ 29

=== Assigning Data To Decision Variables === ___ 29

=== Posting If-Then Constraints === ___ 30

Posted If-Then Constraints __ 30

Decision Output ___ 33

Implementation Restrictions and Future Improvements ___________________________________ 33

Rule Solver as a Business-Oriented Constraint Solver _________________________ 34

Constraint Satisfaction Problem (CSP) __ 34

Formal Definition __ 34

Major CP Concepts __ 35

Introductory Example “SEND+MORE=MONEY” __ 36

Excel-based Decision Model ___ 36

Pure Java Solution ___ 40

Solving Arithmetic Problems ___ 41

OpenRules, Inc. Rule Solver™, User Manual

3

Find One Solution ___ 44

Find All Solutions __ 44

Find Optimal Solution __ 45

Sudoku Problem ___ 47

Magic Square Problem ___ 50

Zebra Problem __ 51

Solving Scheduling Problems __ 57

General Model __ 57

Example “Scheduling Construction Jobs” ___ 58

Solution in Java ___ 59

Solution in Excel ___ 61

Example “Resource Allocation” ___ 63

Solution in Excel ___ 64

Solution in Java ___ 66

Learn By Examples __ 68

Example “Scheduling Construction Jobs with a Worker” ___________________________________ 69

Example “Scheduling Construction Jobs with a Limited Budget” ____________________________ 70

Example “Scheduling Construction Jobs with Alternative Resources” ________________________ 73

Installation ___ 75

Structure __ 75

Project “com.openrules.solver“ __ 75

Project “openrules.config“ __ 76

Decision Projects __ 76

Licenses ___ 76

Using a Standalone Version ___ 77

Working under Eclipse IDE __ 77

Technical Support __ 77

OpenRules, Inc. Rule Solver™, User Manual

4

INTRODUCTION

Today Constraint Programming (CP) has become a leading technique for solving

complex constraint satisfaction and optimization problems in manufacturing,

telecom, logistics, finance, and other industries. Among such problems are job

scheduling, resource allocation, planning, product configuration, and other

decision support problems with many business constraints. CP provides a great

foundation for the development of smart optimization and decision support

engines. There are multiple powerful commercial and open source constraint

solvers available on the market today.

OpenRules® Business Decision Management System (BDMS) includes a special

component called a Rule Solver™ that empowers OpenRules® with constraint

programming functionality. Rule Solver™ can be used for two major purposes:

1) Rule Solver™ as an inferential rule engine for decision models

o An alternative to the standard OpenRules® sequential rule engine that

executes decision models in a way similar to famous RETE-based rule

engines (no needs for rule ordering)

o A powerful mechanism for consistency validation of OpenRules®

decision models.

2) Rule Solver™ as a business-oriented constraint solver

o An ability to represent constraint satisfaction problems using Excel-

based decision tables oriented to business users

o An ability to solve constraint satisfaction problems with any JSR-3311

compliant constraint solver.

This user manual explains how to install and use Rule Solver™. It is aimed at

developers of real-world decision models that need a more sophisticated

mechanism to compare with traditional rule engines. Rule Solver™ includes a

1 JSR-331 “Constraint Programming API” is a Java Community Process standard that was awarded the Most

Innovative JSR Award at Java One, 2010.

http://en.wikipedia.org/wiki/Constraint_programming
http://4c110.ucc.ie/acp/cp/index.php
http://4c110.ucc.ie/acp/cp/index.php
http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/press/news/awards/2010award_nominees
http://jcp.org/en/press/news/awards/2010award_nominees

OpenRules, Inc. Rule Solver™, User Manual

5

variety of templates that allow business analysts (not necessarily familiar with

CP or even Java) to define their own scheduling, resource allocation,

configuration, and other constraint satisfaction problems and use standard CP

solving methods to find their solutions.

DOCUMENT CONVENTIONS

The regular Century Schoolbook font is used for information that is prescriptive

by this specification.

The italic Century Schoolbook font is used for notes clarifying the text

The Courier New font is used for code examples.

OpenRules, Inc. Rule Solver™, User Manual

6

RULE SOLVER AS INFERENTIAL RULE ENGINE

Rule Solver™ can be used as an inferential Rule Engine that can execute

OpenRules® decision models. It provides an alternative to the standard

OpenRules® sequential rule engine. At the same time it provides a powerful

validation mechanism that automatically checks OpenRules® decision models for

consistency and completeness.

The decision models defined using traditional OpenRules® decision tables can be

executed in two modes:

1. “Execute” mode that uses a regular OpenRules® rule engine. In this,

default, mode a user is expected to explicitly specify the order of rules within

a decision table and the execution order of decision tables inside decisions.

2. “Solve” mode that uses Rule Solver™. In this mode the order of rules within

a decision table and between decision tables does not matter and can be

resolved automatically. Functionally this mode is similar to famous RETE-

based rule engines with no needs for rules ordering.

Thus, the same decision model expressed in business terms can serve as an input

for both rule engines: a regular (“sequential”) rule engine and an inferential

(constraint-based) rule engine.

Simple Examples

The following examples demonstrate how to apply sequential Rule Engine and

inferential Rule Solver to the same decision models.

Simple Decision Model “DecisionHello”

In this example we will develop a simple application that should decide how to

greet a customer during different times of the day. The proper decision model

might be a part of an interactive voice response (IVR) system. For example, if a

http://openrules.com/ruleengine.htm

OpenRules, Inc. Rule Solver™, User Manual

7

customer Robinson is a married woman and local time is 14:25, we want our

decision to produce a greeting like "Good Afternoon, Mrs. Robinson!". To make

this example a little bit more complicated we will force the application to greet

children with a greeting like "Good Afternoon, Little Robinson!".

Decision Model

We will use Excel to represent decisions, related decision tables, and several test

cases. We will start with the main table of the type “Decision” that consists of 3

sub-decisions:

Decision DetermineCustomerGreeting

Decisions Execute Rules

Define Age Group DefineAgeGroup

Define Greeting Word DefineGreeting

Define Salutation Word DefineSalutation

The first sub-decision “Define Age Group” will be implemented using the

following decision table:

DecisionTable DefineAgeGroup

Condition Condition Conclusion

Age Age Age Group

>= 0 <= 5 Is Little

> 5 <= 20 Is Young

> 20 Is Adult

The second sub-decision “Define Greeting Word” will be implemented using the

following decision table:

DecisionTable DefineGreeting

Condition Condition Conclusion

Current Hour Current Hour Greeting

>= 0 <= 11 Is Good Morning

> 11 <= 17 Is Good Afternoon

> 17 <= 22 Is Good Evening

> 22 <= 24 Is Good Night

OpenRules, Inc. Rule Solver™, User Manual

8

The third sub-decision “Define Salutation Word” will be implemented using the

following decision table:

DecisionTable DefineSalutation

Condition Condition Condition Conclusion

Gender Marital Status Age Group Salutation

 Is Little Is Little

Is Female Is Married
Is

Not
Little

Is Mrs.

Is Female Is Single Is Ms.

Is Male Is Mr.

The proper Glossary for this model can be defined as follows:

Glossary glossary

Variable Name
Business
Concept

Attribute Domain

Gender

Customer

gender Male,Female

Marital Status maritalStatus Single,Married

Age age 0-120

Age Group ageGroup Little,Young,Adult

Current Hour hour 0-24

Greeting
Response

greeting
Good Morning,Good Afternoon,Good Evening, Good
Night

Salutation salutation Mr.,Ms.,Mrs.,Little

We will assume that the data for our model comes from a Java as defined by the

following table of the type “DecisionObject”:

DecisionObject decisionObjects

Business Concept Business Object

Customer := decision.get("customer")

Response := decision.get("response")

This completes the definition of our decision model. Now we find solutions for

this model starting with a regular (sequential) OpenRules® Rule Engine.

Solution with Rule Engine

The standard OpenRules® installation comes with the proper decision project

“DecisionHelloCP” in the workspace “openrules.solver”. This project has a Java

OpenRules, Inc. Rule Solver™, User Manual

9

package “hello” with two Java classes “Customer” and “Response” that are

simple Java beans with the following organization:

public class Customer {

 String name;

 String maritalStatus;

 String gender;

 int age;

 String ageGroup;

 int hour;
 // getters and setters

}

public class Response {

 String greeting;

 String salutation;

 String result;

 // getters and setters

}

The main Java class Main.java contains one method “main” that creates test-

instances of the classes Customer and Response, puts them to the instance of

Decision, and executes this decision:

public class Main {

 public static void main(String[] args) {
 String fileName = "file:rules/main/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Execute");
 Decision decision =
 new Decision("DetermineCustomerGreeting",fileName);

 Customer customer = new Customer();
 customer.setName("Robinson");
 customer.setGender("Female");
 customer.setMaritalStatus("Married");
 customer.setAge(4);
 customer.setHour(16);
 Response response = new Response();
 decision.put("customer", customer);
 decision.put("response", response);

 decision.put("trace","On");
 decision.execute();
 out.println("Decision: "
 + response.getGreeting()
 + ", " + response.getSalutation()
 + " " + customer.getName() + "!");
 }

OpenRules, Inc. Rule Solver™, User Manual

10

This code uses a predefined OpenRules® class “Decision” that extends HashMap

and allows a user to put and get any object to the decision using keywords like
"customer".

The above statement

 System.setProperty("OPENRULES_MODE", "Execute");

reinforces the fact that we will use the default execution mode that is based on

the standard OpenRules® rule engine. After execution of this code we will receive

the following results:

*** Decision DetermineCustomerGreeting ***
Decision has been initialized
Decision DetermineCustomerGreeting: Define Greeting Word
Conclusion: Greeting Is Good Afternoon
Decision DetermineCustomerGreeting: Define Age Group
Conclusion: Age Group Is Little
Decision DetermineCustomerGreeting: Define Salutation Word
Conclusion: Salutation Is Little
Decision has been finalized

Decision: Good Afternoon, Little Robinson!

There are many other examples and more powerful decision table types

described in the OpenRules® User Manual. However, the standard OpenRules® is

rule engine sequential and relies on the strictly defined execution order of rules

inside the table “Decision”. Let’s change this order as follows:

Decision DetermineCustomerGreeting

Decisions Execute Rules

Define Greeting Word DefineGreeting

Define Salutation Word DefineSalutation

Define Age Group DefineAgeGroup

As you can see, now the standard rule engine will execute the rules

“DefineAgeGroup” after(!) the rules “DefineSalutation” which use the decision

variable “Age Group” defined by “DefineAgeGroup”. So, the variable will remain

undefined (“null”) and the execution results will be quite bad:

http://openrules.com/pdf/OpenRulesUserManual.pdf

OpenRules, Inc. Rule Solver™, User Manual

11

*** Decision DetermineCustomerGreeting ***
Decision has been initialized
Decision DetermineCustomerGreeting: Define Greeting Word
Conclusion: Greeting Is Good Afternoon
Decision DetermineCustomerGreeting: Define Salutation Word
Decision DetermineCustomerGreeting: Define Age Group
Conclusion: Age Group Is Little
Decision has been finalized
Decision: Good Afternoon, null Robinson!

Now we find a solution for the same decision model using OpenRules® Rule

Solver that resolves rules sequencing issues automatically.

Solution with Rule Solver

The project “DecisionHelloCP” include another Java class “MainCP” that uses

the same classes Customer and Response but with the following main-method:

public class Main {

 public static void main(String[] args) {
 String fileName = "file:rules/main/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve"); // !!!
 Decision decision =
 new Decision("DetermineCustomerGreeting",fileName);

 Customer customer = new Customer();
 customer.setName("Robinson");
 customer.setGender("Female");
 customer.setMaritalStatus("Married");
 customer.setAge(4);
 customer.setHour(16);
 Response response = new Response();
 decision.put("customer", customer);
 decision.put("response", response);

 decision.put("trace","On");
 decision.execute();
 out.println("Decision: "
 + response.getGreeting()
 + ", " + response.getSalutation()
 + " " + customer.getName() + "!");
 }

This code is exactly the same as above with only difference in this statement:

 System.setProperty("OPENRULES_MODE", "Solve");

OpenRules, Inc. Rule Solver™, User Manual

12

It forces OpenRules® to use Rule Solver™ instead of the default rule engine. In

this case the execution results of the same decision model (with the latest order

of sub-decisions) will look as follows:

*** Decision DetermineCustomerGreeting ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)

=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Marital Status[Single,Married]
Greeting[Good Morning,Good Afternoon,Good Evening,Good Night]
Age[0..120]
Age Group[Little,Young,Adult]
Gender[Male,Female]
Salutation[Mr.,Ms.,Mrs.,Little]
Current Hour[0..24]

Decision DetermineCustomerGreeting: Define Greeting Word
Decision DetermineCustomerGreeting: Define Salutation Word
Decision DetermineCustomerGreeting: Define Age Group

=== After Assigning Data:
Marital Status[Married]
Greeting[Good Morning,Good Afternoon,Good Evening,Good Night]
Age[4]
Age Group[Little,Young,Adult]
Gender[Female]
Salutation[Mr.,Ms.,Mrs.,Little]
Current Hour[16]

=== After Posting Constraints:
Marital Status[Married]
Greeting[Good Afternoon]
Age[4]
Age Group[Little]
Gender[Female]
Salutation[Little]
Current Hour[16]

=== Solve ===
Decision: Good Afternoon, Little Robinson!

As you can see, in spite of the “wrong” order of rules, Rule Solver™ managed to

produce the correct solution “Good Afternoon, Little Robinson!” instead of the

previous “Good Afternoon, null Robinson!”.

The produced execution trace explains how Rule Solver™ actually works:

OpenRules, Inc. Rule Solver™, User Manual

13

Step 1. First Rule Solver™ creates an instance of the predefined class

“RuleSolver” that is based on “JSR-331 Implementation based on Constrainer 5.4

(light)”

Step 2. Then Rule Solver™ generates a constraint satisfaction problem by adding

constrained variables (based on the Glossary and actual business objects) and

constraints (based on decision tables). So, it “adds Constrained Variables” and

shows their initial state as:

Marital Status[Single,Married]
Greeting[Good Morning,Good Afternoon,Good Evening,Good Night]
Age[0..120]
Age Group[Little,Young,Adult]
Gender[Male,Female]
Salutation[Mr.,Ms.,Mrs.,Little]
Current Hour[0..24]

Step 3. When Rule Solver™ executes the sub-decisions from the table “Decision”

Decision DetermineCustomerGreeting: Define Greeting Word
Decision DetermineCustomerGreeting: Define Salutation Word
Decision DetermineCustomerGreeting: Define Age Group

it actually creates the proper constraints but does not post (activate) them yet.

Step 4. Then Rule Solver™ assigns data to decision variables that are already

known. In our case, those variables are “Marital Status”, “Age”, “Gender”, and

“Current Hour”.

=== After Assigning Data:
Marital Status[Married]
Greeting[Good Morning,Good Afternoon,Good Evening,Good Night]
Age[4]
Age Group[Little,Young,Adult]
Gender[Female]
Salutation[Mr.,Ms.,Mrs.,Little]
Current Hour[16]

Please note, that our Glossary does not explicitly specify which variables are

unknown (otherwise there will be one more column “Unknown” following the

column “Domain”). So, Rule Solver™ automatically defines that only variables

that are used inside decision table conclusions are unknown. Those variables

OpenRules, Inc. Rule Solver™, User Manual

14

are: “AgeGroup”, “Greeting”, and “Salutation” and as you can see their domains

continue to contain multiple possible values.

Step 5. Then Rule Solver™ posts (activates) constraints that correspond to the

rules defined in our decision tables. The order of constraint posting really does

not affect the final results. Rule Solver™ reports the state of our constrained

variables after constraint posting:

=== After Posting Constraints:
Marital Status[Married]
Greeting[Good Afternoon]
Age[4]
Age Group[Little]
Gender[Female]
Salutation[Little]
Current Hour[16]

As you can see, in this simple case constraint posting was sufficient to

instantiate all constraint variables (select single values from their domain).

Step 6. However, in many practical cases constraint posting is not sufficient and

Rule Solver™ always executes its default search algorithm to find a single

solution of an automatically created constraint satisfaction problem. Rule

Solver™ also saves all found values of constrained variables back to the proper

attributes of the business objects (based on which these variables were created).

Simple Decision Model “DecisionLoan”

In this example we will demonstrate a simple loan pre-qualification model that

should decide whether to approve or decline a loan application.

Decision Model

We will use Excel to represent decisions, related decision tables, and several test

cases. We will start with the main table of the type “Decision” that consists of 4

sub-decisions:

OpenRules, Inc. Rule Solver™, User Manual

15

Decision DetermineLoanPreQualificationResults

Decisions Execute Rules

Calculate Internal Variables CalculateInternalVariables

Validate Income DetermineIncomeValidationResult

Debt Research DetermineDebtResearchResult

Summarize DetermineLoanQualificationResult

The first sub-decision “Calculate Internal Variables” will be implemented using

the following decision table:

DecisionTable CalculateInternalVariables

Conclusion Conclusion

Total Debt Total Income

Is ::= $I{Monthly Debt} * $I{Loan Term} Is ::= $I{Monthly Income} * $I{Loan Term}

The second sub-decision “Validate Income” will be implemented using the

following decision table:

DecisionTable DetermineIncomeValidationResult

Condition Conclusion

Total Income Income Validation Result

Is
More
Than

::= $I{Total Debt} * 2 Is SUFFICIENT

<= ::= $I{Total Debt} * 2 Is UNSUFFICIENT

The third sub-decision “Debt Research” will be implemented using a more

complex decision table:

OpenRules, Inc. Rule Solver™, User Manual

16

And the fourth decision “Summarize” will be implemented using the following

decision table:

DecisionTable DetermineLoanQualificationResult

Condition Condition Conclusion

Income Validation
Result

Debt Research
Result

Loan Qualification
Result

Is UNSUFFICIENT Is
NOT

QUALIFIED

Is SUFFICIENT Is Low Is
NOT

QUALIFIED

Is SUFFICIENT
Is

One
Of

Mid, High Is QUALIFIED

The proper Glossary for this model can be defined as follows:

Glossary glossary

Decision
Variable

Object Attribute Domain

Monthly
Income

Customer

monthlyIncome 0-5000000

Mortgage
Holder

mortgageHolder Yes,No

Outside Credit
Score

outsideCreditScore 0-999

Loan Holder loanHolder Yes,No

Credit Card
Balance

creditCardBalance -1000000 - 100000000

OpenRules, Inc. Rule Solver™, User Manual

17

Education
Loan Balance

educationLoanBalance -1000000 - 100000000

Internal Credit
Rating

internalCreditRating A,B,C,D,F

Internal
Analyst
Opinion

internalAnalystOpinion High,Mid,Low

Income
Validation
Result

Request

incomeValidationResult SUFFICIENT,UNSUFFICIENT,?

Debt Research
Result

debtResearchResult High,Mid,Low,?

Loan
Qualification
Result

loanQualificationResult
QUALIFIED, NOT QUALIFIED,
?

Total Income
Internal

totalIncome 0-500000

Total Debt totalDebt 0-500000

We will assume that the data for our model comes not from Java but rather from

tables defined in Excel. The following table defines a datatype “Customer”:

Datatype Customer

String fullName

String SSN

int monthlyIncome

int monthlyDebt

String mortgageHolder

int outsideCreditScore

String loanHolder

int creditCardBalance

int educationLoanBalance

String internalCreditRating

String internalAnalystOpinion

The following table defines a datatype “LoanRequest”:

Datatype LoanRequest

String customer

int amount

String purpose

int term

String incomeValidationResult

String debtResearchResult

String loanQualificationResult

OpenRules, Inc. Rule Solver™, User Manual

18

The following table defines a datatype “InternalVariables”:

Datatype InternalVariables

int totalIncome

int totalDebt

These internal variables can be created in the following table:

Variable InternalVariables internal

Total
Income

Total Debt

0 0

Initially they are unknown (we use zeros).

Now we may define test-requests using the following Data table:

Data LoanRequest loanRequests

customer amount purpose term
incomeValid

ationResult

debtResearch

Result

loanQualific

ationResult

Customer
Loan

Amount

Loan

Purpose

Loan

Term

Income

Validation

Result

Debt

Research

Result

Loan

Qualification

Result

Peter N.
Johnson

30000
Home

Improvement
72 ? ? ?

Mary K.
Brown

15000 Education 36 ? ? ?

Thus, our data is specified and we should connect instances of our test-objects

with business concepts specified on the glossary. It can be done using the

following table of the type “DecisionObject”:

DecisionObject decisionObjects

Business Concept Business Object

Customer := customers[0]

Request := loanRequests[0]

Internal := internal

This completes the definition of our decision model. The next step is to find

solutions for this model. We will start with a regular (sequential) OpenRules®

rule engine that will execute our decision.

OpenRules, Inc. Rule Solver™, User Manual

19

Solution with Rule Engine

The standard OpenRules
®
 installation comes with the proper decision project

“DecisionLoanCP” in the workspace “openrules.solver”. The main Java class Main.java

contains one method “main” that creates and executes our Excel-based decision:

public static void main(String[] args) {
 String fileName = "file:rules/main/Decision.xls";
 Decision decision =
 new Decision("DetermineLoanPreQualificationResults",fileName);
 decision.execute();

}

Note that here we omitted the statement

 System.setProperty("OPENRULES_MODE", "Execute");

because the mode "Execute" is used by default. After execution of this code we

will receive the following results:

*** Decision DetermineLoanPreQualificationResults ***
Decision has been initialized
Decision DetermineLoanPreQualificationResults: Calculate Internal
Variables
Conclusion: Total Debt Is 165600
Conclusion: Total Income Is 360000
Decision DetermineLoanPreQualificationResults: Validate Income
Conclusion: Income Validation Result Is SUFFICIENT
Decision DetermineLoanPreQualificationResults: Debt Research
Conclusion: Debt Research Result Is High
Decision DetermineLoanPreQualificationResults: Summarize
Conclusion: Loan Qualification Result Is QUALIFIED
Decision has been finalized

Please note that the variable “Loan Qualification Result” depends on the

variables “Income Validation Result” and “Debt Research Result”. So, for the

sequential rule engine it is extremely important that sub-decisions “Validate

Income” and ”Debt Research” are specified before the sub-decision “Summarize”.

Now we find a solution for the same decision model using OpenRules® Rule

Solver™ that resolves rules sequencing issues automatically.

OpenRules, Inc. Rule Solver™, User Manual

20

Solution with Rule Solver

The main Java class MainCP.java contains one method “main” that is similar to

the previous one but contains one extra line before creation of the decision:

public static void main(String[] args) {
 String fileName = "file:rules/main/Decision.xls";

 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision =
 new Decision("DetermineLoanPreQualificationResults",fileName);
 decision.execute();

}

The statement

 System.setProperty("OPENRULES_MODE", "Solve");

enforces the use of Rule Solver™ instead of the default (sequential) rule engine.

After execution of this model with Rule Solver™ we will receive the following

results:

Step 1.
*** Decision DetermineLoanPreQualificationResults ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver

Step 2.
=== Initial Problem Variables:
Outside Credit Score[0..999]
Education Loan Balance[-1000000..100000000]
Monthly Income[0..5000000]
Credit Card Balance[-1000000..100000000]
Income Validation Result[SUFFICIENT,UNSUFFICIENT,?]
Debt Research Result[High,Mid,Low,?]
Mortgage Holder[Yes,No]
Total Debt[0..500000]
Total Income[0..500000]
Loan Qualification Result[QUALIFIED,NOT QUALIFIED,?]
Loan Holder[Yes,No]
Internal Credit Rating[A,B,C,D,F]
Internal Analyst Opinion[High,Mid,Low]

Step 3.
Decision DetermineLoanPreQualificationResults: Calculate Internal
Variables
Decision DetermineLoanPreQualificationResults: Validate Income
Decision DetermineLoanPreQualificationResults: Debt Research

OpenRules, Inc. Rule Solver™, User Manual

21

Decision DetermineLoanPreQualificationResults: Summarize

Step 4.
=== After Assigning Data:
Outside Credit Score[720]
Education Loan Balance[0]
Monthly Income[5000]
Credit Card Balance[2500]
Income Validation Result[SUFFICIENT,UNSUFFICIENT,?]
Debt Research Result[High,Mid,Low,?]
Mortgage Holder[Yes]
Total Debt[0..500000]
Total Income[0..500000]
Loan Qualification Result[QUALIFIED,NOT QUALIFIED,?]
Loan Holder[No]
Internal Credit Rating[A]
Internal Analyst Opinion[Low]

Step 5.
=== After Posting Constraints:
Outside Credit Score[720]
Education Loan Balance[0]
Monthly Income[5000]
Credit Card Balance[2500]
Income Validation Result[SUFFICIENT]
Debt Research Result[High]
Mortgage Holder[Yes]
Total Debt[165600]
Total Income[360000]
Loan Qualification Result[QUALIFIED]
Loan Holder[No]
Internal Credit Rating[A]
Internal Analyst Opinion[Low]

Step 6.
=== Solve ===

The descriptions of the “green steps” are similar to the ones described in the

previous example. As you can see, after all execution steps (described in the

previous example) we received the same results as those produced by the rule

engine. The rule engine produced

Conclusion: Loan Qualification Result Is QUALIFIED

while Rule Solver™ instantiated the variable “Loan Qualification Result” with

the value “QUALIFIED”:

Loan Qualification Result[QUALIFIED]

OpenRules, Inc. Rule Solver™, User Manual

22

Here again pure constraint propagation was sufficient to find one (and only one)

solution of this problem. However, contrary to the rule engine, now we can freely

change the order of sub-decisions in the main table “Decision”.

Decision Modeling with Rules Solver

Previous examples demonstrate how Rule Solver™ may be used instead of the

standard rule engine. For the same Excel-based decision model Rule Solver™

executes all related business rules and either infers a decision or diagnoses

conflicts among rules and input data.

Rule Solver™ Benefits

Rule Solver™ brings several important benefits to decision modeling:

- No explicit ordering between decision tables

- No explicit ordering of rules within decision tables

- Automatic validation of conflicts between rules across all decision tables

- Automatic check of decision models for completeness and an ability to find

a decision when rules do not cover all possible combinations of decision

variables.

How Rule Solver™ Works

Formally, we may describe a decision model as follows:

- There is a set of business objects X = { X1, …, Xn }

- Each business object Xi contains decision variables Vi = { V1, …, Vm } with

possible values Dj = { vj1, …, vjk } for each variable Vj

- There is a set of rules R = { R1, …, Rr }, where a rule Rk defines

relationships between different decision variables by specifying the

allowed combinations for all variables in that rule.

OpenRules, Inc. Rule Solver™, User Manual

23

The rules from set R are grouped into rule sets usually called Decision Tables.

Execution of a decision model should cause the assignment of values to all

decision variables that satisfy all rules.

To execute a decision model Rule Solver™ does the following:

1) Reads a decision model created by business analysts directly from the rule

repository (usually from a set of Excel files)

2) Generates a constraint satisfaction problem (CSP) using JSR-331 CP API:

o Creates a CSP instance

o Creates constrained variables for all unknown decision variables

described in the decision model’s glossary

o Creates constraints that correspond to the rules defined in all decision

tables

3) Validate the consistency of the model by checking the consistency of the

generated CSP and points to possible conflicts using the business terms of the

initial decision model

4) Executes the decision model against concrete data using the following steps:

o instantiating all constrained variables for which input data is defined

o posting all constraints that correspond to rules from all decision tables

o if constraint propagation by itself does not find single values for all

decision variables (does not instantiate all constrained variables), then

runs a constraint solver’s search strategy that finds a solution of the

CSP.

Generating CSP

Rule Solver™ creates a CSP instance during initialization of the decision model.

It is done by the standard method “customInitializeDecision” within the file

“DecisionTemplateSolveTempalte.xls”. The actual CSP is an instance of the

predefined class RuleSolver created by the following method:

RuleSolverFactory.newRuleSolver("solver",decision.getEngine())

Then Rule Solver™ adds constrained variables using the following method:

OpenRules, Inc. Rule Solver™, User Manual

24

solverVar.solver.addConstrainedVariables(getGlossary())

This method iterates through the decision model’s glossary and for each decision

variable creates a constrained variable of one of the following types:

- Var for integer constrained variables

- VarString for string constrained variables

- VarBool for Boolean constrained variables

- VarReal for real constrained variables

- VarSet for set constrained variables.

Note. The current version is limited to only two types: Var and VarString.

Adding Constrained Variables

Rule Solver™ automatically converts decision variable domains from the glossary

to the domains of the constrained variables as they are specified by JSR 331.

While the glossary does not specify a particular type of the decision variables, the

concrete types of constrained variables are defined based on the provided data

instances. For example, a constrained variable that corresponds to the decision

variable “Monthly Income” will be created using the following JSR 331 method:

rs.variable(“Monthly Income”, 0, 50000000);

Adding Constraints

During processing the tables of the type “Decision” Rule Solver™ executes all

decision tables and for every rule adds a conditional constraint that has the

following form:

 conditionConstraints.implies(conclusionConstraint)

Here “conditionConstraints” are accumulated by using the method “and” defined

for the JSR-331 class Constraint. For example, the rule

IF Person Years at Current Employer < 1

OpenRules, Inc. Rule Solver™, User Manual

25

AND Person Number of Jobs in Past Five Years > 5

THEN Person Employment History = Poor

may be implemented in Java using the JSR-331 interface:

Var var1 = rs.getVar(“Person Years at Current Employer”);

Constraint c1 = rs.linear(var1, ”<”, 1);

Var var2 = rs.getVar(“Person Number of Jobs in Past Five Years”);

Constraint c2 = rs.linear(var2, ”>”, 5);

Constraint conditionConstraints = c1.and(c2);

VarString var3 = rs.getVarString(“Person Employment History”);

Constraint conclusionConstraint = rs.linear(var3, ”=”, “Poor”);

rs.add(conditionConstraints.implies(conclusionConstraint));

This way Rule Solver™ creates all constraints but it does not post (activate) them

yet.

Posting Data Constraints

Then Rule Solver™ assigns data to decision variables that are already known.

How does Rule Solver™ differentiate between known and unknown decision

variables? A glossary may explicitly specify which variables are unknown in the

column “Unknown” that follows the column “Domain”. If this optional column is

not used then Rule Solver™ automatically defines them as those variables that

are used inside decision table conclusions only. Rule Solver™ reports the state of

all (known and unknown) constrained variables

Posting Problem Constraints

After posting data constraint, Rule Solver™ posts (activates) problem constraints

that correspond to all rules defined in all decision tables. The order of constraint

posting is not important as it does not affect the final results. Rule Solver™

reports the state of all (known and unknown) constrained variables after

constraint posting. Because of constraint propagation (that may depend on the

OpenRules, Inc. Rule Solver™, User Manual

26

applied underlying CP solver) a combination of data and problem constraints

may instantiate all variables or it may diagnose possible conflicts. In many cases

constraint posting is sufficient to instantiate all constraint variables (select

single values from their domain).

Solving the Problem

In some cases constraint posting is not sufficient to instantiate all constraint

variables. That’s why Rule Solver™ always executes its default search algorithm

to find a single solution of an automatically created constraint satisfaction

problem. Rule Solver™ also saves all found values of constrained variables back

to the proper attributes of the business objects (based on which these variables

were created). A user may also control how to solve the problems choosing one of

3 options:

1) Find a solution: the is the default option

2) Find all solutions: the solver is trying to find as many different

solutions as possible but no more the defined by the limit used in the

statement

decision.put(“MaxSolutions”,maxNumberOfSolutions);

3) Find an optimal solution: the solver is trying to find a solution that

minimizes an objective variable specified in the statement

decision.put(“Minimize”,nameOfCostVariable);

To maximize the cost variable use the statement

decision.put(“Maximize”,nameOfCostVariable);

During the optimization process Rule Solver™ considers no more solutions than a

number specified in the statement

 decision.put(“MaxSolutions”,maxNumberOfSolutions);

See example of all 3 problem solving modes in the example below.

OpenRules, Inc. Rule Solver™, User Manual

27

Using Templates

Rule Solver™ never generates Java code. Instead, at run-time, it simply creates

an instance of different JSR-331 classes and adds them to the already created

constraint satisfaction problem. All instances of constrained variables and

constraints are added to the problem “on the fly”. To do that, Rule Solver™

effectively utilizes the existing OpenRules® templatization mechanism.

OpenRules® uses different rule templates to implement all tables included into

the default (not constraint-based) implementation of the decision model. Such

tables as “Decision”, “DecisionTable”, and “Glossary” are actually implemented

based on rule templates defined in several configuration Excel files. For example,

the file “DecisionTableExecuteTemplates.xls” contains a template with the fixed

name “DecisionTableTemplate” and all Decision Tables are created based on it.

This template is a regular OpenRules “single-hit” rules table. It means that it is

trying to execute rules in top-down order by evaluating their conditions. When

all conditions inside a rule are evaluated as TRUE, the rule’s conclusion (and

possibly other related actions) will be executed and all remaining rules will be

ignored.

Rule Solver™ provides the configuration file

“DecisionTableSolveTemplates.xls” that substitutes the template

“DecisionTableTemplate” with a different implementation that is actually a

special “RuleSequence” decision table. This table unconditionally executes all (!)

rules inside every decision table one after another. However, instead of

evaluating rule conditions it simply creates new constraints similar to c1 and c2

above, and then “AND”s all previously defined conditions similarly to

c1.and(c2). Thus, all conditions from one rule will form a constraint

conditionConstraints described in the previous example. Then the

conclusion will be converted to the conclusionConstraint that is based on the

constrained variable associated with the conclusion’s fact type, operator, and

value. Finally, Rule Solver™ creates a new constraint

conditionConstraints.implies(conclusionConstraint) and adds it to

the problem. According to the JSR-331, this constraint states that if the

OpenRules, Inc. Rule Solver™, User Manual

28

constraint conditionConstraints is satisfied then the constraint

conclusionConstraint also should be satisfied.

While the “DecisionTableTemplate” may contain more complicated constructions,

the very fact that the generated CSP can be reconfigured by simply changing the

template directly in Excel, makes this approach extremely flexible, extensible,

and customizable for different needs.

Using JSR-331

The use of the standard JSR 331 allows a user not to commit to a particular CP

solver. A user may try different underlying solvers with the same decision model

before choosing the most suitable one based on its technical and business

applicability. A user may switch between different underlying CP solvers

compliant with the JSR 331 without any changes in the code.

Decision Execution Reports

OpenRules® provides an ability to generate decision execution reports in the

HTML-format. To generate an execution report, you should add the following

setting to the decision’s Java launcher:

decision.put("report", "On");

before calling decision.execute(). By default, execution reports are not

generated as they are needed mainly for decision analysis. Reports are

regenerated for every decision run.

When you use the OPENRULES_MODE equal to “Solve”, Rule Solver™

generates an execution report. The name of the generated report is formed using

the name of the proper decision with an extension “.html”. By default, this report

is placed in the folder "report" of the main decision folder. If you want to change

the report path say to "c:/temp/report" you may achieve it by stating:

http://jcp.org/en/jsr/detail?id=331

OpenRules, Inc. Rule Solver™, User Manual

29

 decision.put("report","On");

 decision.put("reportPath","c:/temp/report");

If the name of the decision was “ScheduleActivitiesWithAlternativeResources”,

then the generated report will be placed to the file

"c:/temp/report/Report.ScheduleActivitiesWithAlternativeResources.html".

If you want to also use a custom report's name instead of the decision's name, say

"MyReport", you may add one more line:

 decision.put("reportName","MyReport");

The report will be placed to "c:/temp/report/MyReport.html".

If the folder “report” does not exist in “c:/temp/”, it will be automatically

created. Below is an exampleof the execution report for the sample project

“DecisionLoan”:

OpenRules Solver Execution Report

Decision "DetermineLoanPreQualificationResults"

Wed Apr 23 16:41:58 EDT 2014

=== Assigning Data To Decision Variables ===

Decision Variables

Name Domain Initial State

Outside Credit Score 620 Known

Loan Term 72 Known

Education Loan Balance 23800 Known

Monthly Income 5000 Known

Credit Card Balance 5654 Known

Income Validation Result SUFFICIENT,UNSUFFICIENT,? Unknown

OpenRules, Inc. Rule Solver™, User Manual

30

Debt Research Result High,Mid,Low,? Unknown

Total Debt 0..500000 Unknown

Mortgage Holder No Known

Total Income 0..500000 Unknown

Monthly Debt 2300 Known

Loan Qualification Result QUALIFIED,NOT QUALIFIED,? Unknown

Loan Holder No Known

Internal Credit Rating B Known

Internal Analyst Opinion Low Known

=== Posting If-Then Constraints ===

Posted If-Then Constraints

Status Constraints Decision Tables

On Total Debt = 216000 CalculateInternalVariables

On Total Income = 460800 CalculateInternalVariables

On
IF Total Income > 403200 THEN Income

Validation Result = SUFFICIENT
DetermineIncomeValidationResult

On
IF Total Income <= 403200 THEN Income

Validation Result = UNSUFFICIENT
DetermineIncomeValidationResult

On
IF Mortgage Holder = Yes THEN Debt Research

Result = High
DetermineDebtResearchResult

On
IF Mortgage Holder = No AND Outside Credit

Score > 100 AND Outside Credit Score <= 550

THEN Debt Research Result = High
DetermineDebtResearchResult

On
IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = Yes AND Credit Card

DetermineDebtResearchResult

OpenRules, Inc. Rule Solver™, User Manual

31

Balance <= 0 THEN Debt Research Result =

Mid

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = Yes AND Credit Card

Balance > 0 AND Education Loan Balance > 0

THEN Debt Research Result = High

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = Yes AND Credit Card

Balance > 0 AND Education Loan Balance <= 0

AND Internal Credit Rating ISONEOF A, B, C

THEN Debt Research Result = High

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = Yes AND Credit Card

Balance > 0 AND Education Loan Balance <= 0

AND Internal Credit Rating ISONEOF D, F

THEN Debt Research Result = Mid

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = No AND Credit Card

Balance > 0 THEN Debt Research Result = Low

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = No AND Credit Card

Balance <= 0 AND Education Loan Balance <=

0 THEN Debt Research Result = Low

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = No AND Credit Card

Balance <= 0 AND Education Loan Balance > 0

AND Internal Credit Rating ISONEOF D, F

THEN Debt Research Result = High

DetermineDebtResearchResult

On

IF Mortgage Holder = No AND Outside Credit

Score > 550 AND Outside Credit Score <= 900

AND Loan Holder = No AND Credit Card

Balance <= 0 AND Education Loan Balance > 0

DetermineDebtResearchResult

OpenRules, Inc. Rule Solver™, User Manual

32

AND Internal Credit Rating ISONEOF A, B, C

THEN Debt Research Result = Low

On
IF Mortgage Holder = No AND Internal Analyst

Opinion = High THEN Debt Research Result =

High
DetermineDebtResearchResult

On
IF Mortgage Holder = No AND Internal Analyst

Opinion = Mid THEN Debt Research Result =

Mid
DetermineDebtResearchResult

On
IF Mortgage Holder = No AND Internal Analyst

Opinion = Low THEN Debt Research Result =

Low
DetermineDebtResearchResult

On
IF Income Validation Result =

UNSUFFICIENT THEN Loan Qualification

Result = NOT QUALIFIED
DetermineLoanQualificationResult

On
IF Income Validation Result = SUFFICIENT

AND Debt Research Result = Low THEN Loan

Qualification Result = NOT QUALIFIED
DetermineLoanQualificationResult

On

IF Income Validation Result = SUFFICIENT

AND Debt Research Result ISONEOF Mid,

High THEN Loan Qualification Result =

QUALIFIED

DetermineLoanQualificationResult

Solution #1

Name Value

Outside Credit Score 735

Loan Term 72

Education Loan Balance 0

Monthly Income 6400

Credit Card Balance 1200

Income Validation Result SUFFICIENT

Debt Research Result High

Total Debt 216000

Mortgage Holder Yes

OpenRules, Inc. Rule Solver™, User Manual

33

Total Income 460800

Loan Qualification Result QUALIFIED

Monthly Debt 3000

Loan Holder Yes

Internal Credit Rating C

Internal Analyst Opinion Mid

If some errors occur during the constraint posting they will be shown in red.

Decision Output

Actually, when you execute a decision using a constraint-based inference engine

it always returns solution(s) as a decision's output. When your decision is trying

to find one feasible or an optimal solution, then after calling Decision's method

decision.execute() you may write

 Solution solution = (Solution) decision.getOutput();

If the "solution" is null, it means no solution is found. Otherwise, you may

print a solution using solution.log() or analyze it using the JSR331 Solution

API.

If your decision is trying to find many feasible solutions, then after

decision.execute() you may write

 Solution[] solution = (Solution[]) decision.getOutput();

and to analyze the array of the produced solutions.

Implementation Restrictions and Future Improvements

1) Rule Solver™ only supports decision tables of the type “DecisionTable”

(and not “DecisionTable1” or “DecisionTable2”).

2) The current release only works with integer and string decision variables

of the type. Boolean, real, and set variables will be supported in the next

releases.

http://openrules.com/jsr331/api/index.html
http://openrules.com/jsr331/api/index.html

OpenRules, Inc. Rule Solver™, User Manual

34

RULE SOLVER AS A BUSINESS-ORIENTED CONSTRAINT

SOLVER

Rule Solver™ can be used as a business-oriented constraint solver. It provides an

ability to represent and solve constraint satisfaction and optimization problems

using Excel-based decision tables oriented to business users.

Usually constraint solver requires a software expert familiar with a particular

CP language or API. Contrary, Rule Solver™ allows a non-technical user to define

a constraint satisfaction problem using Excel-based business rules (decision

tables) without becoming a CP guru. Rule Solver™ supports declarative

application development concentrating on WHAT TO DO (problem definition)

instead of HOW TO DO it (problem resolution). After a constraint satisfaction

problem is specified in Excel-based decision tables, it will be automatically solved

by an underlying constraint solver.

Being based on the standard JSR 331 “Constraint Programming API” defined by

the Java Community Process, Rule Solver™ allows a user to switch between

different JSR-331 compliant solvers without any changes in the application code.

Constraint Satisfaction Problem (CSP)

Many real-life problems that deal with multiple alternatives with many

unknowns subject to different constraints can be presented and solved as

constraint satisfaction problems (CSP).

Formal Definition

Formally a constraint satisfaction problem is defined by

 a set of variables V1, V2, … Vn, and

 a set of constraints C1, C2, … Cm.

http://jcp.org/en/jsr/detail?id=331
http://www.jcp.org/

OpenRules, Inc. Rule Solver™, User Manual

35

Each variable Vi has a non-empty domain Di of possible values. Each constraint

Cj involves some subset of the variables and specifies the allowable combinations

of values for that subset. A state of the problem is defined by an assignment of

values to some or all of the variables. A solution to a CSP is an assignment that

satisfies all the constraints. If a CSP requires a solution that maximizes or

minimizes an objective function it is called a “constraint optimization problem”.

We will use the abbreviation CSP for both types of problems.

The main CSP search technique interleaves various forms of search with

constraint propagation, in which infeasible values are removed from the domains

of the variables through reasoning about the constraints.

Major CP Concepts

CP supports a clear separation between Problem Definition and Problem

Resolution. At the very high level a business user that defines a CSP is

presented with only 6 major concepts:

 Problem (for problem definition)

o Constrained Variable

o Constraint

 Solver (for problem resolution)

o Search Strategy

o Solution

While different constraint solvers use diverse names and representations for CP

concepts, semantically these 6 concepts are invariants for the majority of solvers.

JSR-331 provides a unified naming convention and detailed specifications for

these concepts. You may want to read the JSR-331 User Manual which contains

a variety of Java examples.

Below we explain how to represent and solve different CSPs using MS Excel™

and OpenRules® decision tables. Contrary to Java, Rule Solver™ allows subject

matter experts (non-programmers) to utilize the power of constraint

http://4c110.ucc.ie/cpstandards/files/JSR331.UserManual.v071.pdf

OpenRules, Inc. Rule Solver™, User Manual

36

programming. Rule Solver™ provides a set of templates (defined in Excel) that

allow a user to define and solve different CSPs using only simple Excel-based

decision tables. The following example will demonstrate how to create decision

models for simple CSPs.

Introductory Example “SEND+MORE=MONEY”

This example demonstrates how to represent and solve a simple puzzle using

Rule Solver™. Assuming that different letters represent different digits, you

need to solve the following puzzle:

 S E N D

 + M O R E

 =========

 M O N E Y

Excel-based Decision Model

The standard Rule Solver™ installation comes with the proper decision project

“DecisionSendMoreMoney” in the workspace “openrules.solver”. This project has

only one file “Decision.xls” that includes all needed Excel tables.

Our problem has only 8 different decision variables S, E, N, D, M, O, R, and Y.

They are integer variables with domains from 0 to 9. Variables S and M have a

possible minimal value of 1 because they at the beginning of the words SEND

and MORE. So, first we will define a glossary:

Glossary glossary

Fact Name
Business
Concept

Attribute Domain Unknown

S

Puzzle

s 1-9 TRUE

E e 0-9 TRUE

N n 0-9 TRUE

D d 0-9 TRUE

M m 1-9 TRUE

O o 0-9 TRUE

R r 0-9 TRUE

Y y 0-9 TRUE

SEND send 1000-9999 TRUE

OpenRules, Inc. Rule Solver™, User Manual

37

MORE more 1000-9999 TRUE

MONEY money 10000-99999 TRUE

We added to the end of the glossary intermediate variables SEND, MORE, and

MONEY that will be used to simplify the expression of the main problem

constraint. All these variables are unknown. When we use a glossary we need to

create actual data instances (business objects). In this case we will simple use

the proper Excel tables:

Datatype Puzzle

int s

int e

int n

int d

int m

int o

int r

int y

int send

int more

int money

Variable Puzzle puzzle

s e n d m o r y send more money

S E N D M O R Y SEND MORE MONEY

0 0 0 0 0 0 0 0 0 0 0

The initial values 0 will be ignored as all our variables are unknown. To connect

the data objects with the glossary we need the following table:

DecisionObject decisionObjects

Business Concept Business Object

Puzzle := puzzle

Now we need to define our intermediate variables SEND, MORE, and MONEY

as scalar products using the following table:

OpenRules, Inc. Rule Solver™, User Manual

38

DecisionTable AddScalarProducts

ActionScalProd

Scalar
Product
Name

Coefficients Variables

SEND 1000,100,10, 1 S,E,N,D

MORE 1000,100,10,1 M,O,R,E

MONEY 10000,1000,100,10,1 M,O,N,E,Y

The first row of this decision table defines SEND as a scalar product

S*1000+E*100+N*10+1*D. Similarly the second and third rows define variables

MORE and MONEY using the proper scalar products.

Now we may define the main problem constraint SEND + MORE = MONEY:

DecisionTable MainConstraint

ActionXoperYcompareZ

X <oper> Y <compare> Z

SEND + MORE = MONEY

To state that our 8 main decision variables are different we may use a decision

table for the AllDiff constraint:

DecisionTable AllDifferentConstraint

ActionAllDiff

Variables

S, E, N, D, M, O, R, Y

And finally we need a table of the type “Decision” that puts all constraints

together:

Decision SendMoreMoney

Decisions Execute Rules

Add Intermediate Variables AddScalarProducts

Main Constraint MainConstraint

All Different AllDifferentConstraint

This completes our decision model. To print the result directly from Excel, we

may add one more method “PrintSolution”:

OpenRules, Inc. Rule Solver™, User Manual

39

To execute this model with Rule Solver™ we will use a Java class Main.java with

the following main-method:

public static void main(String[] args) {

 String fileName = "file:rules/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision = new Decision("SendMoreMoney",fileName);
 decision.put("trace","On");
 decision.execute();
 decision.execute("PrintSolution",decision);

}

Here are the execution results:

*** Decision SendMoreMoney ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
D[0..9]
E[0..9]
SEND[1000..9999]
MONEY[10000..99999]
S[1..9]
MORE[1000..9999]
R[0..9]
M[1..9]
N[0..9]
O[0..9]
Y[0..9]
Decision SendMoreMoney: Add Intermediate Variables
Decision SendMoreMoney: Main Constraint
Decision SendMoreMoney: All Different
=== After Assigning Data:
D[0..9]
E[0..9]
SEND[1000..9999]

OpenRules, Inc. Rule Solver™, User Manual

40

MONEY[10000..99999]
S[1..9]
MORE[1000..9999]
R[0..9]
M[1..9]
N[0..9]
O[0..9]
Y[0..9]
=== After Posting Constraints:
D[0..9]
E[0..9]
SEND[8801..9999]
MONEY[10000..11198]
S[8..9]
MORE[1000..1199]
R[0..9]
M[1]
N[0..9]
O[0..1]
Y[0..9]
=== Solve ===

=======
 9567
 +1085
=======
 10652
=======

Pure Java Solution

You may want to compare the decision model with a pure Java solution - the

proper JSR-331 code will look as follows:

package org.jcp.jsr331.samples;

import javax.constraints.Problem;

import javax.constraints.ProblemFactory;

import javax.constraints.Var;

public class SendMoreMoney {

 public static void main(String[] args) {

 Problem p = ProblemFactory.newProblem("SendMoreMoney");

 // define variables

 Var S = p.variable("S",1,9);

 Var E = p.variable("E",0,9);

 Var N = p.variable("N",0,9);

 Var D = p.variable("D",0,9);

 Var M = p.variable("M",1,9);

 Var O = p.variable("O",0,9);

 Var R = p.variable("R",0,9);

OpenRules, Inc. Rule Solver™, User Manual

41

 Var Y = p.variable("Y",0,9);

 // Post "all different" constraint

 Var[] vars = new Var[] { S, E, N, D, M, O, R, Y };

 p.postAllDiff(vars);

 // Define expression SEND

 int coef1[] = { 1000, 100, 10, 1 };

 Var[] sendVars = { S, E, N, D };

 Var SEND = p.scalProd(coef1, sendVars);

 SEND.setName("SEND");

 // Define expression MORE

 Var[] moreVars = { M, O, R, E };

 Var MORE = p.scalProd(coef1, moreVars);

 MORE.setName("MORE");

 // Define expression MONEY

 Var[] moneyVars = { M, O, N, E, Y };

 int coef2[] = { 10000, 1000, 100, 10, 1 };

 Var MONEY = p.scalProd(coef2, moneyVars);

 MONEY.setName("MONEY");

 p.add(MONEY);

 // Post constraint SEND + MORE = MONEY

 p.post(SEND.plus(MORE),"=",MONEY);

 // Problem Resolution

 p.getSolver().findSolution();

 p.log("Solution: " + SEND + " + " + MORE + " = " + MONEY);

 }

}

This code will produce:

Solution: SEND[9567] + MORE[1085] = MONEY[10652]

Based on the levels of expertise of your users, you may decide what information

to keep in Excel making it available to business users and what information to

hard-code in Java.

Solving Arithmetic Problems

Let’s consider a simple arithmetic problem. There are four integer variables X, Y,

Z, and R that may take values 0,1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. Considering that all

variables should have different values, find a solution that satisfies the following

constraints:

OpenRules, Inc. Rule Solver™, User Manual

42

X < Y

X + Y = Z

Z > 5.

Let’s create a decision model for this problem. We will assume that the data for

this problem is defined in a Java class XYZ:

public class XYZ {

 int x,y,z;

 public int getX() {
 return x;
 }
 public void setX(int x) {
 this.x = x;
 }
 public int getY() {
 return y;
 }
 public void setY(int y) {
 this.y = y;
 }
 public int getZ() {
 return z;
 }
 public void setZ(int z) {
 this.z = z;
 }
 public String toString() {
 return "x="+x + " y=" + y + " z=" + z;
 }
}

The main-method to execute the decision model will look like below:

public static void main(String[] args) {

 String fileName = "file:rules/main/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision = new Decision("FindXYZ",fileName);

 XYZ xyz = new XYZ();
 decision.put("xyz", xyz);

 decision.put("trace","On");
 decision.execute();
 out.println("\nDecision: " + xyz);
 }

Let’s define a glossary:

OpenRules, Inc. Rule Solver™, User Manual

43

Glossary glossary

Decision
Variable

Business
Concept

Attribute Domain Unknown

X

XYZ

x 0-10 TRUE

Y y 0-10 TRUE

Z z 0-10 TRUE

We may map the business concept “XYZ” to the actual object of the type XYZ

using this DecisionObject table:

DecisionObject decisionObjects

Business Concept Business Object

XYZ := decision.get("xyz")

Our decision “FindXYZ” can be described in thios table:

Decision FindXYZ

Decisions Execute Rules

Define Var Z XplusYeqZ

Binary Constraints BinaryConstraints

And here are the proper decision tables for the problem constraints:

DecisionTable BinaryConstraints

ActionXoperY

X <oper> Y

X < Y

Z > 5

DecisionTable XplusYeqZ

ActionXoperYcompareZ

X <oper> Y <compare> Z

X + Y = Z

OpenRules, Inc. Rule Solver™, User Manual

44

Hopefully, these tables are self-explanatory. All these tables extend decision

templates predefined in Rule Solver™ file “DecisionTableSolveTemplates.xls”

included in the standard installation.

Find One Solution

After the execution of the above main-method we will receive these results:

*** Decision FindXYZ ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Y[0..10]
X[0..10]
Z[0..10]
Decision FindXYZ: Define Var Z
Decision FindXYZ: Binary Constraints
=== After Assigning Data:
Y[0..10]
X[0..10]
Z[0..10]
=== After Posting Constraints:
Y[1..10]
X[0..9]
Z[6..10]
=== Solve ===

Decision: x=2 y=4 z=6

Find All Solutions

If you want to find not one but many possible solutions of this problem you may

add the following statement to your Main.java program just before

decision.execute():

decision.put("MaxSolutions", "30");

Then Rule Solver™ will produce 21 different solutions:

=== Find All Solutions (but not more than 30)

OpenRules, Inc. Rule Solver™, User Manual

45

Solution #1:
 Y[4]
 X[2]
 Z[6]
Solution #2:
 Y[4]
 X[3]
 Z[7]
Solution #3:
 Y[5]
 X[1]
 Z[6]

…

Find Optimal Solution

Now let’s add a new decision variable “Cost” defined in the domain [5-20] and

equals to Cost = X*Y – Z. First we will add an “int” variable “cost” to our Java

bean “XYZ”. Then we will modify the Glossary:

We will define a formula for the Cost in the following table:

Finally, we will add these formulas to the decision:

OpenRules, Inc. Rule Solver™, User Manual

46

If we try to run the same main program now (with “MaxSolutions” being set to

30) then Rule Solver™ will produce only 8 different solutions:

=== Find All Solutions (but not more than 30)
Solution #1:
 Cost[5]
 Y[4]
 X[3]
 Z[7]
Solution #2:
 Cost[5]
 Y[7]
 X[2]
 Z[9]
Solution #3:
 Cost[6]
 Y[8]
 X[2]
 Z[10]
Solution #4:
 Cost[7]
 Y[5]
 X[3]
 Z[8]
Solution #5:
 Cost[9]
 Y[6]
 X[3]
 Z[9]
Solution #6:
 Cost[11]
 Y[5]
 X[4]
 Z[9]
Solution #7:
 Cost[11]
 Y[7]
 X[3]
 Z[10]
Solution #8:
 Cost[14]
 Y[6]
 X[4]
 Z[10]

We may want to find a solution that maximizes the Cost. To do that we will add

the following statement to your Main.java:

decision.put("Maximize", "Cost");

Rule Solver™ will produce:

Found a solution with [-5]
Found a solution with [-6]

OpenRules, Inc. Rule Solver™, User Manual

47

Found a solution with [-7]
Found a solution with [-9]
Found a solution with [-11]
Found a solution with [-14]
Found a solution with [-14]
*** Execution Profile ***
Number of Choice Points: 55
Number of Failures: 44
Occupied memory: 4842080
Execution time: 49 msec
Solution #6:
 Cost[14] Y[6] X[4] Z[10]

The proper decision project “DecisionXYZ” can be found in the standard Rule

Solver™ installation in the workspace “openrules.solver”.

Sudoku Problem

The objective of this very popular game is to fill a 9×9 grid so that each column,

each row, and each of the nine 3×3 boxes (also called blocks) contain the digits

from 1 to 9, only one time each.

The standard Rule Solver™ installation comes with the proper decision project

“DecisionSudoku” in the workspace “openrules.solver”. This project has only one

file “Decision.xls” that includes all needed Excel tables.

We will start with the main table “Decision” (and will not use a glossary at all):

Decision DefineAndSolveSudoku

Decisions Execute Rules

Create 9x9 Matrix
:=
solver(decision).variableMatrix("x",1,9,9,9)

Enter Known Problem Data EnterSudokuData

Define Main Constraints DefineSudokuConstraints

The very first sub-decision creates a 9x9 matrix “x” of constrained integer

variables defined on the domain [1,9]. The element in the row i and column j

has name “xij”.

OpenRules, Inc. Rule Solver™, User Manual

48

We will enter Sudoku data using this Excel method:

that uses the following Data table:

Data MatrixInt problem1

Data

0 6 9 0 0 7 0 0 5

0 5 0 0 0 4 0 2 0

4 0 0 0 5 0 1 0 0

8 0 5 0 0 0 6 0 0

6 7 0 2 9 5 0 1 4

0 0 1 0 0 0 7 0 9

0 0 6 0 1 0 0 0 7

0 1 0 4 0 0 0 8 0

5 0 0 3 0 0 2 6 0

To post all Sudoku constraints on this matrix we will use the following decision

table:

DecisionTable DefineSudokuConstraints
 ActionAllDiff

 Variables

 x00,x01,x02,x03,x04,x05,x06,x07,x08

R
o

w
 C

o
n

s
tr

a
in

ts

x10,x11,x12,x13,x14,x15,x16,x17,x18

x20,x21,x22,x23,x24,x25,x26,x27,x28

x30,x31,x32,x33,x34,x35,x36,x37,x38

x40,x41,x42,x43,x44,x45,x46,x47,x48

OpenRules, Inc. Rule Solver™, User Manual

49

x50,x51,x52,x53,x54,x55,x56,x57,x58

x60,x61,x62,x63,x64,x65,x66,x67,x68

x70,x71,x72,x73,x74,x75,x76,x77,x78

x80,x81,x82,x83,x84,x85,x86,x87,x88

x00,x10,x20,x30,x40,x50,x60,x70,x80

C
o

lu
m

n
 C

o
n

s
tr

a
in

ts
 x01,x11,x21,x31,x41,x51,x61,x71,x81

x02,x12,x22,x32,x42,x52,x62,x72,x82

x03,x13,x23,x33,x43,x53,x63,x73,x83

x04,x14,x24,x34,x44,x54,x64,x74,x84

x05,x15,x25,x35,x45,x55,x65,x75,x85

x06,x16,x26,x36,x46,x56,x66,x76,x86

x07,x17,x27,x37,x47,x57,x67,x77,x87

x08,x18,x28,x38,x48,x58,x68,x78,x88

x00,x01,x02,x10,x11,x12,x20,x21,x22

B
lo

c
k
 C

o
n

s
tr

a
in

ts

x03,x04,x05,x13,x14,x15,x23,x24,x25

x06,x07,x08,x16,x17,x18,x26,x27,x28

x30,x31,x32,x40,x41,x42,x50,x51,x52

x33,x34,x35,x43,x44,x45,x53,x54,x55

x36,x37,x38,x46,x47,x48,x56,x57,x58

x60,x61,x62,x70,x71,x72,x80,x81,x82

x63,x64,x65,x73,x74,x75,x83,x84,x85

x66,x67,x68,x76,x77,x78,x86,x87,x88

This table creates AllDiff-constraints for all arrays listed in every row of this

decision table. This completes the decision model. To execute this model we may

use this Java method:

public static void main(String[] args) {

 String fileName = "file:rules/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision =
 new Decision("DefineAndSolveSudoku",fileName);
 decision.execute();
 decision.execute("PrintSolution",decision);

}

To print a solution we will use this Excel’s table:

OpenRules, Inc. Rule Solver™, User Manual

50

We will receive the following results:

*** Decision DefineAndSolveSudoku ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision DefineAndSolveSudoku: Create 9x9 Matrix
Decision DefineAndSolveSudoku: Enter Known Problem Data
Decision DefineAndSolveSudoku: Define Main Constraints
=== After Assigning Data:
=== After Posting Constraints:
=== Solve ===
========= Solution ==========
 1 6 9 8 2 7 3 4 5
 7 5 8 1 3 4 9 2 6
 4 3 2 9 5 6 1 7 8
 8 9 5 7 4 1 6 3 2
 6 7 3 2 9 5 8 1 4
 2 4 1 6 8 3 7 5 9
 3 2 6 5 1 8 4 9 7
 9 1 7 4 6 2 5 8 3
 5 8 4 3 7 9 2 6 1
=============================

To appreciate the expressiveness of the problem representation supported by

Rule Solver™ you may compare it with a pure Java representation - see

Sudoku.java in org.jcp.jsr331.samples.

Magic Square Problem

OpenRules, Inc. Rule Solver™, User Manual

51

Let’s consider a famous “magic square” problem.

A magic square is a square matrix where the sum of

every row, column, and diagonal is equal to the same

value. The numbers in the magic square are

consecutive and start with 1.

See an example of the Magic Square located in the

Passion Façade of the famous Sagrada Familia

temple in Barcelona.

This problem can be defined and solved using the following Excel table:

Method void main(RuleSolver rs)

int n = 4;

VarMatrix matrix =

rs.variableMatrix("Square",1,n*n,n,n);

// post AllDif constraint

rs.postAllDiff(matrix.flat());

// post Sum constraints for rows, columns,

and diagonals

int sum = n * (n * n + 1) / 2;

rs.post(matrix.diagonal1(),"=",sum);

rs.post(matrix.diagonal2(),"=",sum);

for (int i = 0; i < n; i++) {

 rs.post(matrix.row(i),"=",sum);

 rs.post(matrix.column(i),"=",sum);

}

findSolution(rs);

System.out.println(matrix);

Zebra Problem

This problem is often called "Einstein's Riddle" because it is said to have been

invented by Albert Einstein as a boy. Some claim that Einstein said "only 2

percent of the world's population can solve it".

Here are the problem constraints:

1. There are five houses

2. The Englishman lives in the red house

3. The Spaniard owns the dog

4. Coffee is drunk in the green house

http://www.markfarrar.co.uk/gzimmerman01.htm
http://www.markfarrar.co.uk/gzimmerman01.htm

OpenRules, Inc. Rule Solver™, User Manual

52

5. The Ukrainian drinks tea

6. The green house is immediately to the right of the ivory house

7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house

9. Milk is drunk in the middle house

10. The Norwegian lives in the first house

11. The man who smokes Chesterfields lives in the house next to the man with the fox

12. Kools are smoked in the house next to the house where the horse is kept

13. The Lucky Strike smoker drinks orange juice

14. The Japanese smokes Parliaments

15. The Norwegian lives next to the blue house

Where is the Zebra?

Let’s start with a glossary:

Glossary glossary

Decision
Variables

Business
Concept

Attribute Domain Unknown

Colors

green

Zebra
Problem

green 0-4 TRUE

ivory ivory 0-4 TRUE

blue blue 0-4 TRUE

red red 0-4 TRUE

yellow yellow 0-4 TRUE

People

Norwegian norwegian 0-4 TRUE

Ukrainian ukrainian 0-4 TRUE

Japanese japanese 0-4 TRUE

Englishman englishman 0-4 TRUE

Spaniard spaniard 0-4 TRUE

Drinks

juice juice 0-4 TRUE

tea tea 0-4 TRUE

milk milk 0-4 TRUE

water water 0-4 TRUE

coffee coffee 0-4 TRUE

Pets

snail snail 0-4 TRUE

dog dog 0-4 TRUE

fox fox 0-4 TRUE

horse horse 0-4 TRUE

ZEBRA zebra 0-4 TRUE

Cigarettes

Chesterfield chesterfield 0-4 TRUE

Parliament parliament 0-4 TRUE

Lucky lucky 0-4 TRUE

OldGolds oldGolds 0-4 TRUE

Kools kools 0-4 TRUE

OpenRules, Inc. Rule Solver™, User Manual

53

It defines our decision variables in the domain from 0 to 4 assuming that our

houses are numbered as 0, 1, 2, 3, and 4.

We will define AllDiff-constraints for all variables using this decision table:

DecisionTable AllDiffConstraints

ActionAllDiff

Variables

green,ivory,blue,red,yellow

Norwegian,Ukrainian,Japanese,Englishman,Spaniard

juice,tea,milk,water,coffee

snail,dog,fox,horse,ZEBRA

Chesterfield,Parliament,Lucky,OldGolds,Kools

We may define unconditional linear constraints using the following decision

table:

DecisionTable ZebraConstraints1

 ActionXoperY

X <oper> Y

Englishman = red

The Englishman lives in the red
house

Spaniard = dog The Spaniard owns the dog

coffee = green Coffee is drunk in the green house

Ukrainian = tea The Ukrainian drinks tea

OldGolds = snail The Old Golds smoker owns snails

Kools = yellow
Kools are smoked in the yellow

house

milk = 2 Milk is drunk in the middle house

Norwegian = 0
The Norwegian lives in the first

house

Lucky = juice
The Lucky Strike smoker drinks

orange juice

Japanese = Parliament The Japanese smokes Parliament

We will use formulas with JSR-331 code to define neighboring constraints:

OpenRules, Inc. Rule Solver™, User Manual

54

To put everything together we will use the following table “Decision”:

Decision FindZebra

Decisions Execute Rules

All Diff Constraints AllDiffConstraints

Zebra Constraints 1 ZebraConstraints1

Zebra Constraints 2 ZebraConstraints2

We will assume that data comes from Java that uses the following class:

public class ZebraProblem {

 int green, ivory, blue, red, yellow;
 int norwegian,ukrainian, japanese, englishman, spaniard;
 int juice, tea, milk, water, coffee;
 int snail, dog, fox, horse, zebra;
 int chesterfield, parliament, lucky, oldGolds, kools;

 // automatically generated getters, setters, and toString()

}

OpenRules, Inc. Rule Solver™, User Manual

55

The glossary will be mapped with the actual Java objects using this table:

DecisionObject decisionObjects

Business Concept Business Object

Zebra Problem := decision.get("problem")

Now we are ready to execute this Java launcher:

public static void main(String[] args) {

 String fileName = "file:rules/main/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision = new Decision("FindZebra",fileName);

 ZebraProblem zp = new ZebraProblem();
 decision.put("problem", zp);

 decision.put("trace","On");
 decision.execute();
 out.println("\nDecision: " + zp);
 decision.execute("printSolution",decision);

}

To print a solution it will use the following method:

It will produce the following results:

*** Decision FindZebra ***
Create RuleSolver
JSR-331 Standard v.1.0.1 (release 5/25/2012)
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.1) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Lucky[0..4]
Chesterfield[0..4]

OpenRules, Inc. Rule Solver™, User Manual

56

fox[0..4]
OldGolds[0..4]
Ukrainian[0..4]
horse[0..4]
Parliament[0..4]
yellow[0..4]
tea[0..4]
Kools[0..4]
milk[0..4]
juice[0..4]
ivory[0..4]
water[0..4]
Japanese[0..4]
ZEBRA[0..4]
green[0..4]
coffee[0..4]
Norwegian[0..4]
red[0..4]
blue[0..4]
Englishman[0..4]
Spaniard[0..4]
snail[0..4]
dog[0..4]
Decision FindZebra: All Diff Constraints
Decision FindZebra: Zebra Constraints 1
Decision FindZebra: Zebra Constraints 2
=== After Assigning Data:
…
=== After Posting Constraints:
Lucky[0..4]
Chesterfield[0..4]
fox[0..4]
OldGolds[0..4]
Ukrainian[1..4]
horse[0..4]
Parliament[1..4]
yellow[0..4]
tea[1..4]
Kools[0..4]
milk[2]
juice[0..4]
ivory[2..3]
water[0..4]
Japanese[1..4]
ZEBRA[0..4]
green[3..4]
coffee[3..4]
Norwegian[0]

OpenRules, Inc. Rule Solver™, User Manual

57

red[2..4]
blue[1]
Englishman[2..4]
Spaniard[1..4]
snail[0..4]
dog[1..4]
=== Solve ===
…
Decision: ZebraProblem
green=4, ivory=3, blue=1, red=2, yellow=0
Norwegian=0, Ukrainian=1, Japanese=4, Englishman=2, Spaniard=3
juice=3, tea=1, milk=2, water=0, coffee=4
snail=2, dog=3, fox=0, horse=1, ZEBRA=4
Chesterfield=1, Parliament=4, Lucky=3, OldGolds=2, Kools=0

House #1: fox yellow Kools water Norwegian
House #2: Chesterfield Ukrainian horse tea blue
House #3: OldGolds milk red Englishman snail
House #4: Lucky juice ivory Spaniard dog
House #5: Parliament Japanese ZEBRA green coffee

The proper project “DecisionZebra” is a part of the standard Rule Solver™

installation.

Solving Scheduling Problems

The current version of the JSR-331 does not yet include a scheduling package.

So, OpenRules® developed a simple package javax.constraints.scheduler

on the top of the standard JSR-331 interface. It allows a user to define and solve

different scheduling and resource allocation problems. Rule Solver™ also provides

OpenRules® Excel templates that utilize the package

org.jcp.jsr331.scheduler, allowing a user to present scheduling problems

directly in Excel.

General Model

Scheduling is the process of placing activities in proper time sequence and

allocating the correct resources to activities over time. While there is a great

diversity in scheduling problems, there are a lot of constraints and strategies

that are common for many problems. The package

OpenRules, Inc. Rule Solver™, User Manual

58

javax.constraints.scheduler implements the following general scheduling

model:

A scheduling problem can be defined in terms of activities and resources.

Activities may have an unknown start, duration and end, and may require (or

produce) different resources. Resources may have different types (e.g.

recoverable like humans or consumable like money) and their limited capacities

may vary over time. The package includes major temporal and capacity

constraints specified in accordance with the JSR-331 requirements.

We will describe this package below. Now we will consider the following

examples of scheduling problems presented in Java or with Rule Solver™

templates.

Example “Scheduling Construction Jobs”

Let’s assume that we plan to construct a house. The construction requires the

following activities with the following fixed durations and precedence (temporal)

constraints:

OpenRules, Inc. Rule Solver™, User Manual

59

Here arrows represent temporal constraints like “Carpentry starts after the end

of Masonry”. The numbers near each activity represent its durations (in days).

Solution in Java

First consider a pure Java code for this simple problem.

package org.jcp.jsr331.scheduler.samples;

import javax.constraints.*;

import javax.constraints.scheduler.*;

public final class ScheduleActivities {

 Schedule s =

 ScheduleFactory.newSchedule("ScheduleActivities",0,40);

 public void define() throws Exception {

 // defining jobs

 Activity masonry = s.activity("masonry ",7);

 Activity carpentry = s.activity("carpentry",3);

 Activity plumbing = s.activity("plumbing ",8);

 Activity ceiling = s.activity("ceiling ",3);

 Activity roofing = s.activity("roofing ",1);

 Activity painting = s.activity("painting ",2);

 Activity windows = s.activity("windows ",1);

 Activity facade = s.activity("facade ",2);

 Activity garden = s.activity("garden ",1);

 Activity movingIn = s.activity("moving in",1);

OpenRules, Inc. Rule Solver™, User Manual

60

 // Posting "startsAfterEnd" constraints

 s.post(carpentry,">",masonry);

 s.post(roofing,">",carpentry);

 s.post(plumbing,">",masonry);

 s.post(ceiling,">",masonry);

 s.post(windows,">",roofing);

 s.post(facade,">",roofing);

 s.post(facade,">",plumbing);

 s.post(garden,">",roofing);

 s.post(garden,">",plumbing);

 s.post(painting,">",ceiling);

 s.post(movingIn,">",windows);

 s.post(movingIn,">",facade);

 s.post(movingIn,">",garden);

 s.post(movingIn,">",painting);

 s.logActivities();

 }

 public void solve() {

 Solution solution = s.scheduleActivities();

 if (solution == null)

 s.log("No solutions");

 else {

 s.log("SOLUTION:");

 s.logActivities();

 }

 }

 public static void main(String args[]) throws Exception {

 ScheduleActivities p = new ScheduleActivities();

 p.define();

 p.solve();

 }

}

The line

s.post(plumbing,">",masonry);

posts the constraint “Carpentry starts after the end of Masonry”. The method

“solve” uses a predefined method, “scheduleActivities”, that simply defines start

times for all activities while satisfying all posted constraints. When we run this

code, it will produce:

SOLUTION:

masonry [0 -- 7 --> 7)

carpentry[7 -- 3 --> 10)

plumbing [7 -- 8 --> 15)

ceiling [7 -- 3 --> 10)

roofing [10 -- 1 --> 11)

OpenRules, Inc. Rule Solver™, User Manual

61

painting [10 -- 2 --> 12)

windows [11 -- 1 --> 12)

facade [15 -- 2 --> 17)

garden [15 -- 1 --> 16)

moving in[17 -- 1 --> 18)

Here the line movingIn[17 -- 1 --> 18) means that the activity “movingIn”

will start on day 17, will last one day, and will end on day 18.

Solution in Excel

Now we will see how the same problem can be presented and solved directly in

Excel. Rule Solver™ provides s for different scheduling constructs. So, our

decision model will be defined by the following table:

Decision ScheduleActivities

Decisions Execute Rules

Define Schedule DefineSchedule

Define Activities DefineActivities

Define Precedence
Constraints

DefinePrecedenceConstraints

We may define schedule in the following table:

DecisionTable DefineSchedule

ActionSchedule

Origin Horizon

0 30

Then we will define activities:

DecisionTable DefineActivities

ActionAddActivity

Name Duration

masonry 7

carpentry 3

roofing 1

plumbing 8

ceiling 3

windows 1

façade 2

OpenRules, Inc. Rule Solver™, User Manual

62

garden 1

painting 2

movingIn 1

And finally we will define precedence constraints:

DecisionTable DefinePrecedenceConstraints

ActionActOperAct

Activity Operator Activity/Day

carpentry > masonry

roofing > carpentry

plumbing > masonry

ceiling > masonry

windows > roofing

façade > plumbing

façade > roofing

garden > roofing

garden > plumbing

movingIn > windows

movingIn > façade

movingIn > garden

movingIn > painting

The model is ready to be executed by this Java launcher:

public static void main(String[] args) {

 String fileName = "file:rules/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision = new Decision("ScheduleActivities",fileName);
 decision.execute();

}

It will produce the following results:

*** Decision ScheduleActivities ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision ScheduleActivities: Define Schedule
Create RuleScheduler
Decision ScheduleActivities: Define Activities
Decision ScheduleActivities: Define Precedence Constraints

OpenRules, Inc. Rule Solver™, User Manual

63

=== After Assigning Data:
=== After Posting Constraints:
=== Solve ===
Solution:
masonry[0 -- 7 --> 7)
carpentry[7 -- 3 --> 10)
roofing[10 -- 1 --> 11)
plumbing[7 -- 8 --> 15)
ceiling[7 -- 3 --> 10)
windows[11 -- 1 --> 12)
façade[15 -- 2 --> 17)
garden[15 -- 1 --> 16)
painting[0 -- 2 --> 2)
movingIn[17 -- 1 --> 18)

Example “Resource Allocation”

The following problem deals with activities that require a common resource.

Let’s consider 5 different orders (activities) that fire batches of bricks in an oven

(a resource with a limited capacity). Each order ‘s size and duration, as well as

the oven’s capacity, are described in the following figure:

OpenRules, Inc. Rule Solver™, User Manual

64

This is a simple example of a joint scheduling and resource allocation problem

where we allow a solver to decide when to perform different activities based on

resource availability.

Solution in Excel

Now we will see how this problem can be presented and solved directly in Excel.

Let’s define our decision model:

Decision DefineOvenSchedule

Decisions Execute Rules

Define Schedule DefineSchedule

Define Activities DefineActivities

Define Oven as Recoverable
Resource

DefineOvenAsResource

Define Oven Availability SetOvenCapacities

Define Resource Requirement
Constraints

ResourceRequirementConstraints

This decision table creates a schedule with a makespan 11 days:

DecisionTable DefineSchedule

ActionSchedule

Origin Horizon

0 11

This table defines all activities:

DecisionTable DefineActivities

ActionAddActivity

Name Duration

A 1

B 4

C 4

D 2

E 4

OpenRules, Inc. Rule Solver™, User Manual

65

The resource “Oven” can be created using this table:

DT DefineOvenAsResource

ActionAddResource

Name Type
Max

Capacity

Oven 3

This problem does not have precedence constraints but it has resource

requirement constraints that are presented in this table:

DT ResourceRequirementConstraints

ActionActReqResource

Activity
Required
Resource

Required
Capacity

A Oven 2

B Oven 1

C Oven 1

D Oven 1

E Oven 2

The resource “Oven” has limits to its capacities as defined in the following table:

DT SetOvenCapacities

ActionResourceCap

Resource From To Capacity

Oven 0 1 2

Oven 1 2 1

Oven 2 3 0

Oven 3 5 1

Oven 5 10 3

Oven 10 11 1

The model is ready to be executed by this Java launcher:

public static void main(String[] args) {

 String fileName = "file:rules/Decision.xls";
 System.setProperty("OPENRULES_MODE", "Solve");
 Decision decision = new Decision("DefineOvenSchedule",fileName);
 decision.execute();

}

OpenRules, Inc. Rule Solver™, User Manual

66

It will produce the following results:

*** Decision DefineOvenSchedule ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision DefineOvenSchedule: Define Schedule
Create RuleScheduler
Decision DefineOvenSchedule: Define Activities
Decision DefineOvenSchedule: Define Oven as Recoverable Resource
Decision DefineOvenSchedule: Define Oven Availabilityt
Decision DefineOvenSchedule: Define Resource Requirement Constraints
=== After Assigning Data:
=== After Posting Constraints:
=== Solve ===
Solution:
A[5 -- 1 --> 6) requires Oven[2]
B[3 -- 4 --> 7) requires Oven[1]
C[7 -- 4 --> 11) requires Oven[1]
D[0 -- 2 --> 2) requires Oven[1]
E[6 -- 4 --> 10) requires Oven[2]

Here is a visual representation of the results:

Solution in Java

Now we solve the same problem in Java:

package org.jcp.jsr331.scheduler.samples;

import javax.constraints.Solution;

import javax.constraints.Solver;

import javax.constraints.scheduler.Activity;

import javax.constraints.scheduler.Resource;

import javax.constraints.scheduler.impl.SchedulingProblem;

OpenRules, Inc. Rule Solver™, User Manual

67

public final class Oven {

Schedule s =

 ScheduleFactory.newSchedule("Oven",0,40);

 public void define() throws Exception {

 setStart(0);

 setEnd(11);

 Activity A = s.activity("A",1);

 Activity B = s.activity("B",4);

 Activity C = s.activity("C",4);

 Activity D = s.activity("D",2);

 Activity E = s.activity("E",4);

 Resource oven = s.resource("oven",3);

 oven.setCapacityMax(0, 2);

 oven.setCapacityMax(1, 1);

 oven.setCapacityMax(2, 0);

 oven.setCapacityMax(3, 1);

 oven.setCapacityMax(4, 1);

 oven.setCapacityMax(10, 1);

 A.requires(oven, 2);

 B.requires(oven, 1);

 C.requires(oven, 1);

 D.requires(oven, 1);

 E.requires(oven, 2);

 }

 public void solve() {

 Solver solver = s.getSolver();

 solver.setSearchStrategy(s.strategyScheduleActivities());

 solver.addSearchStrategy(s.strategyAssignResources());

 Solution solution = solver.findSolution();

 if (solution == null) {

 s.log("No Solutions");

 }

 else {

 s.log("Solution:");

 s.logActivities();

 s.logResources();

 }

 solver.logStats();

 }

 public static void main(String args[]) throws Exception {

 Oven p = new Oven();

 p.define();

 p.solve();

 }

}

OpenRules, Inc. Rule Solver™, User Manual

68

Here, the line

Resource oven = s.resource("oven",3);

defines a new discrete resource “oven” with a maximum capacity of 3 batches.

The following lines set the maximal capacity for the oven for every day when the

oven has a capacity less than 3. Note that the solving method along with the

strategy “strategyScheduleActivities” also use another strategy

“strategyAssignResources”. Putting these two strategies in the solver strategy

list, we allow a solver to first try to schedule activities and then to try to assign

the required resource capacities to them. When resource assignments fail, a

solver will backtrack and will try different placements of activities in time. Here

are the produced results:

Solution:

A[5 -- 1 --> 6) requires oven[2]

B[3 -- 4 --> 7) requires oven[1]

C[7 -- 4 --> 11) requires oven[1]

D[0 -- 2 --> 2) requires oven[1]

E[6 -- 4 --> 10) requires oven[2]

Resource oven: t0[1] t1[1] t2[0] t3[1] t4[1] t5[3] t6[3] t7[3]

t8[3] t9[3] t10[1]

*** Execution Profile ***

Number of Choice Points: 5

Number of Failures: 2

Execution time: 31 msec

Now the method “logActivities” also shows the required resources with required

capacities in brackets. The method “logResources” shows the resource “oven”

with its daily capacities assigned to their possible minimums.

The produced statistics shows that there were two failures when the solver had

to reconsider previously selected start times for some activities.

Learn By Examples

We can extend the previously described basic construction job scheduling

example to demonstrate more complex scheduling and resource allocation

problems.

OpenRules, Inc. Rule Solver™, User Manual

69

Example “Scheduling Construction Jobs with a Worker”

Previously we had pure scheduling constraints between different construction

activities. Now let’s assume that additionally all of the activities require a

resource (worker) in order to be processed. One worker is required to perform all

the activities. Because the worker can only perform one task at a time, we cannot

schedule two activities at the same time (as we could in the basic example).

In addition to the decision tables that define activities and precedence

constraints in the pure scheduling example, we will need to add a resource

“Worker” and the proper requirement constraints. Here is the updated decision:

Decision ScheduleActivitiesWithWorker

Decisions Execute Rules

Define Schedule DefineSchedule

Define Activities DefineActivities

Define Precedence
Constraints

DefinePrecedenceConstraints

Define Worker DefineWorker

Define Resource
Requirement Constraints

ResourceRequirementConstraints

We will add a worker using this table:

DecisionTable DefineWorker

ActionAddResource

Name Type
Max

Capacity

Worker Recoverable 1

The next table defines the worker requirement constraints:

DecisionTable ResourceRequirementConstraints

ActionActReqResource

Activity
Required
Resource

Required
Capacity

masonry Worker 1

carpentry Worker 1

roofing Worker 1

OpenRules, Inc. Rule Solver™, User Manual

70

plumbing Worker 1

ceiling Worker 1

windows Worker 1

façade Worker 1

garden Worker 1

painting Worker 1

movingIn Worker 1

Now the same Java launcher will produce the following results:

*** Decision ScheduleActivitiesWithWorker ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision ScheduleActivitiesWithWorker: Define Schedule
Create RuleScheduler
Decision ScheduleActivitiesWithWorker: Define Activities
Decision ScheduleActivitiesWithWorker: Define Precedence Constraints
Decision ScheduleActivitiesWithWorker: Define Worker
Decision ScheduleActivitiesWithWorker: Define Resource Requirement
Constraints
=== After Assigning Data:
=== After Posting Constraints:
=== Solve ===
Solution:
masonry[0 -- 7 --> 7) requires Worker[1]
carpentry[7 -- 3 --> 10) requires Worker[1]
roofing[10 -- 1 --> 11) requires Worker[1]
plumbing[11 -- 8 --> 19) requires Worker[1]
ceiling[19 -- 3 --> 22) requires Worker[1]
windows[22 -- 1 --> 23) requires Worker[1]
façade[23 -- 2 --> 25) requires Worker[1]
garden[25 -- 1 --> 26) requires Worker[1]
painting[26 -- 2 --> 28) requires Worker[1]
movingIn[28 -- 1 --> 29) requires Worker[1]

Example “Scheduling Construction Jobs with a Limited Budget”

Now we will add an additional requirement to the above problem. Along with

worker constraints, we have to consider budget constraints. Each activity

requires the payment of $1,000 per day. Let’s assume that a bank agreed to

finance the house constructions for the total amount of $29,000. However, the

sum is available in two installations, $13,000 is available at the start of the

OpenRules, Inc. Rule Solver™, User Manual

71

project, and $16,000 is available 15 days afterwards. How could we still construct

the house under these constraints?

We need to extend our decision model by adding a resource “Budget” and the

proper requirement constraints. Here is the updated decision:

Decision ScheduleActivitiesWithWorkerBudget

Decisions Execute Rules

Define Schedule DefineSchedule

Define Activities DefineActivities

Define Precedence
Constraints

DefinePrecedenceConstraints

Define Worker & Budget DefineResources

Define Budget Limitations SetBudgetCapacities

Define Resource
Requirement Constraints

ResourceRequirementConstraints

Now we will add both Worker and Budget resources in the following table:

DecisionTable DefineResources

ActionAddResource

Name Type
Max

Capacity

Worker Recoverable 1

Budget Consumable 30000

The updated resource requirement table will look as follows:

DecisionTable
ResourceRequirementConstraints

ActionActReqResource

Activity
Required
Resource

Required
Capacity

masonry Worker 1

carpentry Worker 1

roofing Worker 1

plumbing Worker 1

ceiling Worker 1

windows Worker 1

façade Worker 1

OpenRules, Inc. Rule Solver™, User Manual

72

garden Worker 1

painting Worker 1

movingIn Worker 1

masonry Budget 1000

carpentry Budget 1000

roofing Budget 1000

plumbing Budget 1000

ceiling Budget 1000

windows Budget 1000

façade Budget 1000

garden Budget 1000

painting Budget 1000

movingIn Budget 1000

And finally the fact that during the first 15 days only $15,000 are available can

be expressed using the following table:

DecisionTable SetBudgetCapacities

ActionResourceCap

Resource From To Capacity

Budget 0 15 15000

Now the same Java launcher will produce the following results:

*** Decision ScheduleActivitiesWithWorkerBudget ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision ScheduleActivitiesWithWorkerBudget: Define Schedule
Create RuleScheduler
Decision ScheduleActivitiesWithWorkerBudget: Define Activities
Decision ScheduleActivitiesWithWorkerBudget: Define Precedence Constraints
Decision ScheduleActivitiesWithWorkerBudget: Define Worker & Budget
Decision ScheduleActivitiesWithWorkerBudget: Define Budget Limitations
Decision ScheduleActivitiesWithWorkerBudget: Define Resource Requirement
Constraints
=== After Assigning Data:
=== After Posting Constraints:
=== Solve ===
Solution:
masonry[0 -- 7 --> 7) requires Worker[1] requires Budget[1000]
carpentry[7 -- 3 --> 10) requires Worker[1] requires Budget[1000]
roofing[10 -- 1 --> 11) requires Worker[1] requires Budget[1000]
plumbing[11 -- 8 --> 19) requires Worker[1] requires Budget[1000]
ceiling[19 -- 3 --> 22) requires Worker[1] requires Budget[1000]
windows[22 -- 1 --> 23) requires Worker[1] requires Budget[1000]

OpenRules, Inc. Rule Solver™, User Manual

73

façade[23 -- 2 --> 25) requires Worker[1] requires Budget[1000]
garden[25 -- 1 --> 26) requires Worker[1] requires Budget[1000]
painting[26 -- 2 --> 28) requires Worker[1] requires Budget[1000]
movingIn[28 -- 1 --> 29) requires Worker[1] requires Budget[1000]

Example “Scheduling Construction Jobs with Alternative Resources”

Now let’s consider a construction job scheduling example with alternative

resources that are required to execute those jobs. Let’s assume that we have 3

workers Joe, Jim, and Jack, with different skills. Each job requires only one of

these workers depending on their skills:

masonry requires Joe or Jack

 carpentry requires Joe or Jim

 plumbing requires Jack

 ceiling requires Joe or Jim

 roofing requires Joe or Jim

 painting requires Jack or Jim

 windows requires Joe or Jim

 façade requires Joe or Jack

 garden requires Joe or Jack or Jim

 movingIn requires Joe or Jim.

We will extend the previously described basic construction job scheduling

example. We need to add 3 disjunctive resources, Joe, Jim, and Jack. The fact

that an activity may require more than one resource is interpreted as a

requirement for alternative resources. We will add sub-decision “Define Workers”

and “Define Resource Requirement Constraints” to the table “Decision”:

Decision ScheduleActivitiesWithAlternativeResources

Decisions Execute Rules

Define Schedule DefineSchedule

Define Activities DefineActivities

Define Precedence
Constraints

DefinePrecedenceConstraints

Define Workers DefineWorkers

Define Resource Requirement
Constraints

ResourceRequirementConstraints

OpenRules, Inc. Rule Solver™, User Manual

74

The following table defines alternative resources:

DecisionTable DefineWorkers

ActionAddResource

Name Type
Max

Capacity

Joe disjunctive 1

Jack disjunctive 1

Jim disjunctive 1

The next table creates resource requirement constraints listing alternatives

divided by the OR-sign “|”:

DecisionTable
ResourceRequirementConstraints

ActionActReqResource

Activity
Required
Resource

Required
Capacity

masonry Joe | Jack 1

carpentry Joe|Jim 1

roofing Joe | Jim 1

plumbing Jack 1

ceiling Joe | Jim 1

windows Joe | Jim 1

façade Joe | Jack 1

garden Joe | Jim | Jack 1

painting Jack | Jim 1

movingIn Joe | Jim 1

That’s it. Now the same Java launcher will produce the following results:

*** Decision ScheduleActivitiesWithAlternativeResources ***
Create RuleSolver
JSR-331 Implementation based on Constrainer 5.4 (light)
=== Rule Solver (version 6.2.0) ===
addConstrainedVariables
Decision has been initialized with RuleSolver
=== Initial Problem Variables:
Decision ScheduleActivitiesWithAlternativeResources: Define Schedule
Create RuleScheduler
Decision ScheduleActivitiesWithAlternativeResources: Define Activities
Decision ScheduleActivitiesWithAlternativeResources: Define Precedence
Constraints
Decision ScheduleActivitiesWithAlternativeResources: Define Workers
Decision ScheduleActivitiesWithAlternativeResources: Define Resource
Requirement Constraints
=== After Assigning Data:

OpenRules, Inc. Rule Solver™, User Manual

75

=== After Posting Constraints:
=== Solve ===
Solution:
masonry[0 -- 7 --> 7) requires Jack[1]
carpentry[7 -- 3 --> 10) requires Jim[1]
roofing[10 -- 1 --> 11) requires Jim[1]
plumbing[7 -- 8 --> 15) requires Jack[1]
ceiling[7 -- 3 --> 10) requires Joe[1]
windows[11 -- 1 --> 12) requires Jim[1]
façade[15 -- 2 --> 17) requires Jack[1]
garden[15 -- 1 --> 16) requires Jim[1]
painting[0 -- 2 --> 2) requires Jim[1]
movingIn[17 -- 1 --> 18) requires Jim[1]

INSTALLATION

Rule Solver™ can be installed as an component of the complete version of

OpenRules® and available in the workspace “openrules.solver”. You will

download and unzip this folder to your hard drive. It is self-sufficient and can be

used with Windows Explorer or Eclipse IDE.

Structure

Unzipped “openrules.solver” includes the following projects:

Project “com.openrules.solver“

This project contains an implementation of Rule Solver™:

- Folder “src” with source files:

o com.openrules.solver – source code for Rule Solver™

o com.openrules.solver.samples - Rule Solver™ examples

including “MissManners” that deals with set constrained variables

o org.jcp.jsr331.samples - sources with JSR-331 examples

o org.jcp.jsr331.scheduler.samples - sources with scheduling

examples

- Folder “lib” with supporting jar-files:

o jsr331.jar – JSR-331 jar files with 3 open source implementations

OpenRules, Inc. Rule Solver™, User Manual

76

o apache/*.jar – Apache Commons jars

o choco/*.jar – jars for Choco’s implementation of the JSR-331

o jacop/*.jar – jars for JaCoP’s implementation of the JSR-331

o constrainer/*.jar – jars for Constrainer’s implementation of the

JSR-331

o scheduler.jar – Scheduler’s jar file that also includes all sources

- Folder “rules” with Excel-files for all Rule Solver™ samples:

o common/Templates.xls – basic OpenRules® templates for defining and

solving CSPs

o common/ScheduleTemplates.xls –OpenRules® templates for

scheduling CSPs

o common/RulesSolver,xls – common Excel files that defines Rule

Solver™ environment (called from all other Excel files)

o <Name>.xls – various Rule Solver™ examples (without decisions)

Project “openrules.config“

This project contains standard OpenRules® jars (in the folder “lib”) and decision

templates. Additionally to the standard templates, Rule Solver™ comes with one

additional template “DecisionTableSolveTemplates.xls”.

Decision Projects

There are many sample projects such as DecisionHelloCP, DecisionLoanCP,

DecisionScheduleActivities, and others.

Licenses

Rule Solver™ is available under the terms of the most popular Open Source

license known as "GNU General Public License" (GPLv2). The included software

is provided under the terms of open source licenses included in the folders for the

proper solvers.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

OpenRules, Inc. Rule Solver™, User Manual

77

Using a Standalone Version

You may use Rule Solver™ directly from your file system. All projects such as

DecisionLoanXP contain a batch file “run.bat”.

The folder com.openrules.solver contains batch files that can be used to run

different examples. For example, "runZebra.bat" will execute the example

Zebra.xls. To run any example, you may double-click on the proper

run<Name>.bat file. For example, runOven.bat will execute the problem defined

in the file “rules/Oven.xls”.

If you work with UNIX/LINUX you need to replace *.bat files with similar *.sh

files.

To switch between CP solvers you need to modify the file “run.bat”. For example,

to switch from "constrainer" to "choco" put "rem " in front of "set

SOLVER=./lib/constrainer/…" and remove "rem " in front of "set

SOLVER=./lib/choco/…".

Working under Eclipse IDE

To use the Rule Solver™ with Eclipse IDE, simply import the project

com.openrules.solver and different decision projects such as

DecisionLoanXP into your Eclipse workspace. You may run Java samples

directly from Eclipse by selecting their sources with a right-click and then "Run

as Java Application".

To switch between underlying solvers, just select the Project Properties, and

simply change Libraries inside Java Build Path.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to these Google

discussion groups: OpenRules Forum and JSR-331 Forum.

http://eclipse.org/
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
https://groups.google.com/forum/?hl=en&fromgroups#!forum/jsr331

