
OpenRules, Inc.

www.openrules.com

September-2011

OPENRULES
®

Open Source Business

Decision Management System

Release 6.1

User Manual

http://www.openrules.com/

OpenRules, Inc. OpenRules® User Manual

2

Table of Contents

Introduction .. 6

Brief History ...6

OpenRules® Components ..7

Document Conventions...7

Core Concepts ... 8

Spreadsheet Organization and Management .. 9

Workbooks, Worksheets, and Tables ...9

How OpenRules® Tables Are Recognized .. 10

OpenRules® Table Example .. 12

Business and Technical Views ... 14

Decision Modeling and Execution .. 15

Starting with Decision ... 15

Defining Rule Families .. 18

Rule Family Execution Logic ... 19

AND/OR Conditions .. 19

Rule Family Operators .. 20

Conditions and Conclusions without Operators ... 22

Using Formulas inside Rule Families ... 23

Defining Business Glossary .. 24

Defining Test Data .. 25

Connecting the Decision Model with Business Objects ... 27

Executing Decision Models .. 28

Controlling Decision Model Output ... 29

Validating Decision Model .. 29

Beyond The Decision Model .. 30

Specialized Conditions and Conclusions ... 30

Specialized Rule Families .. 31

RuleFamily1 .. 31

RuleFamily2 .. 32

Decision Tables ... 33

Simple Rules Table .. 34

OpenRules, Inc. OpenRules® User Manual

3

How Decision Tables Are Organized .. 36

Separating Business and Technical Information ... 39

How Decision Tables Are Executed .. 41

Relationships between Rules inside Decision Tables ... 42

Multi-Hit Rules Tables .. 42

Rules Overrides in Multi-Hit Tables .. 43

Single-Hit Decision Tables ... 45

Rule Sequences ... 47

Relationships among Decision Tables... 48

Simple AND / OR Conditions in Rules Tables .. 49

Basic Rule Templates .. 50

Horizontal and Vertical Decision Tables ... 51

Merging Cells .. 52

Sub-Columns and Sub-Rows for Dynamic Arrays .. 53

Using Expressions inside Decision Tables ... 54

Integer and Real Intervals ... 54

Comparing Integer and Real Numbers ... 56

Using Comparison Operators inside Rule Tables .. 56

Comparing Dates .. 58

Comparing Boolean Values ... 58

Representing String Domains ... 60

Representing Domains of Numbers.. 61

Using Java Expressions ... 61

Expanding and Customizing Predefined Types ... 63

Performance Considerations .. 63

Rule Templates ... 63

Simple Rules Templates .. 63

Defining Default Rules within Templates ... 65

Templates with Defaults Rules for Multi-Hit Tables ... 65

Templates with Defaults Rules for Single-Hit Tables .. 66

Partial Template Implementation ... 67

Templates with Optional Conditions and Actions ... 69

Templates for the Decision Model ... 70

Decision Templates .. 73

Rule Family Templates .. 74

Customization ... 74

OpenRules® API ... 75

OpenRules, Inc. OpenRules® User Manual

4

OpenRulesEngine API.. 75

Engine Constructors ... 75

Engine Runs .. 77

Undefined Methods ... 78

Accessing Password Protected Excel Files .. 79

Engine Attachments ... 80

Engine Version .. 80

Dynamic Rules Updates .. 80

Decision API ... 80

Decision Constructors ... 81

Decision Parameters ... 82

Decision Runs ... 82

Decision Execution Modes.. 83

JSR-94 Implementation ... 83

Multi-Threading.. 84

Integration with Java and XML .. 85

Java Classes... 85

XML Files ... 86

Data Modeling .. 88

Datatype and Data Tables ... 89

How Datatype Tables Are Organized ... 92

How Data Tables Are Organized .. 94

Predefined Datatypes ... 97

Accessing Excel Data from Java - Dynamic Objects ... 99

How to Define Data for Aggregated Datatypes .. 100

Finding Data Elements Using Primary Keys .. 101

Cross-References Between Data Tables ... 101

OpenRules® Repository .. 103

Logical and Physical Repositories .. 103

Hierarchies of Rule Workbooks ... 105

Included Workbooks ... 105

Include Path and Common Libraries of Rule Workbooks ... 106

Imports from Java ... 106

Imports from XML .. 107

Parameterized Rule Repositories... 108

Rules Version Control ... 109

OpenRules, Inc. OpenRules® User Manual

5

Rules Authoring and Maintenance Tools ... 109

External Rules ... 111

API for External Rules ... 111

External Rules from Java ... 114

Step 1. Defining Rule Tables in Java ... 114

Step 2. Executing External Rules from a Java Program .. 117

External Rules from Database ... 118

Step 1. Setting Up Database with Rule Tables .. 119

Step 2. Defining a DB interface in Java ... 120

Step 3. Creating and Executing Rules from a Java Program ... 122

External Rules from XML ... 125

Step 1. Defining Rule Tables in XML ... 125

Step 2. Reading XML rules in Java .. 126

Step 3. Creating and Executing Rules from a Java Program ... 129

External Rules from Excel .. 132

Step 1. Defining Rule Tables in Excel Data Tables .. 132

Step 2. Creating and Executing External Rules from a Java Program ... 134

External Rules from GUI .. 139

Step 1. Defining A Graphical User Interface ... 139

Step 2. Defining Implementation Approach ... 141

Step 3. Creating Supporting Java Classes ... 145

Step 4. Creating Graphical Layouts in Excel .. 148

Step 5. Deploying and Executing the Web Application .. 152

OpenRules® Projects .. 152

Pre-Requisites .. 152

Sample Projects .. 152

Main Configuration Project ... 153

Supporting Libraries ... 153

Predefined Types and Templates ... 154

Technical Support ... 155

OpenRules, Inc. OpenRules® User Manual

6

INTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source

Business Rules Management System (BRMS) and since then has become one of

the most popular BRMS on the market. Today OpenRules® is a Business

Decision Management System (BDMS) with proven records of delivering and

maintaining areliable decision support software. OpenRules® is a winner of

several impressive software awards for innovation and is used worldwide by

multi-billion dollar corporations, major banks, insurers, health care providers,

government agencies, online stores, universities, and many other institutions.

Brief History

From the very beginning, OpenRules® was oriented to subject matter experts

(business analysts). allowing them to work in concert with software developers to

create, maintain, and efficiently execute business rules housed in enterprise-

class rules repositories. OpenRules® avoided the introduction of yet another “rule

language” as well as another proprietary rules management GUI. Instead,

OpenRules® relied on commonly used tools such as MS Excel, Google Docs and

Eclipse. This approach enabled OpenRules® users to create and maintain inter-

related decision tables directly in Excel. Each rule table included several

additional rows called a “technical view” where a software developer could use

Java snippets to specify the exact semantics of rule conditions and actions.

In March of 2008, OpenRules® Release 5 introduced Rule Templates. Templates

allowed a business analyst to create hundreds and thousands of business rules

based on a small number of templates supported by software developers. Rule

templates minimized the use of Java snippets and hid them from business users.

Rule templates was a significant step in minimizing rule repositories and clearly

separating the roles of business analysts and software specialists in maintaining

the rules.

In March of 2011 OpenRules® introduced Release 6, which finally allowed

business users to eliminate the need for IT involvement in creating and

maintaining rules repositories. OpenRules® 6 implements a highly successful

decision management approach described in the book “The Decision Model” by

Barbara von Halle and Larry Goldberg (2009) without IT involvement. This new

release effectively removes any Java coding from rules representation and allows

business analysts themselves to specify their decision models and supporting

rule families directly and completely in Excel. Business users can also create

business glossaries and test cases in Excel tables. They may then test the

accuracy of execute their decision models without the need for any coding at all.

Once a decision model has been tested it can be easily incorporated into any Java

or .NET environment. This process may involve IT specialists but only to

integrate the business glossary with a specific business object model. The

business logic remains the complete prerogative of subject matter experts.

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm
http://www.thedecisionmodel.com/

OpenRules, Inc. OpenRules® User Manual

7

OpenRules® Components

OpenRules® offers the following decision management components:

 Rule Repository for management of enterprise-level decision models

 Rule Engine for execution of decision models and different business rules

 Rule Dialog for building rules-based Web questionnaires

 Rule Learner for rules discovery and predictive analytics

 Rule Solver for solving constraint satisfaction and optimization problems

 Finite State Machines for event processing and “connecting the dots”.

Integration of these components with executable decision models has effectively

converted OpenRules® from a BRMS to a BDMS, Business Decision Management

System, oriented to “decision-centric” application development.

OpenRules, Inc. is a professional open source company that provides product

documentation and technical support that is highly praised by our customers.

You may start learning about product with the document “Getting Started”

which describes how to install OpenRules® and includes simple examples. Then

you may look at a more complex example in the tutorial “Calculating A Tax

Return Using the Decision Model”. This user manual covers the core

OpenRules® concepts in greater depth. Additional OpenRules® components are

described in separate user manuals: see Rule Learner, Rule Solver, and Rule

Dialog.

Document Conventions
The regular Century Schoolbook font is used for descriptive information.

The italic Century Schoolbook font is used for notes and fragments clarifying the

text.

The Courier New font is used for code examples.

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/ORD.htm

OpenRules, Inc. OpenRules® User Manual

8

CORE CONCEPTS

OpenRules® is a BDMS, Business Decision Management System, oriented to

“decision-centric” application development. OpenRules® utilizes the well-

established spreadsheet concepts of workbooks, worksheets, and tables to build

enterprise-level rule repositories. Each OpenRules® workbook is comprised of

one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel-files you can use any

standard spreadsheet editor such as:

 MS Excel™

 OpenOffice™

 Google Spreadsheets™

Google Spreadsheets are especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their

keywords. Here is the list of OpenRules® tables along with brief description of

each:

Table Type

(Keyword)
Comment

Decision

Defines a decision that may consist of

multiple sub-decisions associated with

different rule families

RuleFamily

This is a single-hit decision table that

uses multiple conditions on different fact

types to reach a single conclusion about

the decision fact type

Glossary

For each fact type used in the rule

families the glossary defines related

business concepts, as well as related

implementation attributes and their

possible domain

DecisionObject

Associates business concepts specified in

the glossary with concrete objects

defined outside the decision model (i.e.

OpenRules, Inc. OpenRules® User Manual

9

as Java objects or Excel Data tables)

Rules

Defines a decision table that includes

Java snippets that specify custom logic

for conditions and actions. Read more.

Some Rules tables may refer to

templates that hide those Java snippets.

Datatype
Defines a new data type directly in Excel

that can be used for testing

Data Creates an array of test objects

Variable Creates one test object

Environment

This table defines the structure of a rules

repository by listing all included

workbooks, XML files, and Java

packages

Method

Defines expressions using snippets of

Java code and known fact types and

objects

RuleFamily1
A multi-hit rule family that allows rule

overrides

RuleFamily2

A rule sequence that executes all rules in

top-down order when results of the

execution of previous rules may affect

the conditions of rules that follow

Layout
A special table type used by OpenRules®

Forms and OpenRules® Dialog

The following section will provide a detailed description of these concepts.

SPREADSHEET ORGANIZATION AND MANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,

web forms, and other information that can be organized using a tabular format.

Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.

These can be represented and maintained in multiple Excel files. Each

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRules® User Manual

10

OpenRules® workbook is comprised of one or more worksheets that can be used

to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules® tables and

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules® parser splits spreadsheets into “parsed tables”. Each logical

table should be separated by at least one empty row or column at the start of

the table. Table parsing is performed from left to right and from top to

bottom. The first non-empty cell (i.e. cell with some text in it) that does not

belong to a previously parsed table becomes the top-left corner of a new

parsed table.

2. The parser determines the width/height of the table using non-empty cells as

it’s clues. Merged cells are important and are considered as one cell. If the

top-left cell of a table starts with a predefined keyword (see the table below),

then such a table is parsed into an OpenRules® table.

3. All other "tables," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each with their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a

black background with a white foreground for the very first row. All cells in this

row should be merged, so that the first row explicitly specifies the table width.

We call this row the "table signature". The text inside this row (consisting of

one or more merged cells) is the table signature that starts with a keyword. The

information after the keyword usually contains a unique table name and

additional information that depends on the table type.

OpenRules, Inc. OpenRules® User Manual

11

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

empty row after the last table row. Here are examples of some typical tables

recognized by OpenRules®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something Something Something

Something Something Something

OpenRules® table with 3 columns and still 2 rows:

Keyword Something Something

Something Something Something

Something Something Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Keyword <some text>

Something Something

 Something Something

 Something

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Keyword <some text>

Something Something Something

Something Something Something

OpenRules, Inc. OpenRules® User Manual

12

Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd column of

the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword Something

Something

Something Something Something Something

Something Something Something Something

OpenRules® will not recognize this table (there is no empty row before the

signature row):

Table Title

Keyword <some text>

Something Something

 Something Something

 Something

Fonts and coloring schema are a matter of the table designer's taste. The

designer has at his/her disposal the entire presentation power of Excel (including

comments) to make the OpenRules® tables more self-explanatory.

OpenRules® Table Example

Here is an example of a worksheet with two rules tables:

OpenRules, Inc. OpenRules® User Manual

13

This workbook is comprised of three worksheets:

1. Worksheet "Decision Tables" - includes rule tables

2. Worksheet "Launcher" - includes a method that defines an order and

conditions under which rules will be executed

3. Worksheet "Environment" - defines the structure of a rules repository by

listing all included workbooks, XML files, and Java packages (if any).

The worksheet "Decision Tables" is comprised of two rule tables "defineGreeting"

and "defineSalutation". Rule tables are a traditional way to represent business

decision tables. Rule tables are decision tables that usually describe

combinations of conditions and actions that should be taken when all of the

conditions have been satisfied. In the table "defineGreeting", the action "Set

Greeting" will be executed when an "hour," passed to this table as a parameter,

is between "Hour From" and "Hour To". In the table "defineSalutation", an action

"Set Salutation" will be executed when a customer's Gender and Marital Status

correspond to the proper row.

OpenRules, Inc. OpenRules® User Manual

14

These tables start with signature rows that are determined by a keyword in the

first cell of the table. A table signature in general has the following format:

Keyword return-type table-name(type1 par1, type2 par2,..)

where table-name is a one-word function name and return-type, type1,

and type 2 are types defined in the current OpenRules® configuration. For

example, type may be any basic Java type such as int, double, Date, or

String.

The rule tables above are recognized by the keyword "Rules". All of the columns

have been merged into a single cell in the signature rows. Merging cells B3, C3,

and D3 specifies that table "defineGreeting" has 3 columns. A table includes all

those rows under its signature that contain non empty cells: in the example

above, an empty row 12 indicates the end of the table "defineGreeting".

Limitation. Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

Business and Technical Views

OpenRules® tables such as “Rules” may have two views:

[1] Business View

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at

the top left corner of every worksheet - see the figure below. This figure

represents a business view - no technical details about the implementation are

provided. For example, from this view it is hard to tell for sure what greeting will

be generated at 11 o'clock: "Good Morning" or "Good Afternoon"? If you push the

Technical View button [2] (or the button "+" on the left), you will see the hidden

rows with the technical details of this rules table:

OpenRules, Inc. OpenRules® User Manual

15

The technical view opens hidden rows 4-6 that contain the implementation

details. In particular, you can see that both "Hour From" and "Hour To" are

included in the definition of the time intervals. Different types of tables have

different technical views.

Note. Using Rules Templates you may completely split business and technical

information between different Excel tables. The decision models do not use

technical views at all because they do not require any coding.

DECISION MODELING AND EXECUTION

OpenRules® implements a highly popular methodological approach described in

the book “The Decision Model”. You may become familiar with the major

decision modeling concepts from simple examples provided in the document

“Getting Started” and several associated tutorials. First we will consider the

standard implementation options for The Decision Model, and later on we will

describe OpenRules® concepts that go beyond the Decision Model.

Starting with Decision

The Decision Model applies a top-down approach to decision modeling. This

means that we usually start with the definition of a Decision and not with rules

or data. Only then we will define rule families, a glossary, and then data. Here

is an example of a Decision:

http://www.thedecisionmodel.com/
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

16

Here the decision “DeterminePatientTherapy” consists of two sub-decisions:

 “Define Medication” that is implemented using a rule family

“DefineMedication”

 “Define Dosing” that is implemented using a rule family “DefineDosing”.

The table “Decision” has two columns “Decisions” and “Execute Rule Family”.

The first column contains the names of all our sub-decisions - here we can use

any combinations of words as decision names. The second column contains exact

names of rule families that implement these sub-decisions. The names cannot

contain spaces or special characters (except for “underscore”) and they should

always be preceded by “:=”, which indicates the rule families will actually be

executed by the OpenRules® engine.

OpenRules® allows you to use multiple “Decision” tables to define more complex

decisions. For example, a top-level decision that defines a main fact may be

defined through several sub-decisions about related facts:

DecisionModel DecisionMain

Decisions Execute

Define Fact 1 := RuleFamilyFact1()

Define Fact 2 := RuleFamilyFact21()

Define Fact 2 := RuleFamilyFact22()

Define Fact 3 := DecisionFact3()

Define Fact 4 := RuleFamilyFact4()

In order to Define Fact 2 it is necessary to execute two rule families. Some

decisions, like "Define Fact 3", may require their own separate decision models

such as described in the following table:

OpenRules, Inc. OpenRules® User Manual

17

DecisionModel DecisionFact3

Decisions Execute

Define Fact 3.1 := RuleFamilyFact31()

Define Fact 3.2 := RuleFamilyFact32()

Define Fact 3.3 := RuleFamilyFact33()

These tables can be kept in different files and can be considered as building

blocks for your decision models. This top-down approach with Rule Families and

dependencies between them allows you to represent your decision logic in an

intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described

sequence of sub-decisions. You can even use conditions inside decision tables. For

example, consider a situation when the first sub-decision validates your data and

a second sub-decision executes complex calculations but only if the preceding

validation was successful. Here is an example of such a decision from the tax

calculation tutorial:

Since this Decision table uses an optional column “Condition”, we have to add a

second row. The keywords “Condition”, “ActionPrint”, and “ActionExecute” are

defined in the standard OpenRules® template “DecisionTemplate” – see the

configuration file “DecisionTemplates.xls” in the folder “openrules.config”. This

table uses a fact type “1040EZ Eligible” that is defined by the first

(unconditional) sub-decision “Validate”. We assume that the decision

“ValidateTaxReturn” should set this fact type to TRUE or FALSE. Then the

second sub-decision “Calculate” will be executed only when “1040EZ Eligible” is

TRUE. When it is FALSE, this decision, “Apply1040EZ”, will simply print “Do

Not Calculate”. In our example the reason will be printed by the rule family

“ValidateTaxReturn”.

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

18

Note. You may use many conditions of the type “Condition” defined on different

fact types. Similarly, you may use an optional condition “ConditionAny” which

instead of fact types can use any formulas defined on any known objects. It is

also possible to add custom actions using an optional action “ActionAny” – see

“DecisionTemplates.xls” in the folder “openrules.config”.

When you have completed defining all decision and sub-decisions, you may define

rule families.

Defining Rule Families

At the heart of the Decision Model approach is the concept of the “Rule Family”.

Rule families specify business logic using conditions and conclusions defined on

fact types. For example, let’s consider a very simple decision

“DetermineCustomerGreeting”:

Decision DetermineCustomerGreeting

Decisions Execute Rule Families

Define Greeting Word := DefineGreeting()

Define Salutation Word := DefineSalutation()

It refers to two rule families. Here is an example of the first rule family:

RuleFamily DefineGreeting

Condition Condition Conclusion

Current Hour Current Hour Greeting

>= 0 <= 11 Is Good Morning

>= 11 <= 17 Is Good Afternoon

>= 17 <= 22 Is Good Evening

>= 22 <= 24 Is Good Night

Its first row contains a keyword “RuleFamily” and a unique name (no spaces

allowed). The second row uses keywords “Condition” and “Conclusion” to specify

the types of the rule family columns. The third row contains fact types expressed

in plain English (spaces are allowed but the fact names should be unique).

The columns of a rule family define conditions and conclusions using different

operators and operands appropriate to the fact type specified in the column

headings. The rows of a rule family specify multiple rules. For instance, in the

above rule family “DefineGreeting” the second rule can be read as:

OpenRules, Inc. OpenRules® User Manual

19

“IF Current Hour is more than or equal to 11 AND Current

Hour is less than or equal to 17 THEN Greeting is Good

Afternoon”.

Similarly, we may define the second rule family “DefineSalutation” that

determines a salutation word:

RuleFamily DefineSalutation

Condition Condition Conclusion

Gender Marital Status Salutation

Is Male Is Mr.

Is Female Is Married Is Mrs.

Is Female Is Single Is Ms.

If some cells in the rule conditions are empty, it is assumed that this condition is

satisfied. A rule family may have no conditions but it always should contain at

least one conclusion.

Rule Family Execution Logic

OpenRules® executes all rules within a rule family in a top-down order. When all

conditions inside one rule (row) are satisfied the proper conclusion(s) from the

same row will be executed, and all other rules will be ignored.

However, the Decision Model approach requires that the order of rules inside a

rule family should not matter. It means that to stay compliant with the Decision

Model principle, you should not rely on the top-down rules execution order and

design your rule families in a such way that all rules are mutually exclusive and

cover all possible combinations of conditions. The advantage of this approach is

that when you decide to add new rules to your rule family you may place them in

any rows without jeopardizing the execution logic. In some cases, however, a

problem may require a more complex and precise rule family organization. See

more options below.

AND/OR Conditions

The conditions in a rule family are always connected by a logical operator “AND”.

When you need to use “OR”, you may add another rule (row) that is an

alternative to the previous rule(s). However, some conditions may have a fact

type defined as an array, and within such array-conditions “ORs” are allowed.

Consider for example the following, more complex rule family:

OpenRules, Inc. OpenRules® User Manual

20

Here the fact types “Customer Profile”, “Customer Product”, and “Offered

Products” are arrays of strings. In this case, the second rule can be read as:

IF Customer Profile Is One Of New or Bronze or Silver

AND Customer Products Include Checking Account and

Overdraft Protection

AND Customer Products Do Not Include CD with 25 basis point

increase, Money Market Mutual Fund, and Credit Card

THEN Offered Products ARE CD with 25 basis point increase,

Money Market Mutual Fund, and Credit Card

Rule Family Operators

OpenRules® supports multiple ways to define operators within rule family

conditions and conclusions. When you use a text form of operators you can freely

use upper and lower cases and spaces. The following operators can be used inside

rule family conditions:

Operator Synonyms Comment

Is =, ==

When you use “=” or “==”

inside Excel write”’=”

or”’==” to avoid confusion

with Excel’s own formulas

OpenRules, Inc. OpenRules® User Manual

21

Is Not
!=, isnot, Is Not Equal To, Not,

Not Equal., Not Equal To

Defines an inequality

operator

>

Is More, More, Is More Than, Is

Greater, Greater, Is Greater

Than

For integers and real

numbers, and Dates

>=

Is More Or Equal. Is More Or

Equal To, Is More Than Or Equal

To, Is Greater Or Equal To, Is

Greater Than Or Equal To

For integers and real

numbers, and Dates

<=

Is Less Or Equal, Is Less Than

Or Equal To, Is Less Than Or

Equal To, Is Smaller Or Equal

To, Is Smaller Than Or Equal To,

Is Smaller Than Or Equal To,

For integers and real

numbers, and Dates

<

Is Less, Less, Is Less Than, Is

Smaller, Smaller, Is Smaller

Than

For integers and real

numbers, and Dates

Is True For booleans

Is False For booleans

Contains Contain

For strings only, e.g.

“House” contains “use”.

The comparison is not

case-sensitive

Starts

With
Start with, Start

For strings only, e.g.

“House” starts with “ho”.

The comparison is not

case-sensitive

Within Inside, Inside Interval, Interval

For integers and real

numbers. The interval can

be defined as: [0;9], (1;20],

5–10, between 5 and 10,

more than 5 and less or

equals 10 – see more

OpenRules, Inc. OpenRules® User Manual

22

Is One

Of

Is One, Is One of Many, Is

Among, Among

For integer and real

numbers, and for strings.

Checks if a value is among

elements of the domain of

values listed through

comma

Include Include All
To compare an array or

value with an array

Exclude Do Not Include, Exclude One Of
To compare an array or

value with an array

Intersect Intersect With, Intersects
To compare an array with

an array

If the fact types do not have an expected type for a particular operator, the

proper syntax error will be diagnosed.

The following operators can be used inside rule family conclusions:

Operator Synonyms Comment

Is =, ==

Assigns one value to the conclusion

fact type. When you use “=” or “==”

inside Excel write”’=” or”’==” to

avoid confusion with Excel’s own

formulas.

Are

Assigns one or more values listed

through commas to the conclusion

fact that is expected to be an array

Add

Adds one or more values listed

through commas to the conclusion

fact that is expected to be an array

Conditions and Conclusions without Operators

Sometimes the creation of special columns for operators seems unnecessary,

especially for the operators “Is” and “Within”. OpenRules® allows you to use a

simpler format as in this rule family:

RuleFamily DefineGreeting

If Then

Current Hour Greeting

0-11 Good Morning

OpenRules, Inc. OpenRules® User Manual

23

11-17 Good Afternoon

17-22 Good Evening

22-24 Good Night

As you can see, instead of keywords “Condition” and “Conclusion” we use the

keywords “If” and “Then” respectively. While this rule family looks much

simpler in comparison with the functionally identical rule family defined above,

we need to make an implicit assumption that the lower and upper bounds for the

intervals “0-11”, “11-17”, etc. are included.

Using Formulas inside Rule Families

OpenRules® allows you to use formulas in the rule cells instead of constants. The

formulas usually have the following format:

::= (expression)

where an “expression” can be written using standard Java expressions. Here is

an example:

This rule family simply calculates a value for the fact type “Adjusted Gross

Income” as a sum of values for the fact types “Wages”, “Taxable Interest”, and

“Unemployment Compensation”. This example also demonstrates how to gain

access to different fact types – you may simply write

getReal(“FACT_TYPE_NAME”) for real fact types. Similarly, you may use

methods getInt(…), getBool(…), getDate(…), and getString(…).

You may also put your formula in a specially defined Method and then refer to

this method from the rule family – observe how it is done in the following

example:

OpenRules, Inc. OpenRules® User Manual

24

Here we defined a new method “taxableIncome()” that returns a real value using

the standard Java type “double”. Then we used this method inside both

conditions and one conclusion of this rule family.

Note. Actually the formula format ::= (expression) is a shortcut for a

more standard OpenRules® formula format := “” +(expression) that also

can be used inside rule families.

Defining Business Glossary

While defining rules families, we freely introduced different fact types assuming

that they are somehow defined. The business glossary is a special OpenRules®

table that actually defines all fact types. The Glossary table has the following

structure:

The first column will simply list all of the fact types using exactly the same

names that were used inside the rule families. The second column associates

different fact types with the business concepts to which they belong. Usually you

want to keep fact types that belong to the same business concept together and

merge all rows in the column “Business Concept” that share the same concept.

Here is an example of a glossary from the standard OpenRules® example

“DecisionLoan”:

OpenRules, Inc. OpenRules® User Manual

25

All rows for the concepts such as “Customer” and “Request” are merged.

The third column “Attribute” contains “technical” names of the fact types – these

names will be used to connect our fact types with attributes of objects used by

the actual applications, for which a decision model has been defined. The

application objects could be defined in Java, in Excel tables, in XML, etc. The

decision model does not have to know about it: the only requirement is that the

attribute names should follow the usual naming convention for identifiers in

languages like Java: it basically means no spaces allowed. The last column

“Domain”, is optional, but it can be useful to specify which values are allowed to

be used for different fact types. Fact type domains can be specified using the

naming convention for the intervals and domains described below. The above

glossary provides a few intuitive examples of such domains. These domains can

be used during the validation of a decision model.

Defining Test Data

OpenRules® provides a convenient way to define test data for decision models

directly in Excel without the necessity of writing any Java code. A non-technical

user can define all business concepts in the Glossary table using Datatype tables.

OpenRules, Inc. OpenRules® User Manual

26

For example, here is a Datatype table for the business concept “Customer”

defined above:

The first column defines the type of the attribute using standard Java types such

as “int”, “double”, “Boolean”, “String”, or “Date”. The second column

contains the same attribute names that were defined in the Glossary. To create

an array of objects of the type “Customer” we may use a special “Data” table like

the one below:

This table is too wide (and difficult to read), so we could actually transpose it to a

more convenient but equivalent format:

OpenRules, Inc. OpenRules® User Manual

27

Now, whenever we need to reference the first customer we can refer to him as

customers[0]. Similarly, if you want to define a doubled monthly income for

the second custromer, “Mary K. Brown”, you may simply write

::= (customers[1].monthlyIncome * 2)

You can find many additional details about data modeling in this section.

Connecting the Decision Model with Business Objects

To tell OpenRules® that we want to associate the object customers[0]with our

business concept “Customer” defined in the Glossary, we need to use a special

table “DecisionObject” that may look as follows:

Here we also associate other business concepts namely Request and Internal

with the proper business objects – see how they are defined in the standard

example “DecisionLoan”.

The above table connects a decision model with test data defined by business

users directly in Excel. This allows the model to be tested. However, after the

model is tested, it will be integrated into a real application that may use objects

defined in Java, in XML, or in a database, etc. For example, if there are

OpenRules, Inc. OpenRules® User Manual

28

instances of Java classes Customer and LoanRequest, they may be put in the

object “decision” that is used to execute the decision model. In this case, the

proper table “decisionObjects” may look like:

It is important that a decision model does not “know” about a particular object

implementation: the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Note. You cannot use the predefined function “decision()” within the table

“decisionObjects” because its content is be not defined yet. You need to use the

internal variable “decision” directly.

Executing Decision Models
OpenRules® provides a template for Java launchers that may be used to execute

different decision models. There are OpenRules® API classes OpenRulesEngine

and Decision. Here is an example of a decision model launcher for the sample

project “DecisionLoan”:

Actually, it just creates an instance of the class Decision. It has only two

parameters:

1) a path to the main Excel file “Decision.xls”

2) a name of the main Decision inside this Excel file.

When you execute this Java launcher using the provided batch file “run.bat” or

execute it from your Eclipse IDE, it will produce output that may look like the

following:

*** Decision DetermineLoanPreQualificationResults ***

Decision has been initialized

OpenRules, Inc. OpenRules® User Manual

29

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DetermineLoanPreQualificationResults: Validate Income

Conclusion: Income Validation Result Is SUFFICIENT

Decision DetermineLoanPreQualificationResults: Debt Research

Conclusion: Debt Research Result Is Low

Decision DetermineLoanPreQualificationResults: Summarize

Conclusion: Loan Qualification Result Is NOT QUALIFIED

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

This output shows all sub-decisions and conclusion results for the corresponding

rule families.

Controlling Decision Model Output

OpenRules® relies on the standard Java logging facilities for the decision model

output. They can be controlled by the standard file “log4j.properties”.

You may control how “talkative” your decision model is by setting decision’s

parameter “Trace”. For example, if you add the following setting to the above

Java launcher

decision.put("trace", "Off");

just before calling decision.execute(), then your output will be much more

compact:

*** Decision DetermineLoanPreQualificationResults ***

Decision DetermineLoanPreQualificationResults: Calculate Internal

Variables

Decision DetermineLoanPreQualificationResults: Validate Income

Decision DetermineLoanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult

*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper

decision templates in the configuration files “DecisionTemplates.xls” and

“RuleFamilyExecuteTemplates.xls”.

Validating Decision Model

OpenRules® allows you to validate your decision model by checking that:

- there are no syntax error in the organization of all decision model tables

- values inside rule family fact type cells correspond to the associated

domains defined in the glossary.

OpenRules, Inc. OpenRules® User Manual

30

To validate a decision model you can use write decision.validate()instead

of decision.execute() in the proper Java launcher. The validation template

is described in the standard file “RuleFamilyValidateTemplates.xls”.

Note. The next release of OpenRules® will include new validation facilities that

will check whether rule families have conflicts such as overlapping or under-

coverage. It can also be used make sure that the major principles of The

Decision Model approach are satisfied.

BEYOND THE DECISION MODEL

OpenRules® does not prevent you from creating executable decision models in

accordance with the principles of The Decision Model approach. However,

OpenRules® also allows a user to go beyond this approach when necessary. In

real-world situations OpenRules® customers found that sometimes they needed

more complex representations of rule families and the relationships between

them. For example, OpenRules® allows you to arrive at multiple conclusions

inside the same rules family (while the standard approach allows only a single

conclusion).

Specialized Conditions and Conclusions

The standard columns of the types “Condition” and “Conclusion” always have

two sub-columns: one for operators and another for values. OpenRules® allows

you to specify columns of the types “If” and “Then” that do not require sub-

columns. Instead, they allow you to use operators or even natural language

expressions together with values to represent different intervals and domains of

values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are not related to a particular fact type and

can be calculated using formulas. For example, a condition can be defined based

on combination of several fact types, and you would not want to artificially add

an intermediate fact type to your glossary in order to accommodate each needed

combination of existing fact types. In such a case, you may use a special type

“ConditionAny” like in the example below:

OpenRules, Inc. OpenRules® User Manual

31

Here the word “Condition” does not represent any fact type and instead you may

insert any text, i.e. “Compare Adjusted Gross Income with Dependent Amount”.

When your conclusion, does not set a value for a single fact type but rather does

something that is expressed in the formulas within the cells of this column, you

should use a column of type “ActionAny”. It does not have sub-columns because

there is no need for an operator.

Note. There is also a column of type “Action” that is equivalent to type “Then”.

Specialized Rule Families

Sometimes the standard behavior of a RuleFamily is not sufficient. OpenRules®

provide two non-standard types of rule families RuleFamily1 and RuleFamily2.

While we recommend avoiding these types of rule families, in certain situations

they provide a convenient way around the limitations imposed by the standard

RuleFamily.

RuleFamily1

Contrary to the standard RuleFamily that is implemented as a single-hit

decision table, rule families of type “RuleFamily1” are implemented as multi-hit

decision tables. “RuleFamily1” supports the following rules execution logic:

1. All rules are evaluated and if their conditions are satisfied, they will be

marked as “to be executed”

2. All actions columns (of the types “Conclusion”, “Then”, “Action”,

“ActionAny”, or “Message”) for the “to be executed” rules will be executed

in top-down order.

Thus, we can make two important observations about the behavior of the

“RuleFamily1”:

OpenRules, Inc. OpenRules® User Manual

32

 Rule actions cannot affect the conditions of any other rules in the rule

family – there will be no re-evaluation of any conditions

 Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Let’s consider an example of a rule that states: “A person of age 17 or older is

eligible to drive. However, in Florida 16 year olds can also drive”. If we try to

present this rule using the standard RuleFamily, it may look as follows:

Using a non-standard RuleFamily1 we may present the same rule as:

Here the first unconditional rule will set “Driving Eligibility” to “Eligible”. The

second rule will reset it to “Not Eligible” for all people younger than 17. But for

16 year olds living in Florida, the third rule will override the fact again to

“Eligible”.

RuleFamily2

There is one more type of rule family, “RulesFamily2,” that is similar to

“RulesFamily1” but allows the actions of already executed rules to affect the

conditions of rules specified below them. “RuleFamily2” supports the following

rules execution logic:

1. Rules are evaluated in top-down order and if a rule condition is satisfied,

then the rule actions are immediately executed.

2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

OpenRules, Inc. OpenRules® User Manual

33

Thus, we can make two important observations about the behavior of the

“RuleFamily2”:

 Rule actions can affect the conditions of other rules

 There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Let’s consider the following example:

Here the first (unconditional) rule will calculate and set the value of the fact type

“Taxable Income”. The second rule will check if the calculated value is less than

0. If it is true, this rule will reset this fact type to 0.

DECISION TABLES

OpenRules® supports several ways to represent business rules inside Excel

tables. A decision table is the most popular way to present sets of related

business rules. Decision tables are used to describe and analyze decision

situations, where the state of a number of conditions determines the execution of

a set of actions. OpenRules® allows a user to configure different types of decision

tables directly in Excel. The user also may use simple IF-THEN-ELSE

statements to describe rules logic inside tables of type "Method".

The Decision Model described above with inter-connected rule families became

available only in March 20011. A key advantage is its complete orientation to

business users. It means that a business specialist (not a programmer) can

design and test a decision model yet no coding is required. However, OpenRules®

has offered very powerful decision tables presented in Excel since its beginning

in 2003, and these decision tables are successfully used by major corporations in

real-world decision support applications. Actually, a rule family is a special case

OpenRules, Inc. OpenRules® User Manual

34

of an OpenRules® single-hit decision table that is based on a predefined template

(see below). This chapter describes different decision tables that go beyond the

Decision Model approach.

Simple Rules Table

Let's consider a simple set of HelloWorld rules that can be used to generate a

string like "Good Morning, World!" based on the actual time of the day. How one

understands such concepts as "morning", "afternoon", "evening", and "night" is

defined in this simple decision table:

Hopefully, this decision table is self-explanatory. It states that if the current

hour is between 0 and 11, the greeting should be "Good Morning", etc. You may

change Hour From or Hour To if you want to customize the definition of

"morning" or "evening". This decision table is oriented to a business user.

However, its first row already includes some technical information (a table

signature):

 Rules void helloWorld(int hour)

Here "Rules" is the OpenRules® keyword to recognize a table type as a decision

table; "helloWorld" is the name of this particular decision table. It tells an

external program or other rules how to launch this rule table. Actually, this is a

typical description of a programming method (its signature) that has one integer

parameter and returns nothing (the type "void"). The integer parameter "hour" is

expected to contain the current time of the day. While you can always hide this

information from a business user, it is an important specification of this decision

table.

You may wonder, where is the implementation logic for this decision table? All

rules tables include additional hidden rows (frequently password protected) that

you can see if you click on the buttons "+" to open the Technical View below:

OpenRules, Inc. OpenRules® User Manual

35

This part of the rule table is oriented to a technical user, who is not expected to

be a programming guru but rather a person with a basic knowledge of the "C"

family of languages which includes Java. Let's walk through these rows step by

step:

- Row "Condition and Action Headers" (see row 4 in the table above). The

initial columns with conditions should start with the letter "C", for example

"C1", "Condition 1". The columns with actions should start with the letter

"A", for example "A1", "Action 1".

- Row "Code" (see row 5 in the table above). The cells in this row specify the

semantics of the condition or action associated with the corresponding

columns. For example, the cell B5 contains the code min <= hour. This

means that condition C1 will be true whenever the value for min in any cell

in the column below in this row is less than or equals to the parameter hour.

If hour is 15, then the C1-conditions from rows 8 and 9 will be satisfied.

The code in the Action-columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the

code: System.out.println(greeting + ", World!"). This code will

print a string composed of the variable greeting and ", World!",

where greeting will be chosen from a row where all of the conditions are

satisfied. Again, if hour is 15, then both conditions C1 and C2 will be

OpenRules, Inc. OpenRules® User Manual

36

satisfied only for row 9 (because 9 <= 15 <= 17). As a result, the words "Good

Afternoon, World!" will be printed. If the rules table does not contain a row

where all conditions have been satisfied, then no actions will be executed.

Such a situation can be diagnosed automatically.

- Row "Parameters" (see row 6 in the table above). The cells in this row specify

the types and names of the parameters used in the previous row.

- Row "Display Values" (see row 7 in the table above). The cells in this row

contain a natural language description of the column content.

The same table can be defined a little bit differently using one condition code for

both columns "min" and "max":

How Decision Tables Are Organized

As you have seen in the previous section, decision tables have the following structure:

Row # Content Description

1 Signature

Rules void tableName(Type1 par1, Type2

par2, ..) - Multi-Hit Rules Table

Rules <JavaClass> tableName(Type1 par1,

Type2 par2, ..) - Single-Hit Rules Table

2
Condition/Action

Indicators

The condition column indicator is a word

starting with “C”.

The action column indicator is a word starting

with “A”.

OpenRules, Inc. OpenRules® User Manual

37

All other starting characters are ignored and

the whole column is considered as a comment

3 Code

The cells in each column (or merged cells for

several columns) contain Java Snippets in the

language defined in the table Environment

(the default language configuration is

openrules.java).

Condition codes should contain expressions

that return Boolean values..

If an action code contains any correct Java

snippet, the return type is irrelevant.

4 Parameters

Each condition/action may have from 0 to N

parameters. Usually there is only one

parameter description and it consists of two

words:

 parameterType parameterName (for

example: int min)

parameterName is a standard one word name

that corresponds to Java identification rules.

parameterType can be represented using the

following Java types:

- Basic Java types: boolean, char, int, long,

double, String, Date

- Standard Java classes: java.lang.Boolean,

java.lang.Integer, java.lang.Long,

java.lang.Double, java.lang.Character,

java.lang.String, java.util.Date

- Any custom Java class with a public

constructor that has a String parameter

- One-dimensional arrays of the above

types. Multiple parameters can be used in

the situations when one code is used for

several columns. See the standard

example Loan1.xls

5
Columns Display

Values

Text is used to give the column a definition

that would be meaningful to another reader

(there are no restrictions on what text may be

used)

OpenRules, Inc. OpenRules® User Manual

38

6 and

below

Rules with

concrete values

in cells

Cells in these rows usually contain literals

that correspond to the parameter types.

For Boolean parameters you may enter the

values "TRUE" or "FALSE" (or equally "Yes"

or "No") without quotations.

Empty cells inside rules means "whatever"

and the proper condition is automatically

considered satisfied. An action with an empty

value will be ignored. If the parameter has

type String and you want to enter a space

character, you must explicitly enter one of the

following expressions: :=" " or '=" " or { " "; }

Cells with Dates can be specified using

java.util.Date. OpenRules® uses

java.text.DateFormat.SHORT to convert a

text defined inside a cell into

java.util.Date. Before OpenRules® 4.1 we

recommended our customers not to use Excel's

Date format and define Date fields in Excel as

Text fields. The reason was the notorious

Excel problem inherited from a wrong

assumption that 1900 was a leap year. As a

result, a date entered in Excel as 02/15/2004

could be interpreted by OpenRules® as

02/16/2004. Starting with release 4.1

OpenRules® correctly interprets both Date

and Text Excel Date formats.

Valid Java expression (Java snippets) may

be put inside table cells by one of two ways:

- by surrounding the expression in curly

brackets, for example: { driver.age+1; }

- by putting ":=" in front of your Java

expression, for example: :=driver.age+1

Make sure that the expression's type

corresponds to the parameter type.

Note. Excel is always trying to "guess" the type of text is inside its cells and

automatically converts the internal representation to something that may not be

exactly what you see. For example, Excel may use a scientific format for certain

numbers. To avoid a "strange" behavior try to explicitly define the format "text"

for the proper Excel cells.

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRules® User Manual

39

Separating Business and Technical Information

During rules harvesting, business specialists initially create rules tables using

regular Excel tables. They put a table name in the first row and column names in

the second row. They start with Conditions columns and end with Action

columns. For example, they can create a table with 5 columns [C1,C2,C3,A1,A2]

assuming the following logic:

 IF conditions C1 and C2 and C3 are satisfied

 THEN execute actions A1 and A2

Then, a business specialist provides content for concrete rules in the rows below

the title rows.

As an example, let's consider the decision table "defineSalutation" with the rules

that define how to greet a customer (Mr., Ms, or Mrs.) based on his/her gender

and marital status. Here is the initial business view (it is not yet syntactically

correct):

A business analyst has initially created only five rows:

- A signature "Rules defineSalutation" (it is not a real signature yet)

- A row with column titles: two conditions "Gender", "Marital Status" and one

action "Set Salutation"

- Rows with three rules that can be read as:

1) IF Gender is “Male” THEN Set Salutation “Mr."

2) IF Gender is “Female” and Marital Status is “Married” THEN Set

Salutation “Mrs.”

3) IF Gender is “Female” and Marital Status is “Single” THEN Set

Salutation “Ms.”

OpenRules, Inc. OpenRules® User Manual

40

While business specialists continue to define such decision tables, at some point

a technical specialist should take over and add to these tables the actual

implementation. The technical specialist (familiar with the software

environment into which these rules are going to be embedded) talks to the

business specialist (author of the rule table) about how the rules should be used.

In the case of the "defineSalutation" rule table, they agree that the table will be

used to generate a salutation to a customer. So, the technical specialist decides

that the table will have two parameters:

1) a customer of the type Customer

2) a response of the type Response

The technical specialist will modify the signature row of the table to look like

this:

 Rules void defineSalutation(Customer customer, Response response)

Then s/he inserts three more rows just after the first (signature) row:

- Row 2 with Condition/Action indicators

- Row 3 with Condition/Action implementation

- Row 4 with the type and name of the parameters entered in the proper

column.

Here is a complete implementation of this decision table:

OpenRules, Inc. OpenRules® User Manual

41

The rules implementer will decide that to support this rule table, type Customer

should have at least two attributes, "gender" and "maritalStatus", and the type

Response should be able somehow to save different pairs (names,value)

like("salutation","Mr."). Knowing the development environment, s/he will decide

on the types of attributes. Let's assume that both types Customer and Response

correspond to Java classes, and the attributes have the basic Java type of String.

In this case, the column "Gender" will be marked with a parameter "String

gender" and the condition will be implemented as a simple boolean expression:

 customer.gender.equals(gender)

The second column "C2" is implemented similarly with a String attribute and a

parameter maritalStatus. Finally (to make it a little bit more complicated), we

will assume that the class Response contains an attribute map of the predefined

Java type HashMap, in which we can put/get pairs of Strings. So, the

implementation of the action "Set Salutation" will look like:

 response.map.put("salutation",salutation)

How Decision Tables Are Executed

The rules inside rules tables are executed one-by-one in the order they are placed

in the table. The execution logic of one rule (row in the vertical table) is the

following:

 IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all

other conditions in the same rule (row) are ignored and are not evaluated. The

absence of a parameter in a condition cell means the condition is always

true. Actions are evaluated only if all conditions in the same row are evaluated

to be true and the action has non-empty parameters. Action columns with no

parameters are ignored.

For the default vertical rules tables, all rules are executed in top-down order.

There could be situations when all conditions in two or more rules (rows) are

satisfied. In that case, the actions of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.

OpenRules, Inc. OpenRules® User Manual

42

For horizontal decision tables, all rules (columns) are executed in left-to-right

order.

Relationships between Rules inside Decision Tables

OpenRules® does not assume any implicit ("magic") execution logic, and executes

rules in the order specified by the rule designer. All rules are executed one-by-

one in the order they are placed in the rules table. There is a simple rule that

governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports 3 types of decision tables that offer different execution logic

to satisfy different practical needs:

- Multi-hit rules tables

- Single-hit rules tables

- Rule Sequences.

Multi-Hit Rules Tables

A multi-hit Rules Table evaluates conditions in ALL rows before any action is

executed. Thus, actions are executed only AFTER all conditions for all rules

have already been evaluated. From this point of view, the execution logic is

different from traditional programming if-then logic. Let us consider a simple

example. We want to write a program "swap" that will do the following:

 If x is equal to 1 then make x to be equal to 2.

 If x is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

 void swapX(App app) {
 if (app.x == 1) app.x = 2;

 if (app.x == 2) app.x = 1;

 }

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

43

Obviously, this method will produce an incorrect result because of the missing

"else". This is “obvious” to a software developer, but may not be at all obvious to

a business analyst. However, in a properly formatted decision table the following

representation would be a completely legitimate:

It will also match our plain English description above. Here is the same table

with an extended technical view:

Rules Overrides in Multi-Hit Tables

There could be situations when all conditions in two or more rules (rows) are

satisfied at the same time (multiple hits). In that case, the actions of all rules

(rows) will be executed, but the actions in the rows below can override the

actions of the rows above. This approach also allows a designer to specify a very

natural requirement:

 More specific rules should override more generic rules!

The only thing a designer needs to guarantee is that "more specific" rules are

placed in the same decision table after "more generic" rules. For example, you

may want to execute Action-1 every time that Condition-1 and Condition-2 are

satisfied. However, if additionally, Condition-3 is also satisfied, you want to

OpenRules, Inc. OpenRules® User Manual

44

execute Action-2. To do this, you could arrange your decision table in the

following way:

Condition-1 Condition-2 Condition-3 Action-1 Action-2

X X

X

X X X

X

In this table the second rule may override the first one (as you might naturally

expect).

Let's consider the execution logic of the following multi-hit rules table that

defines a salutation "Mr.", "Mrs.", or "Ms." based on a customer's gender and

marital status:

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

If a customer is a married female, the conditions of the second rules are satisfied

and the salutation "Mrs." will be selected. This is only a business view of the

rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)

C1 C2 A1

customer.gender.

equals(gender)

customer.maritalStatus.

equals(status)

response.map.put("salutation",s

alutation);

String gender String status String salutation

OpenRules, Inc. OpenRules® User Manual

45

Gender Marital Status Set Salutation

Male

Mr.

Female Married Mrs.

Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.

For each row if conditions C1 and C2 are satisfied then the action A1 will be

executed with the selected "salutation".

We may add one more rule at the very end of this table:

Rules void defineSalutation(Customer customer, Response

response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

In this case, after executing the second rule OpenRules® will also execute the

new 4th rule and will override a salutation "Mrs." with "???". Obviously this is

not a desirable result. However, sometimes it may have a positive effect by

avoiding undefined values in cases when the previous rules did not cover all

possible situations. What if our customer is a Divorced Female?! How can this

multi-hit effect be avoided? What if we want to produce "???" only when no other

rules have been satisfied?

Single-Hit Decision Tables

To achieve this you may use a so-called "single-hit" rules table, which is

specified by putting any return type except "void" after the keyword "Rules". The

OpenRules, Inc. OpenRules® User Manual

46

following is an example of a single-hit rules table that will do exactly what we

need:

Rules String defineSalutation(Customer customer, Response

response)

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

Another positive effect of such "single-hitness" may be observed in connection

with large tables with say 1000 rows. If OpenRules® obtains a hit on rule #10 it

would not bother to check the validity of the remaining 990 rules.

Having rules tables with a return value may also simplify your interface. For

example, we do not really need the special object Response which we used to

write our defined salutation. Our simplified rules table produces a salutation

without an additional special object:

Rules String defineSalutation(Customer customer)

C1 C2 A1

customer.gender.

equals(gender)

customer.maritalStatus

.equals(status)
return salutation;

String gender String status String salutation

Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

 ???

OpenRules, Inc. OpenRules® User Manual

47

Please note that the last action in the table should return a value that has the

same type as the entire single-hit table. The single-hit table may return any

standard or custom Java class such as String or Customer. Instead of basic Java

types such as "int" you should use the proper Java classes such as Integer in the

table signature.

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args) {

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine =

 new OpenRulesEngine(fileName);

 Customer customer = new Customer();

 customer.setName("Robinson");

 customer.setGender("Female");

 customer.setMaritalStatus("Married");

 String salutation =

 (String)engine.run("defineSalutation", customer);

 System.out.println(salutation);

}

Rule Sequences

There is one more type of decision tables called “Rule Sequence” that is used

mainly internally within templates. Rule Sequence can be considered as a multi-

hit decision table with only one difference in the execution logic, conditions are

not evaluated before execution of the actions. So, all rules will be executed in top-

down order with possible rules overrides. Rule actions are permitted to affect the

conditions of any rules that follow the action. The keyword “Rules” should be

replaced with another keyword “RuleSequence”. Let’s get back to our “swapX”

example. The following multi-hit table will correctly solve this problem:

OpenRules, Inc. OpenRules® User Manual

48

However, a similar rule sequence

will fail because when x is equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships among Decision Tables

In most practical cases, business rules are not located in one file or in a single

rule set, but rather are represented as a hierarchy of inter-related rules tables

located in different files and directories - see Business Rules Repository.

Frequently, the main Excel-file contains a main method that specifies the

execution logic of multiple decision tables. In the Decision Model the table

“Decision” plays this role. In many cases, the rule engine can execute decision

tables directly from a Java program – see API.

Because OpenRules® interprets rules tables as regular methods, designers of

rules frequently create special "processing flow" decision tables to specify the

OpenRules, Inc. OpenRules® User Manual

49

conditions under which different rules should be executed. See examples of

processing flow rules in such sample projects as Loan2 and LoanDynamics.

Simple AND / OR Conditions in Rules Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

 if (A>5 && B >10) {do something}

you may use the rules table:

Rules void testAND(int a, int b)

C1 C2 A1

a > 5 b>10
System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X X Something

To express the OR logic

 if (A>5 || B >10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

C1 C2 A1

a > 5 b>10
System.out.println(text)

String x String x String text

A > 5 B > 10 Do

X
Something

 X

Sometimes instead of creating a decision table it is more convenient to represent

rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

Method void testOR(int a, int b)

 if (a > 5 || b>10) System.out.println("Something");

OpenRules, Inc. OpenRules® User Manual

50

Basic Rule Templates

Rule Templates allow rule designers to completely hide implementation details

from business users. Rule templates are regular decision tables such as the

"defineGreeting" table described above. However, if we want to use this table as

a template for many other tables with the same structure but different rules, it is

enough to use only the first 5 rows:

Rules void defineGreeting(App app, int hour) Signature with parameters

C1 A1
Conditions and Actions

identifiers

min <= hour && hour

<= max
app.greeting =

greeting;

Java snippets describe

condition/action semantics

int min int max String greeting Parameter types and names

Hour

From
Hour To Set Greeting

Business names for conditions

and actions

We may use this decision table as a template to define different greeting rules for

summer and winter time. An actual decision table implements the template table

with particular rules:

Rules summerGreeting implements defineGreeting

Hour From Hour To Set Greeting

0 10 Good Morning

11 18 Good Afternoon

19 22 Good Evening

23 24 Good Night

and

OpenRules, Inc. OpenRules® User Manual

51

Rules winterGreeting implements defineGreeting

Hour From Hour To Set Greeting

0 11 Good Morning

12 17 Good Afternoon

18 22 Good Evening

23 24 Good Night

Note that Rules tables "summerGreeting" and "winterGreeting" do not have

technical information at all - Java snippets and a signature are defined only once

and reside in the template-table "defineGreeting".

Learn more about Rule Templates below.

Horizontal and Vertical Decision Tables

Decision tables can be created in one of two possible formats:

- Vertical Format (default)

- Horizontal Format.

Based on the nature of the decision table, a rules creator can decide to use a

vertical format (as in the examples above where concrete rules go vertically one

after another) or a horizontal format where Condition and Action are located in

the rows and the rules themselves go into columns. Here is an example of the

proper horizontal format for the same decision table "helloWorld":

OpenRules® automatically recognizes that a table has a vertical or a horizontal

format. You can use Excel's Copy and Paste Special feature to transpose a

decision table from one format to another.

OpenRules, Inc. OpenRules® User Manual

52

Note. When a decision table has too many rules (more than you can see on one

page) it is better to use the vertical format to avoid Excel's limitations: a

worksheet has a maximum of 65,536 rows but it is limited to 256 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by

Excel and other standard table editing tools. Here is an example of a rules table

with merged cells:

Rules void testMerge(String value1, String value2)

Rule C1 C2 A1 A2

 value1.equals(val) value2.equals(val) out("A1: " + text);
out("A2: " +

text);

 String val String val String text String text

Name Value Text 1 Text 2

1

B

One
11+21

12

2 Two 22

3
Three

31 32

4 D 41 42

The semantics of this table is intuitive and described in the following table:

Value

1

Value

2

Applied

Rules

Printed

Results

B One 1

A1:

11+21

A2: 12

B Two 2

A1:

11+21

A2: 22

B Three 3
A1: 31

A2: 32

OpenRules, Inc. OpenRules® User Manual

53

D Three 4
A1: 41

A2: 42

A Two none

D Two none

Restriction. We added the first column with rules numbers to avoid the known

implementation restriction that the very first column (the first row for horizontal

rule tables) cannot contain merged rows. More examples can be found in the

standard rule project "Merge" - click here to analyze more rules.

Sub-Columns and Sub-Rows for Dynamic Arrays

One table column can consist of several sub-columns (see sub-columns "Min" and

"Max" in the example above). You may efficiently use the Excel merge

mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub-columns:

As you can see, condition C6 contains 4 sub-columns for different combinations of

rates. The cells in the Condition, code, parameters and display values, rows are

merged. You can insert more sub-columns (use Excel's menu "Insert") to handle

more rate combinations if necessary without any changes in the code. The

parameter row is defined as a String array, String[] rates. The actual values

of the parameters should go from left to right and the first empty value in a sub-

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRules® User Manual

54

column should indicate the end of the array "rates". You can see the complete

example in the rule table "Rule Family 212" in the file Loan1.xls.

If your decision table has a horizontal format, you may use multiple sub-rows in

a similar way (see the example in file UpSell.xls).

Using Expressions inside Decision Tables

OpenRules® allows a rules designer to use “almost” natural language expressions

inside decision tables to represent intervals of numbers, strings, dates, etc. You

also may use Java expressions whenever necessary.

Integer and Real Intervals

You may use plain English expressions to define different intervals for integer

and real decision variables inside rule tables. Instead of creating multiple

columns for defining different ranges for integer and real values, a business user

may define from-to intervals in practically unlimited English using such phrases

as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",

"17 and older", "< 50", ">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by

specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5, 6, 7, 8, 9, and 10

5;10 contains 5, 6, 7, 8, 9, and 10

[5,10) contains 5 but not 10

5 - 10 contains 5 and 10

5-10 contains 5 and 10

5- 10 contains 5 and 10

-5 - 20 contains -5 and 20

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRules® User Manual

55

-5 - -20
 error: left bound is greater than the right

one

-5 - -2 contains -5 , -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5 does not contain 5

more 10 does not contain 10

more than 10 does not contain 10

10+ more than 10

>10 does not contain 10

>=10 contains 10

between 5 and 10 contains 5 and 10

no less than 10 contains 10

no more than 5 contains 5

equals to 5 equals to 5

greater or equal than 5

and less than 10
 contains 5 but not 10

more than 5 less or

equal than 10
 does not contain 5 and contains 10

more than 5,111,111

and less or equal than

10,222,222

 does not contain 5,111,111 and contains

10,222,222

[5'000;10'000'000) contains 5,000 but not 10,000,000

[5,000;10,000,000) contains 5,000 but not 10,000,000

(5;100,000,000] contains 5,000 and 10,000,000

You may use many other ways to represent integer intervals as you usually do in

plain English. The only limitation is the following: min should always go

before max!

Similarly to integer intervals, one may use the predefined

type FromToDouble to represent intervals of real numbers. The bounds of

double intervals could be integer or real numbers such as [2.7; 3.14).

OpenRules, Inc. OpenRules® User Manual

56

Comparing Integer and Real Numbers

You may use the predefined type CompareToInt to compare a decision variable

with an integer number that is preceded by a comparison operator. Examples of

acceptable operators:

Cell

Expression
Comment

<= 5 less or equals to 5

< 5 strictly less than 5

> 5 strictly more than 5

>= 5 more or equals to 5

!= not equal to 5

5

equals to 5.

Note that absence of a comparison operator means

equality. You cannot use an explicit operator "="

(not to be confused with Excel's formulas).

Similarly to CompareToInt one may use the predefined type CompareToDouble

to represent comparisons with real numbers. The comparison values may be

presented as integer or real numbers, e.g. "<= 25.4" and "> 0.5".

Using Comparison Operators inside Rule Tables

A user can employ a comparison operators such as "<" for "less" or ">" for "more"

directly inside the rules. There are several ways to accomplish this. Here is an

example from the rule table "Rule Family 212" (Loan1.xls):

http://openrules.com/docs/xls/Loan1.xls

OpenRules, Inc. OpenRules® User Manual

57

You may use the Excel Data Validation menu to limit the choice of the operators:

Here the sign "==" has an apostrophe in front to differentiate it from an Excel

formula. The actual implementation of possible comparison operators is

provided as an example in the project "com.openrules.tools"

(see com.openrules.tools.Operator.java). You may change them or add

other operators. In addition to values of the type "int" you may also use Operator

to compare long, double, and String types.

OpenRules, Inc. OpenRules® User Manual

58

Comparing Dates

You may use the standard java.util.Date or any other Java Comparable type.

Here is an example of comparing Dates:

C1

op.compare(visit.date,date)

Operator op Date date

Operator Date

== 2/15/2007

!= 1/1/2007

<= 2/15/2007

> 2/15/2007

< 2/15/2007

Please note that the current implementation compares dates without time.

Another way to use operators directly inside a table is to use expressions. In the

example above, instead of having two sub-columns "Operator" and "Value" we

could use one column and put an expression inside the cell:

{ c.creditCardBalance <= 0; }

The use of expressions is very convenient when you do not know ahead of time

which operator will be required for which columns.

Comparing Boolean Values

If a parameter type is defined as "boolean", you are allowed to use the following

values inside rule cells:

- True, TRUE, Yes, YES

- False, FALSE, No, NO

http://openrules.com/docs/man_rules.html#Using Expressions Inside Decision Tables

OpenRules, Inc. OpenRules® User Manual

59

Here are examples:

C1

condition

boolean condition

IF Condition

TRUE

FALSE

Yes

NO

{ loan.additionalIncomeValidationNeeded; }

Sometimes, you want to use something like X or * just to indicate that a

condition is satisfied or an action should be executed. For example in this table

(from the standard project VacationDays)

only actions marked with "X" will be executed. You can use any other character

instead of "X".

OpenRules, Inc. OpenRules® User Manual

60

Representing String Domains

Let's express a condition that validates if a customer's internal credit score is one

of several acceptable rates such as "A B C" and "D F". To avoid the necessity to

create multiple sub-columns for similar conditions, we may put all possible string

values inside the same cell and separate them by spaces or commas. Here is an

example of such a condition:

Condition

domain.contains(customer.internalCreditRating)

DomainString domain

Internal Credit Rating

A B C

D F

D F

A B C

Here we use the predefined type DomainString that defines a domain of strings

(words) separated by whitespaces. The method "contains(String string)" of

the class DomainString checks if the parameter "string" is found among all

strings listed in the current "domain". You also may use the method

"containsIgnoreCase(String string)" that allows you to ignore case

during the comparison.

If possible values may contain several words, one may use the predefined

type DomainStringC where "C" indicates that commas will be used as a string

separator. For example, we may use DomainStringC to specify a domain such

as "Very Hot, Hot, Warm, Cold, Very Cold".

OpenRules, Inc. OpenRules® User Manual

61

Representing Domains of Numbers

If you need to represent domains of integer or double values, there are several

predefined types similar to DomainString:

 DomainInt

 DomainIntC

 DomainDouble

 DomainDoubleC

For example, here is a condition column with eligible loan terms:

Condition

domain.contains(c.loanTerm)

DomainIntC domain

Eligible Loan Terms

24,36,72

36,72

72

Using Java Expressions

The use of Java expressions provides the powerful ability to perform calculations

and test for complex logical conditions. While the writing of expressions requires

some technical knowledge, it does not require the skills of a programmer. Real-

world experience shows that business analysts frequently have a need to write

these expressions themselves. It is up to the decision table designer to decide

whether to show the expressions to business people or to hide them from view.

Let's consider a decision table for "Income Validation" from the provided

standard example Loan:

OpenRules, Inc. OpenRules® User Manual

62

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 A1

customer.monthlyIncome * 0.8 -

customer.monthlyDebt > loan.amount/loan.term

loan.incomeValidationResult

= result;

boolean condition String result

IF

Income is Sufficient for the Loan

THEN

Set Income Vaidation

Result

 No UNSUFFICIENT

Yes SUFFICIENT

Here the actual income validation expression is hidden from business people inside "gray"

technical rows, and a business person would only be able to choose between "Yes" or "No".

However, the same table could be presented in this way:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 A1

condition == true
loan.incomeValidationResult

= result;

boolean condition String result

IF

Condition is True

THEN

Set Income Validation

Result

 UNSUFFICIENT

:= customer.monthlyIncome * 0.8 -

customer.monthlyDebt > loan.amount/loan.term
SUFFICIENT

Now, a user can both see and change the actual income validation condition.

Notes: Do not use Excel's formulas if you want the content to be recognized by

the OpenRules® engine: use OpenRules® expressions instead.

OpenRules, Inc. OpenRules® User Manual

63

If you want to start your cell with "=" you have to put an apostrophe in front of it

i.e. '= to direct Excel not to attempt to interpret it as a formula.

Expanding and Customizing Predefined Types

All the predefined types mentioned above are implemented in the Java

package com.openrules.types. You may get the source code of this package

and expand and/or customize the proper classes. In particular, for

internationalization purposes you may translate the English key words into your

preferred language. You may change the default assumptions about

inclusion/exclusion of bounds inside integer and real intervals. You may add

new types of intervals and domains.

Performance Considerations

The use of expressions inside OpenRules® tables comes with some price - mainly

in performance, for large decision tables. This is understandable because for

every cell with an expression OpenRules® will create a separate instance of the

proper Java class during rules execution. However, having multiple

representation options allows a rule designer to find a reasonable compromise

between performance and expressiveness.

RULE TEMPLATES

OpenRules® provides a powerful yet intuitive mechanism for compactly

organizing enterprise-level business rules repositories. Rule templates allow

rule designers to write the rules logic once and use it many times. With rule

templates you may completely hide rules implementation details from business

users. OpenRules® supports several rule templatization mechanisms from simple

rule tables that inherit the exact structure of templates to partial template

implementations.

Simple Rules Templates

OpenRules, Inc. OpenRules® User Manual

64

Rule templates are regular decision tables that serve as structural prototypes for many

other rule tables with the same structure but different content (rules). A simple rule

template usually does not have rules at all but only specifies the table structure and

implementation details for conditions and actions. Thus, a simple rule template

contains the first 5 rows of a regular decision table as in the following example:

Rules void defineGreeting(App app, int hour)

Signature with

parameters

C1 A1
Conditions and Actions

identifiers

min <= hour && hour <=

max

app.greeting =

greeting;

Java snippets describe

condition/action

semantics

int min int max String greeting
Parameter types and

names

Hour From Hour To Set Greeting
Business names for

conditions and actions

We may use this decision table as a template to define different greeting rules for

summer and winter time. The actual decision tables will implement (or extend) the

template table with particular rules:

Rules summerGreeting template defineGreeting

Hour

From
Hour To Set Greeting

0 10 Good Morning

11 18 Good Afternoon

19 22 Good Evening

23 24 Good Night

and

Rules winterGreeting template defineGreeting

Hour

From
Hour To Set Greeting

0 11 Good Morning

12 17 Good Afternoon

18 22 Good Evening

23 24 Good Night

OpenRules, Inc. OpenRules® User Manual

65

Note that Rules tables "summerGreeting" and "winterGreeting" do not have technical

information at all - Java snippets and a signature are defined only once and reside in

the template-table "defineGreeting".

Along with the keyword "template" you may use other keywords:

 implements

 implement

 extends

 extend

We will refer to these rule tables created based on a template as "template

implementations".

Simple templates require that the extended tables should have exactly the same

condition and action columns.

Defining Default Rules within Templates

When many decision tables are created based on the same rule template, it could

be inconvenient to keep the same default rules in all extended tables. As an

alternative you may add the default rules directly to the template. The location

of the default rules depends on the types of your rules tables.

Templates with Defaults Rules for Multi-Hit Tables

Multi-hit decision tables execute all their rules that are satisfied, allowing rules

overrides. However, when conditions in all specified rules are not satisfied then a

multi-hit table usually uses the first (!) rules to specify the default action. The

rules from the template will be executed before the actual rules defined inside

the extended tables.

Let's consider an example. You may notice that the rules tables above would not

produce any greeting if the parameter "hour" is outside of the interval [0;24].

http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables
http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables

OpenRules, Inc. OpenRules® User Manual

66

Let's assume that in this case we want to always produce the default greeting

"How are you". To do this simply add one default rule directly to the template:

Rules void defineGreeting(App app, int hour)

C1 A1

min <= hour &&

hour <= max
app.greeting = greeting;

int min int max String greeting

 How are you

This rule will be added at

the beginning of all

template implementations.

This greeting will be

produced if all other rules

in the rule tables fail

A template for multi-hit tables could include more than one default rule each

with different conditions - they all will be added to the beginning of the template

implementation tables and will execute different default actions.

Templates with Defaults Rules for Single-Hit Tables

Single-hit decision tables usually end their execution when at least one rules is

satisfied. However, when conditions in all specified rules are not satisfied then a

single-hit table usually uses the last rule(s) to specify the default action(s). The

rules from the template will be executed after the actual rules defined inside

the template implementation.

Let's consider an example. We have shown that without modification, the rules

tables above would not produce any greeting if the parameter "hour" is outside of

the interval [0;24]. Instead of adding the same error message in both "summer"

and "winter" rules, we could do the following:

OpenRules, Inc. OpenRules® User Manual

67

- make our "defineGreeting" template a single-hit table by changing a return

type from "void" to "String"

- - add the default reaction to the error in "hour" directly to the template:

Rules String defineGreeting(App app, int hour)

Signature now returns

String

C1 A1
Conditions and Actions

identifiers

min <= hour &&

hour <= max

app.greeting =

greeting; return greeting;

"return greeting;" has been

added

int min int max String greeting Parameter types and names

Hour

From
Hour To Set Greeting

Business names for

conditions and actions

 ERROR: Invalid Hour

This rule will be added at

the end of all template

implementations tables. The

error message will be return

instead of a greeting when

all other rules fail.

A template for single-hit tables could include more than one rule with different

conditions - they all will be added at the end of the template

implementation tables to execute different default actions.

Partial Template Implementation

Usually template implementation tables have exactly the same structure as the

rule templates they extend. However, sometimes it is more convenient to build

your own rules table that contains only some conditions and actions from already

predefined rule templates. This is especially important when a library of rule

templates for a certain type of business is used to create a concrete rules-based

application. How can this be achieved?

The template implementation table uses its second row to specify the names of

the used conditions and actions from the template. Let's consider an example.

OpenRules, Inc. OpenRules® User Manual

68

The DebtResearchRules from the standard OpenRules® example "Loan

Origination" may be used as the following template:

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1 C2 C3 C4 C5 C6 C7 A1

c.mortga
geHolder.
equals(Y
N)

c.outsideCre
ditScore>min

&&
c.outsideCre
ditScore<=m

ax

c.loanHo
lder.equ
als(YN)

op.compare(c
.creditCardBa
lance,value)

op.compare(c.
educationLoan
Balance,value

)

contains(
rates,c.int
ernalCre
ditRating)

c.internal
AnalystO
pinion.eq
uals(level
)

loan.debt
Research
Result =
level;

String YN int min
int

max
String

YN

Oper
ator
op

int
value

Opera
tor op

int
value

String[]
rates

String
level

String
level

IF
Mortgage

Holder

AND
Outside

Credit Score
AND
Loan

Holder

AND
Credit Card

Balance

AND
Educatio
n Loan
Balance

AND
Internal
Credit
Rating

AND
Internal
Analyst
Opinion

THEN
Debt

Researc
h

Recomm
endation

s
Min Max Oper Value Oper Value

We may create a rule table that implements this template using only conditions

C1, C2, C5, C6 and the action A1:

Rules MyDebtResearchRules template DebtResearchRules

C1 C2 C5 C6 A1

IF
Mortgage

Holder

AND
Outside Credit

Score

AND
Education Loan

Balance
AND

Internal Credit Rating

THEN
Debt

Research
Recommen

dations
Min Max Oper Value

Yes High

No 100 550 High

No 550 900 Mid

No 550 900 > 0 High

No 550 900 <= 0 A B C High

No 550 900 <= 0 D F Mid

No 550 900 Low

No 550 900 <= 0 Low

No 550 900 > 0 D F High

No 550 900 > 0 A B C Low

The additional second row specifies which conditions and actions from the

original template are selected by this rules table. The order of conditions and

OpenRules, Inc. OpenRules® User Manual

69

actions may be different from the one defined in the template. Only names like

"C2", "C6", and "A1" should be the same in the template and in its

implementation. It is preferable to use unique names for conditions and actions

inside templates. If there are duplicate names inside templates the first one

(from left to right) will be selected. You may create several columns using the

same condition and/or action names.

Templates with Optional Conditions and Actions

There is another way to use optional conditions and actions from the templates.

If the majority of the template implementations do not use a certain condition

from the template, then this condition may be explicitly marked as optional by

putting the condition name in brackets, e.g. "[C3]" or "[Conditon-5]". In this

case it is not necessary to use the second row to specify the selected conditions in

the majority of the extended tables. For example, let's modify the

DebtResearchRules template making the conditions C3, C4, and C7 optional:

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1

C2 [C3] [C4] C5 C6 [C7] A1

Now we can implement this template as the following rules table without the

necessity to name all of the conditions and actions in the second row:

Rules MyDebtResearchRules template DebtResearchRules

IF
Mortgage

Holder

AND
Outside
Credit
Score

AND
Education Loan

Balance
AND

Internal Credit Rating

THEN
Debt Research
Recommendat

ions
Min Max Oper Value

Yes High

No 100 550 High

No 550 900 Mid

No 550 900 > 0 High

No 550 900 <= 0 A B C High

No 550 900 <= 0 D F Mid

No 550 900 Low

No 550 900 <= 0 Low

No 550 900 > 0 D F High

OpenRules, Inc. OpenRules® User Manual

70

No 550 900 > 0 A B C Low

However, a template implementation that does want to use optional conditions

will have to specify them explicitly using the second row:

Rules MyDebtResearchRules template DebtResearchRules

C1 C2 C3 C4 C5 C6 A1

IF
Mortgage

Holder

AND
Outside

Credit Score

AND
Loan

Holder

AND
Credit Card

Balance

AND
Education

Loan Balance

AND
Internal Credit

Rating

THEN
Debt

Research
Recomme
ndations Min Max Oper Value Oper Value

Yes High

No 100 550 High

No 550 900 Yes <= 0 Mid

No 550 900 Yes > 0 > 0 High

No 550 900 Yes > 0 <= 0 A B C High

No 550 900 Yes > 0 <= 0 D F Mid

No 550 900 No > 0 Low

Similarly, optional actions may be marked as [A1]" or "[Action3]".

Implementation Notes:

o Rule templates are supported for both vertical and horizontal rule tables.

o The keywords "extends" or "implements" may be used instead of the

keyword "template"

o Template implementations cannot be used as templates themselves.

Templates for the Decision Model

The Decision Model is implemented using several templates located in the

following files inside the configuration project “openrules.config”:

- DecisionTemlates.xls: contains the following rule templates and

methods for the Decision Model tables:

o DecisionTemplate(Decision decision): a template for the

tables of type “Decision”

o initializeDecision(): the method that initializes the current

decision

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

71

o decision(): the method that returns the current decision

o getGlossary(): the method that returns the glossary

o getDecisionObject(String nameofBusinessConcept): the

method that returns a business object associated with the

BusinessConcept

o isTraceOn(): returns true if the tracing of the decision model is

on

o DecisionObjectTemplate(Decision decision): a template

for the table of the type “DecisionObject”

o GlossaryTemplate(Decision decision): a template for the

table of type “Glossary”

o Methods that return values of fact types based on their names:

 int getInt(String name)

 double getReal(String name)

 String getString(String name)

 Date getDate(String name)

 boolean getBool(String name)

o Methods that set values of fact types based on their names:

 void getInt(String name, int value)

 void getReal(String name, double value)

 void getString(String name, String value)

 void getDate(String name, Date value)

 void getBool(String name, Boolean value)

o Comparison methods that compare a fact type with a given

“name”, against a given “value”, or another fact type using a given

operator, “op”:

 boolean compareInt(String name, String op, int

value)

 boolean compareInt(String name1, String op,

String name2)

 boolean compareReal(String name, String op,

double value)

OpenRules, Inc. OpenRules® User Manual

72

 boolean compareReal(String name1, String op,

String name2)

 boolean compareBool(String name, String op,

boolean value)

 boolean compareBool(String name1, String op,

String name2)

 boolean compareDate(String name, String op,

Date date)

 boolean compareDate(String name1, String op,

String name2)

 boolean compareString(String name, String op,

String value)

 boolean compareDomain(String name, String op,

String domain)

o the Environment table that includes the following references:

 RuleFamily${OPENRULES_MODE}Templates.xls: where

${OPENRULES_MODE} is an environment variable that has

one of the following values:

 Execute – the default value for Rule Family

execution templates

 Validate –for Rule Family validation templates

 Solve – a reserve value for the future Rule Family

solving templates using Rule Solver.

 RuleFamily1ExecuteTemplates.xls: templates for

RuleFamily1

 RuleFamily2ExecuteTemplates.xls: templates for

RuleFamily2

- RuleFamilyExecuteTemplates.xls: contains the following rule

templates:

o RuleFamilyTemplate(): a template for execution of the tables of

the type “RuleFamily”

o customInitializeDecision(): the method that can be used for

initialization of custom objects

OpenRules, Inc. OpenRules® User Manual

73

- RuleFamilyValidateTemplates.xls: contains the following rule

templates:

o RuleFamilyTemplate(): a template for validation of the tables of

type “RuleFamily” against the domains defined in the glossary

o customInitializeDecision(): the method that can be used for

the initialization of custom objects

- RuleFamily1ExecuteTemplates.xls: contains the rule templates

RuleFamily1Template() for execution of tables of type “RuleFamily1”

- RuleFamily2ExecuteTemplates.xls: contains the rule templates

RuleFamily2Template() for execution of tables of type

“RuleFamily2”.

Decision Templates

The template “DecisionTemplate” contains two mandatory action columns with

names “ActionPrint” and “ActionExecute” and three optional columns with the

names “Condition”, “ConditionAny”, and “ActionAny”. Here is an example of this

template:

RuleSequence void DecisionTemplate(Decision decision)

[Condition] [ConditionAny] ActionPrint ActionExecute [ActionAny]

getGlossary().co
mpare(
$COLUMN_TITL
E,op,value);

op.compare(v
alue);

Log.info("Dec
ision " +

$TABLE_TIT
LE + ": " +

name);

Oper
op

String
value

Oper
op

boole
an

value String name Object object
Object value

Fact Type
Dynamic
Condition Decisions

Execute Rule
Families

Title for Action
Any

{

initializeDecision
(decision);
}

OpenRules, Inc. OpenRules® User Manual

74

Because you can use the same column “Condition” or “ConditionAny” as many

times as you wish, you may create tables of type “Decision” with virtually

unlimited complexity.

Rule Family Templates

The template “RuleFamilyTemplate” serves as a template for all standard rule

families. All columns in this template are conditional meaning their names are

always required. Here are the first two rows of this template:

Rules String RuleFamilyTemplate()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

The template “RuleFamily1Template” serves as a template for all rule families of

type “RuleFamily1”. Here are the first two rows of this template:

Rules void RuleFamily1Template()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

The template “RuleFamily2Template” serves as a template for all rule families of

type “RuleFamily2”. Here are the first two rows of this template:

RuleSequence void RuleFamily1Template()

[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] [Then] [Message]

Customization

A user may move the above files from “openrules.config” to different locations

and modify the rule family templates (and possible other templates). For

example, to have different types of messaging inside a custom decision model, a

user may add two more columns to the template “RuleFamilyTemplate”:

- Warning: similar to Message but can use a different log for warning only

- Errors: similar to Message but can use a different log for errors only.

Rewriting the method customInitializeDecision() allows a user to

initialize custom objects. Contact support@openrules.com if you need help with

more complex customization of the Decision Model templates.

mailto:support@openrules.com

OpenRules, Inc. OpenRules® User Manual

75

OPENRULES® API

OpenRules® provides an Application Programming Interface (API) that defines a

set of commonly-used functions:

- Creating a rule engine associated with a set of Excel-based rules

- Creating a decision associated with a set of Excel-based rules

- Executing different rule sets using application specific business objects

- Creating a web session and controlling client-server interaction.

OpenRulesEngine API

OpenRulesEngine is a Java class provide by OpenRule® to execute different rule

sets and methods specified in Excel files using application-specific business

objects. OpenRulesEngine can be invoked from any Java application using a

simple Java API or a standard JSR-94 interface.

Engine Constructors

OpenRulesEngine provides an interface to execute rules and methods defined in

Excel tables. You can see examples of how OpenRulesEngine is used in basic rule

projects such as HelloJava, DecisonHellJava, HelloJsr94 and web applications

such as HelloJsp, HelloForms, and HelloWS. To use OpenRulesEngine inside

your Java code you need to add an import statement for

com.openrules.ruleengine.OpenRulesEngine and make sure

that openrules.all.jar is in the classpath of your application. This jar and

all 3rd party jar-files needed for OpenRules® execution can be found in the

subdirectory openrules.config/lib of the standard OpenRules® installation.

You may create an instance of OpenRulesEngine inside of your Java program

using the following constructor:

 public OpenRulesEngine(String xlsMainFileName)

http://openrules.com/docs/man_api.html#OpenRules Implementation of JSR-94 API

OpenRules, Inc. OpenRules® User Manual

76

where xlsMainFileName parameter defines the location for the main xls-file. To

specify a file location, OpenRules® uses an URL pseudo-protocol

notation with prefixes such as "file:", "classpath:", "http://",

"ftp://", "db:", etc. Typically, your main xls-file Main.xls is located in the

subdirectory "rules/main" of your Java project. In this case, its location may be

defined as "file:rules/main/Main.xls". If your main xls-file is located

directly in the project classpath, you may define its location as

"classpath:Main.xls". Use a URL like

http://www.example.com/rules/Main.xls when Main.xls is located at a

website. All other xls-files that can be invoked from this main file are described

in the table "Environment" using include-statements.

You may also use other forms of the OpenRulesEngine constructor. For example,

the constructor

 OpenRulesEngine(String xlsMainFileName, String methodName)

allows you to also define the main method from the file xlsMainFileName that

will be executed during the consecutive runs of this engine.

Here is a complete example of a Java module that creates and executes a rule

engine (see HelloJava project):

package hello;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunHelloCustomer {

 public static void main(String[] args) {

 String fileName = "file:rules/main/HelloCustomer.xls";

 String methodName = "helloCustomer";

 OpenRulesEngine engine = new OpenRulesEngine(fileName);

 Customer customer = new Customer();

 customer.setName("Robinson");

 customer.setGender("Female");

OpenRules, Inc. OpenRules® User Manual

77

 customer.setMaritalStatus("Married");

 Response response = new Response();

 Object[] objects = new Object[] { customer, response };

 engine.run(methodName,objects);

 System.out.println("Response: " +

 response.getMap().get("greeting") + ", " +

 response.getMap().get("salutation") +

 customer.getName() + "!");

 }

}

As you can see, when an instance "engine" of OpenRulesEngine is created, you

can create an array of Java objects and pass it as a parameter of the method

"run".

 Engine Runs

The same engine can run different rules and methods defined in its Excel-files.

You may also specify the running method using

 setMethod(String methodName);

or use it directly in the engine run:

 engine.run(methodName,businessObjects);

If you want to pass to OpenRulesEngine only one object such as "customer", you

may write something like this:

 engine.run("helloCustomer",customer);

If you do not want to pass any object to OpenRulesEngine but expect to receive

some results from the engine's run, you may use this version of the method

"run":

 String[] reasons = (String[]) engine.run("getReasons");

OpenRules, Inc. OpenRules® User Manual

78

Undefined Methods

OpenRulesEngine checks to validate if all Excel-based tables and methods are

actually defined. It produces a syntax error if a method is missing. Sometimes,

you want to execute a rule method/table from an Excel file but only if this

method is actually present. To do this, you may use this version of the method

"run":

 boolean mayNotDefined = true;

 engine.run(methodName, businessObjects, mayNotDefined);

In this case, if the method "methodName" is not defined, the engine would not

throw a usual runtime exception "The method <name> is not defined" but rather

will produce a warning and will continue to work. The parameter

"mayNotDefined" may be used similarly with the method "run" with one

parameter or with no parameters, e.g.

 engine.run("validateCustomer", customer, true);

How to invoke rules from other rules if you do not know if these rules are

defined? It may be especially important when you use some predefined rule

names in templates. Instead of creating an empty rules table with the needed

name, you want to use the above parameter "mayNotDefined" directly in Excel.

Let's say you need to execute rules tables with names such as "NJ_Rules" or

"NY_Rules" from another Excel rules table but only if the proper state rules are

actually defined. You may do it by calling the following method from your rules:

Method void runStateRules(OpenRulesEngine engine, Customer

customer, Response response)

String methodName = customer.state + "_Rules";

Object[] params = new Object[2];

params[0] = customer;

params[1] = response;

engine.run(methodName, params, true);

OpenRules, Inc. OpenRules® User Manual

79

We assume here that all state-specific rules ("NJ_Rules", "NY_Rules", etc.) have

two parameters, "customer" and "response". To use this method you need to pass

the current instance of OpenRulesEngine from your Java code to your main

Excel file as a parameter "engine". If you write an OpenRules Forms application,

this instance of the OpenRulesEngine is always available

as dialog().getEngine(), otherwise you have to provide access to it, e.g. by

attaching it to one of your own business objects such as Customer.

By default OpenRules will produce a warning when the required Excel rules

table or method is not available. You may suppress such warnings by calling:

 engine.turnOffNotDefinedWarning();

Accessing Password Protected Excel Files

Some Excel workbooks might be encrypted (protected by a password) to prevent

other people from opening or modifying these workbooks. Usually it's done using

Excel Button and then Prepare plus Encrypt Document. OpenRules

Engine may access password-protected workbooks by calling the following

method just before creating an engine instance:

 OpenRulesEngine.setCurrentUserPassword("password");

Instead of "password" you should use the actual password that protects your

main and/or other Excel files. Only one password may be used by all protected

Excel files that will be processed by one instance of the OpenRulesEngine

created after this call. This call does not affect access to unprotected files. The

standard project "HelloJavaProtected" provides an example of the protected

Excel file - use the word "password" to access the file "HelloCustomer.xls".

Note. The static method "setCurrentUserPassword" of the class

OpenRulesEngine actually sets the BIFF8 encryption/decryption password for

the current thread. The use of a "null" string will clear the password.

OpenRules, Inc. OpenRules® User Manual

80

Engine Attachments

You may attach any Java object to the OpenRulesEngine using

methods setAttachment(Object attachment) and getAttachment().

Engine Version

You may receive a string with the current version number of the

OpenRulesEngine using the method getVersion().

Dynamic Rules Updates

If a business rule is changed, OpenRulesEngine automatically reloads the rule

when necessary. Before any engine's run, OpenRulesEngine checks to determine

if the main Excel file associated with this instance of the engine has been

changed. Actually, OpenRulesEngine looks at the latest modification dates of

the file xlsMainFileName. If it has been modified, OpenRulesEngine re-

initializes itself and reloads all related Excel files. You can shut down this

feature by executing the following method:

 engine.setCheckRuleUpdates(false);

Decision API

OpenRules® provides a special API for the Decision Model using the Java class

“Decision”. The following example from the standard project “Decision1040EZ”

demonstrates the use of this API.

public class Main {

 public static void main(String[] args) {

 String fileName = "file:rules/main/Decision.xls";

 OpenRulesEngine engine = new OpenRulesEngine(fileName);

 Decision decision = new Decision("Apply1040EZ",engine);

 DynamicObject taxReturn =

 (DynamicObject) engine.run("getTaxReturn");

 engine.log("=== INPUT:\n" + taxReturn);

 decision.put("taxReturn",taxReturn);

 decision.execute();

 engine.log("=== OUTPUT:\n" + taxReturn);

 }

}

OpenRules, Inc. OpenRules® User Manual

81

Here we first created an instance engine of the class OpenRulesEngine and

used it to create an instance decision of the class Decision. We used the

engine to get an example of the object taxReturn that was described in Excel

data tables:

DynamicObject taxReturn =

 (DynamicObject) engine.run("getTaxReturn");

Then we added this object to the decision:

decision.put("taxReturn",taxReturn);

and simply executed decision:

decision.execute();

The decision model is supposed to modify certain attributes inside the object

decision and we display all of them before and after the decision execution.

Decision Constructors

The class Decision provides the following constructor:

 public Decision(String decisionName, String xlsMainFileName)

where “decisionName” is the name of the main table of the type “Decision” and

“xlsMainFileName” is the same parameter as in the OpenRulesEngine’s

constructor that defines a location for the main xls-file.

There is also another constructor:

 public Decision(String decisionName, OpenRulesEngine engine)

where the parameter OpenRulesEngine engine refers to an already created

instance of the OpenRulesEngine as in the above example.

OpenRules, Inc. OpenRules® User Manual

82

Each decision has an associated object of type Glossary. When a decision is

created, it first executes the table “glossary” that must be defined in our rules

repository. It fills out the glossary, a step that applies to all consecutive decision

executions. You may always access the glossary by using the method

Glossary glossary = decision.getGlossary();

Decision Parameters

The class Decision is implemented as a subclass of the standard Java class

HashMap. Thus, you can put any object into the decision similarly as we did

above:

decision.put("taxReturn",taxReturn);

You may access any object previously put into the decision by calling the method

get(name) as in the following example:

TaxReturn taxReturn = (TaxReturn)decision.get("taxReturn");

You may set a special parameter

decision.put("trace",”Off”);

to tell your decision to turn off the tracing . You may use “On” to turn it on again.

Decision Runs

After defining decision parameters, you may execute the decision as follows:

decision.execute();

This method will execute your decision model starting from the table of type

“Decision” whose name was specified as the first parameter of the decision’s

constructor.

OpenRules, Inc. OpenRules® User Manual

83

You may reset the parameters of your decision and execute it again without the

necessity of constructing a new decision. This is very convenient for multi-

transactional systems where you create a decision once by instantiating its

glossary, and then you execute the same decision multiple times but with

different parameters. To make sure that it is possible, the Decision’s method

execute() calls Excel’s method “decisionObjects” each time before actually

executing the decision.

There is one more form of this method:

decision.execute(String methodName);

It is used within Excel when you want to execute another Excel method. It is

implemented as follows:

 public Object execute(String methodName) {

 return getEngine().run(methodName);

}

Decision Execution Modes

Before executing a decision model you may validate it by setting a special

“validation” mode. Here is a code example:

String fileName = "file:rules/main/Decision.xls";

System.setProperty("OPENRULES_MODE", "Validate");

Decision decision = new Decision("DetermineDecisionFact",fileName);

During the validation along with regular syntax check OpenRules® will validate

if the values for conditions and actions inside all rule families corresponds to

their glossary domains (if they are defined).

As you can see, the system property "OPENRULES_MODE" defines which mode to

use. By default this property is set to "Execute". If you create an

OpenRulesEngine before creation a Decision, you need to set this property first.

JSR-94 Implementation

OpenRules, Inc. OpenRules® User Manual

84

OpenRules® provides a reference implementation of the JSR94 standard known

as Java Rule Engine API (see http://www.jcp.org/en/jsr/detail?id=94). The

complete OpenRules® installation includes the following projects:

JSR-94 Project Description

lib.jsr94
This project contains the standard jsr94-1.0

library

com.openrules.jsr94

This is an OpenRules®'s reference

implementation for the JSR94 standard and

includes the source code. It uses

OpenRulesEngine to implement

RuleExecutionSet

HelloJsr94
This is an example of using JSR94 for simple

rules that generate customized greetings

HelloJspJsr94

HelloJspJsr94 is similar to HelloJsp but uses

the OpenRules® JSR-94 Interface to create and

run OpenRulesEngine for a web application.

Multi-Threading

OpenRulesEngine is thread-safe and works very efficiently in multi-threaded

environments supporting real parallelism. OpenRulesEngine is stateless, which

allows a user to create only one instance of the class OpenRulesEngine, and then

share this instance between different threads. There are no needs to create a

pool of rule engines. A user may also initialize the engine with application data

common for all threads, and attach this data directly to the engine using the

methods setAttachment(Object attachment). Different threads will receive

this instance of the rule engine as a parameter, and will safely run various rules

in parallel using the same engine.

The complete OpenRules® installation includes an example

"HelloFromThreads" that demonstrates how to organize a parallel execution of

http://www.jcp.org/en/jsr/detail?id=94

OpenRules, Inc. OpenRules® User Manual

85

the same OpenRulesEngine's instance in different threads and how to measure

their performance.

INTEGRATION WITH JAVA AND XML

Java Classes

OpenRules® allows you to externalize business logic into xls-files. However,

these files can still use objects and methods defined in your Java environment.

For example, in the standard example “RulesRepository” all rule tables deal

with the Java object Appl defined in the Java package myjava.package1.

Therefore, the proper Environment table inside file Main.xls (see above) contains

a property "import.java" with the value "myjava.package1.*":

The property "import.java" allows you to define all classes from the package

following the standard Java notation, for example "hello.*". You may also

import only the specific class your rules may need, as in the example above. You

can define a separate property "import.java" for every Java package used or

merge the property " import.java " into one cell with many rows for different

Java packages. Here is a more complex example:

Environment

import.static com.openrules.tools.Methods

import.java

my.bom.*

my.impl.*

my.inventory.*

com.openrules.ml.*

my.package.MyClass

OpenRules, Inc. OpenRules® User Manual

86

com.3rdparty.*

include

../include/Rules1.xls

../include/Rules2.xls

Naturally the proper jar-files or Java classes should be in the classpath of the

Java application that uses these rules.

If you want to use static Java methods defined in some standard Java libraries

and you do not want to specify their full path, you can use the property

"import.static". The static import declaration imports static members from

Java classes, allowing them to be used in Excel tables without class

qualification. For example, many OpenRules® sample projects use static

methods from the standard Java library com.openrules.tools that includes class

Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write

 out("Rules 1")

instead of

 Methods.out("Rules 1")

XML Files

Along with Java classes, OpenRules® tables can use objects defined in XML files.

For example, the standard sample project HelloXMLCustomer uses an object of

type Customer defined in the file Customer.xml located in the project classpath:

<Customer

 name="Robinson"

 gender="Female"

 maritalStatus="Married"

 age="55"

/>

The xls-file, HelloXmlCustomer.xls, that deals with this object includes the

following Environment table:

http://openrules.com/HelloXmlCustomer.xls

OpenRules, Inc. OpenRules® User Manual

87

The property, "import.schema", specifies the location of the proper xml-file, in

this case "classpath:/Customer.xml". Of course, you can use any other

location in your local file system that starts with the prefix "file:". This

example also tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules® package

"com.openrules.tools.Methods"

2. xml-file "classpath:/Customer.xml"

3. Java class "Response" from a package "hello"

4. include-file "HelloRules.xls" which is located in the subdirectory "include"

of the directory where the main xls file is located.

The object of the type "Customer" can be created using the following API:

 Customer customer = Customer.load("classpath:/Customer.xml");

You may use more complex structures defined in xml-files. For example, the

project HelloXMLPeople uses the following xml-file:

<?xml version="1.0" encoding="UTF-8"?>

<People type="Array of Person(s)">

 <Person name="Robinson" gender="Female" maritalStatus="Married"

age="55" />

 <Person name="Robinson" gender="Female"

maritalStatus="Single" age="23" />

 <Person name="Robinson" gender="Male"

maritalStatus="Single" age="17" />

 <Person name="Robinson" gender="Male"

maritalStatus="Single" age="3" />

</People>

The method that launches greeting rules for every Person from an array

People is defined as:

OpenRules, Inc. OpenRules® User Manual

88

DATA MODELING

OpenRules® includes an ability to define new data/object types and creates the

objects of these types directly in Excel. It allows business analysts to do Rule

Harvesting by defining business terms and facts without worrying about their

implementation in Java, C#, or XML. It also provides the ability to test the

business rules in a pre-integrated mode. To do standalone rule testing, a

designer of rules and forms specifies his/her own data/object types as Excel

tables and creates instances of objects of these types passing them to the rule

tables. We describe how to do it in the sections below.

There is one more important reason why a business or even a technical specialist

may need data modeling abilities without knowing complex software

development techniques. In accordance with the SOA principle of loosely coupled

services, rule services have to specify what they actually need from the objects

defined in an external environment. For example, if an object "Insured" includes

attributes related to a person's military services, it does not require that all

business rules that deal with the insured be interested in those attributes. Such

encapsulation of only the essential information in the Excel-based data types,

together with live process modeling, allows OpenRules® to complete the rules

modeling cycle without leaving Excel.

http://www.service-architecture.com/

OpenRules, Inc. OpenRules® User Manual

89

OpenRules® provides the means to make business rules and forms independent

of a concrete implementation of such concepts. The business logic expressed in

the decision tables should not depend on the implementation of the objects these

rules are dealing with. For example, if a rule says: “If driver's age is less than 17

then reject the application” the only thing this business rule should "know" about

the object “driver” is the fact that it has a property “age” and this property has a

type that support a comparison operator “<” with an integer. It is a question of

configuration whether the Driver is a Java class or an XML file or a DB table

from a legacy system. Similarly, if a form has an input field "Driver's Age", the

form should be able to accept a user's input into this field and automatically

convert it into the proper object associated with this field independently of how

this object was implemented.

Thus, OpenRules® supports data source independent business rules (decision

tables) and web forms. Your business rules can work with an object of type

Customer independently of the fact that this type is defined as a Java class, as

an XML file or as an Excel table. You can see how it can be done using examples

HelloJava, HelloXML, and HelloRules from the OpenRules®'s standard

installation. It is a good practice to start with Excel-based data types. Even if you

later on switch to Java classes of other data types, you would always be able to

reuse Excel-based types for standalone testing of your rules-based applications.

Datatype and Data Tables

OpenRules® allows a non-technical user to represent different data types directly

in Excel and to define objects of these types to be used as test data. Actually, it

provides the ability to create Excel, Intelligent Business Glossaries, that, in turn,

define problem specific business terms and facts. At the same time, a business

glossary can include data types specified outside Excel, for example in Java

classes or in XML files. Here is an example of a simple data type "PersonalInfo":

OpenRules, Inc. OpenRules® User Manual

90

Now we can create several objects of this type "PersonalInfo" using the

following data table:

We can reference to these objects inside rules or forms as in the following

snippets:

out(personalInformation["He"].lastName);

if (personalInformation["She"].state.equals("NJ")) ...

You may use one datatype (such as PersonalInfo) to define a more

complex aggregate datatype, like TaxReturn in this example:

OpenRules, Inc. OpenRules® User Manual

91

You may even create an object of the new composite type "TaxReturn" using

references to the objects "He" and "She" as in this example:

Now we can reference these objects from inside rules or forms as in the following

snippet:

out(taxReturn[0].taxPayer.lastName);

The above tables may remind you of traditional database tables simply presented

in Excel. While these examples give you an intuitive understanding of

OpenRules® Datatype and Data tables, the next sections will provide their

formal descriptions.

OpenRules, Inc. OpenRules® User Manual

92

You may use a type of table "Variable". These tables are similar to the Data

tables but instead of arrays of variables they allow you to create separate

instances of objects directly in Excel files. Here is a simple example:

Variable Customer mary

name age gender maritalStatus

Name Age Gender Marital Status

Mary Brown 5 Female Single

The variable "mary" has type Customer and can be used inside rules or passed

back from an OpenRulesEngine to a Java program as a regular Java object. As

usual, the object type Customer can be defined as a Java class, an Excel

Datatype, or an xml structure.

How Datatype Tables Are Organized

Every Datatype table has the following structure:

Datatype tableName

AttributeType1 AttrubuteName1

AttributeType2 AttrubuteName2

.. ..

.. ..

The first "signature" row consists of two merged cells and starts with the

keyword "Datatype". The "tableName" could be any valid one word identifier of

the table (a combination of letters and numbers). The rows below consist of two

cells with an attribute type and an attribute name. Attribute types can be the

basic Java types:

- boolean

- char

- int

- double

- long

OpenRules, Inc. OpenRules® User Manual

93

- String (java.lang.String)

- Date (java.util.Date)

You may also use data types defined:

- in other Excel Datatype tables

- in any Java class with a public constructor with a single parameter of the

type String

- as one-dimensional arrays of the above types.

The datatype "PersonalInfo" gives an example of a very simple datatype. We can

define another datatype for a social security number (SSN):

and add a new attribute of this type to the datatype "PersonalInfo":

It is interesting that these changes do not affect the already existing data

objects defined above (like personalInformation["He"]) - their SSNs just

will not be defined.

Implementation Restriction. Make sure that the very first attribute in a Datatype

table has type String or your own type (but not a basic Java type like int).

OpenRules, Inc. OpenRules® User Manual

94

The following example demonstrates how to create a Data table for a Datatype

that includes one-dimensional arrays:

Datatype Order

String number

String[] selectedItems

String[] offeredItems

double totalAmount

String status

Here is an example of the proper Data table:

Data Order orders

number selectedItems totalAmount status

Number Selected Items
Total

Amount
Status

6P-U01

INTRS-PGS394

3700 In Progress INTRS-PGS456

Paste-ARMC-2150

You may also present the same data in the following way:

Data Order orders

number selectedItems totalAmount

Number

Selected Items

Total Amount

Item 1 Item 2 Item 3

6P-U01 INTRS-PGS394 INTRS-PGS456 Paste-ARMC-2150 3700

How Data Tables Are Organized

OpenRules, Inc. OpenRules® User Manual

95

Every Datatype table has a vertical or horizontal format. A typical vertical Data

table has the following structure:

Data datatypeName tableName

 AttributeName1

from

"datatypeName"

AttributeName2

from

"datatypeName"

AttributeName3

from

"datatypeName"
 ...

Display value of

the

AttributeName1

Display value of

the

AttributeName2

Display value of

the

AttributeName3
...

data data data ...

data data data ...

...

The first "signature" row consists of two merged cells and starts with the

keyword "Data". The next word should correspond to a known datatype: it can be

an already defined Excel Datatype table or a known Java class or an XML file.

The "tableName" is any one word valid identifier of the table (a combination of

letters and numbers).

The second row can consists of cells that correspond to attribute names in the

data type "datatypeName". It is not necessary to define all attributes, but at

least one should be defined. The order of the columns is not important.

The third row contains the display name of each attribute (you may use

unlimited natural language).

All following rows contain data values with types that correspond to the types of

the column attributes.

Here is an example of the Data table for the datatype "PersonalInfo" defined

in the previous section (with added SSN):

OpenRules, Inc. OpenRules® User Manual

96

The table name is "personalInformation" and it defines an array of objects of

the type PersonalInfo. The array shown consists only of two elements

personalInformation[0] for John and personalInformation[1] for Mary.

You may add as many data rows as necessary.

The attributes after the SSN attribute have not been defined. Please, note that

the references to the aggregated data types are defined in a natural way

(ssn.ssn1, ssn.ssn2, ssn.ssn3) using the dot-convention.

As you can see from this example, the vertical format may not be very convenient

when there are many attributes and not so many data rows. In this case, it could

be preferable to use a horizontal format for the data tables:

Data datatypeName tableName

 AttributeName1 from

"datatypeName"
Display value of the

AttributeName1
data data data ...

AttributeName2 from

"datatypeName"
Display value of the

AttributeName2
data data data ...

AttributeName3 from

"datatypeName"
Display value of the

AttributeName3
data data data ...

...

Here is how our data table will look when presented in the horizontal format:

OpenRules, Inc. OpenRules® User Manual

97

Predefined Datatypes

OpenRules® provides predefined Java classes to create data tables for arrays of

integers, doubles, and strings. The list of predefined arrays includes:

1. ArrayInt - for arrays of integer numbers, e.g.:

Method int[] getTerms()

return ArrayInt.getValues(terms);

Data ArrayInt terms

value

Term

36

72

108

144

2. ArrayDouble - for arrays of real numbers, e.g.:

Method double[] getCosts()

return ArrayDouble.getValues(costs);

OpenRules, Inc. OpenRules® User Manual

98

Data ArrayDouble costs

value

Costs

$295.50

$550.00

$1,000.00

$2,000.00

$3,295.00

$5,595.00

$8,895.00

3. ArrayString - for arrays of strings, e.g.:

Method String[] getRegions()

return ArrayString.getValues(regions);

 Data ArrayString regions

value

Region

NORTHEAST

MID-ATLANTIC

SOUTHERN

MIDWEST

MOUNTAIN

PACIFIC-COAST

These arrays are available from inside an OpenRules® table by just calling their

names: getTerms(), getCosts(), getRegions(). You may also access these

arrays from a Java program, using this code:

OpenRules, Inc. OpenRules® User Manual

99

OpenRulesEngine engine =

 new OpenRulesEngine("file:rules/Data.xls");

int[] terms = (int[])engine.run("getTerms");

The standard installation includes a sample project "DataArrays", that shows

how to deal with predefined arrays.

Accessing Excel Data from Java - Dynamic Objects

You can access objects created in Excel data tables from your Java program.

These objects have a predefined type DynamicObject. Let's assume that you

defined your own Datatype, Customer, and created an array of customers in

Excel:

Data Customer customers

name maritalStatus gender age

Customer Name Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method Customer[] getCustomers()

return customers;

In you Java program you may access these objects as follows:

OpenRulesEngine engine =

 new OpenRulesEngine("file:rules/Data.xls");

DynamicObject[] customers =

(DynamicObject[])engine.run("getCustomers");

System.out.println("\nCustomers:");

for(int i=0; i<customers.length; i++)

 System.out.println("\t"+customers[i]);

OpenRules, Inc. OpenRules® User Manual

100

This code will print:

Customer(id=0){

 name=Robinson

 age=24

 gender=Female

 maritalStatus=Married

}

Customer(id=1){

 name=Smith

 age=19

 gender=Male

 maritalStatus=Single

}

You may use the following methods of the class DynamicObject:

public Object getFieldValue(String name);

public void setFieldValue(String name, Object value);

For example,

String gender = (String) customers[0].getFieldValue("gender");

will return "Female", and the code

customer.setFieldValue("gender", "Male");

customer.setFieldValue("age", 40);

will change the gender of the object customers[0] to "Male" and his age to 40.

How to Define Data for Aggregated Datatypes

When one Datatype includes attributes of another Datatype, such datatypes are

usually known as aggregated datatypes. You have already seen an example of an

aggregated type, PersonalInfo, with the subtype SSN. Similarly, you may

have two datatypes, Person and Address, where type Person has an attribute

"address" of the type Address. You may create a data table with type Person

using aggregated field names such as "address.street", "address.city",

"address.state", etc. The subtype chain may have any length, for example

"address.zip.first5" or "address.zip.last4". This feature very

OpenRules, Inc. OpenRules® User Manual

101

conveniently allows a compact definition of test data for complex interrelated

structures.

Finding Data Elements Using Primary Keys

You may think about a data table as a database table. There are a few things

that make them different from traditional relational tables, but they are

friendlier and easier to use in an object-oriented environment. The very first

attribute in a data table is considered to be its primary key. For example, the

attribute "id" is a primary key in the data table "personalInformation" above.

You may use values like "He" or "She" to refer to the proper elements of this

table/array. For example, to print the full name of the person found in the array

"personalInformation", you may write the following snippet:

 PersonalInfo pi = personalInformation["He"];

 out(pi.fisrtName + " " + pi.middeInitial + ". " + pi.lastName);

Cross-References Between Data Tables

The primary key of one data table could serve as a foreign key in another table

thus providing a cross-reference mechanism between the data tables. There is a

special format for data tables to support cross-references:

Data datatypeName tableName

 AttributeName1 from

"datatypeName"

AttributeName2

from

"datatypeName"

AttributeName3 from

"datatypeName"
 ...

>referencedDataTable1 >referencedDataTable2

Display value of the

AttributeName1

Display value of

the

AttributeName2

Display value of the

AttributeName3
...

data data data ...

data data data ...

...

OpenRules, Inc. OpenRules® User Manual

102

This format adds one more row, in which you may add references to the other

data tables, where the data entered into these columns should reside. The sign

">" is a special character that defines the reference, and "referencedDataTable"

is the name of another known data table. Here is an example:

Both columns "TaxPayer" and "Spouse" use the reference

">personalInformation". It means that these columns may include only primary

keys from the table, "personalInformation". In our example there are only two

valid keys, He or She. If you enter something else, for example "John" instead of

"He" and save your Excel file, you will receive a compile time (!) error "Index Key

John not found" (it will be displayed in your Eclipse Problems windows). It is

extremely important that the cross-references are automatically validated

at compile time in order to prevent much more serious problems at run-time.

Multiple examples of complex inter-table relationships are provided in the

sample rule project AutoInsurance. Here is an intuitive example of three related

data tables:

OpenRules, Inc. OpenRules® User Manual

103

See more complex examples in the standard project “AutoInsurance”.

OPENRULES® REPOSITORY

To represent business rules OpenRules® utilizes a popular spreadsheet

mechanism and places rules in regular Excel files. OpenRules® allows users to

build enterprise-level rules repositories as hierarchies of inter-related xls-files.

The OpenRules® Engine may access these rules files directly whether they are

located in the local file system, on a remote server, in a standard version control

system or in a relational database.

Logical and Physical Repositories

The following picture shows the logical organization of an OpenRules® repository

and its possible physical implementations:

OpenRules, Inc. OpenRules® User Manual

104

Logically, OpenRules® Repository may be considered as a hierarchy of rule

workbooks. Each rule workbook is comprised of one or more worksheets that can

be used to separate information by types or categories. Decision tables are the

most typical OpenRules® tables and are used to represent business rules. Along

with rule tables, OpenRules® supports tables of other types such as: Form

Layouts, Data and Datatypes, Methods, and Environment tables. A detailed

description of OpenRules® tables can be found here.

Physically, all workbooks are saved in well-established formats, namely as

standard xls- or xml-files. The proper Excel files may reside in the local file

system, on remote application servers, in a version control system such as

Subversion, or inside a standard database management system.

OpenRules® uses an URL pseudo-protocol notation with prefixes such

as "file:", "classpath:", "http://", "ftp://", "db:", etc.

http://openrules.com/docs/man_spreadsheets.html

OpenRules, Inc. OpenRules® User Manual

105

Hierarchies of Rule Workbooks

An OpenRules® repository usually consists of multiple Excel workbooks

distributed between different subdirectories. Each rule workbook may include

references to other workbooks thus comprising complex hierarchies of inter-

related workbooks and rule tables.

Included Workbooks

Rules workbooks refer to other workbooks using so called "includes" inside the

OpenRules® "Environment" tables. To let OpenRules® know about such include-

relationships, you have to place references to all included xls-files into the table

"Environment". Here is an example of an OpenRules® repository that comes

with the standard sample project "RuleRepository":

The main xls-file "Main.xls" is located in the local

directory "rules/main". To invoke any rules

associated with this file, the proper Java program

creates an OpenRulesEngine using a string

"file:rules/main/Main.xls" as a parameter.

There are many other xls-files related to the

Main.xls and located in different subdirectories of

"rules". Here is a fragment of the Main.xls

"Environment" table:

As you can guess, in this instance all included files are defined relative to the

directory "rules/main" in which “Main.xls” resides. You may notice that files

“RulesA11.xls” and “RulesA12.xls” are not included. The reason for this is that

only “RulesA1.xls” really "cares" about these files. Naturally its own table

"Environment" contains the proper "include":

OpenRules, Inc. OpenRules® User Manual

106

Here, both "includes" are defined relative to the directory "CategoryA" of their

"parent" file “RulesA1.xls”. As an alternative, you may define your included files

relative to a so called "include.path" - see sample in the next section.

Include Path and Common Libraries of Rule Workbooks

Includes provide a convenient mechanism to create libraries of frequently used

xls-files and refer to them from different rule repositories. You can keep these

libraries in a file system with a fixed "include.path". You may even decide to

move such libraries with common xls-files from your local file system to a remote

server. For instance, in our example above you could move a subdirectory "libA"

with all xls-files to a new location with an http

address http://localhost:8080/my.common.lib. In this case, you should first define

a so-called "include.path" and then refer to the xls-files relative to this

include.path using angle brackets as shown below:

Here we want to summarize the following important points:

- The structure of your rule repository can be presented naturally inside xls-

files themselves using "includes"

- The rule repository can include files from different physical locations

- Complex branches on the rules tree can encapsulate knowledge about their

own organization.

 Imports from Java

OpenRules® allows you to externalize business logic into xls-files. However,

these files still can use objects and methods defined in your Java environment.

http://localhost:8080/my.common.lib

OpenRules, Inc. OpenRules® User Manual

107

For example, in the standard example “RulesRepository” all rule tables deal with

Java objects defined in the Java package myjava.package1. Therefore, the

proper Environment table inside file Main.xls (see above) contains a property

"import.java" with value "myjava.package1.*".

Usually, you only place common Java imports inside the main xls-file. If some

included xls-files use special Java classes you can reference them directly from

inside their own Environment tables.

Imports from XML

Along with Java, OpenRules® allows you to use objects defined in XML files. For

example, the standard sample project “HelloXMLCustomer” uses an object of the

type, Customer, defined in the file Customer.xml located in the project classpath:

<Customer

 name="Robinson"

 gender="Female"

 maritalStatus="Married"

 age="55"

/>

The xls-file “HelloCustomer.xls” that deals with this object includes the following

Environment table:

The property "import.schema" specifies the location of the proper xml-file, in

this case "classpath:/Customer.xml". Of course, it could be any other

location in the file system that starts with the prefix "file:". This example also

tells you that this Excel file uses:

OpenRules, Inc. OpenRules® User Manual

108

1. static Java methods defined in the standard OpenRules® package

"com.openrules.tools.Methods"

2. xml-file "classpath:/Customer.xml"

3. Java class "Response" from a package "hello"

4. include-file "HelloRules.xls" that is located in the subdirectory "include" of

the directory where the main xls file is located.

Parameterized Rule Repositories

An OpenRules® repository may be parameterized in such a way that different

rule workbooks may be invoked from the same repository under different

circumstances. For example, let's assume that we want to define rules that offer

different travel packages for different years and seasons. We may specify a

concrete year and a season by using environment variables YEAR and SEASON.

Our rules repository may have the following structure:

rules/main/Main.xls

rules/common/CommonRules.xls

rules/2007/SummerRules.xls

rules/2007/WinterRules.xls

rules/2008/SummerRules.xls

rules/2008/WinterRules.xls

To make the OpenRulesEngine automatically select the correct rules from such a

repository, we may use the following parameterized include-statements inside

the Environment table of the main xls-file rules/main/Main.xls:

Environment

import.java season.offers.*

include ../common/SalutationRules.xls

include ../${YEAR}/${SEASON}Rules.xls

OpenRules, Inc. OpenRules® User Manual

109

Thus, the same rules repository will handle both WinterRules and SummerRules

for different years. A detailed example is provided in the standard project

SeasonRules.

Rules Version Control

For rules version control you can choose any standard version control system

that works within your traditional software development environment. We

would recommend using an open source product "Subversion" that is a

compelling replacement for CVS in the open source community. For business

users, a friendly web interface is provided by a popular open source product

TortoiseSVN. For technical users, it may be preferable to use a Subversion

incorporated into Eclipse IDE. One obvious advantage of the suggested approach

is the fact that both business rules and related Java/XML files will be handled by

the same version control system.

You may even keep your Excel files with rules, data and other OpenRules® tables

directly in Subversion. If your include-statements use http-addresses that point

to a concrete Subversion repository then the OpenRulesEngine will dynamically

access SVN repositories without the necessity to move Excel files back into a file

system.

Another way to use version control is to place your rule workbooks in a database

and use DBV-protocol to access different versions of the rules in run-time -

read more.

Rules Authoring and Maintenance Tools

OpenRules® relies on standard commonly used tools (mainly from Open Source)

to organize and manage a Business Rules Repository:

http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://www.eclipse.org/
http://openrules.com/docs/man_repositoryDB2.html

OpenRules, Inc. OpenRules® User Manual

110

To create and edit rules and other tables presented in Excel-files you may use

any standard spreadsheet editors such as:

- MS Excel™

- OpenOffice™

- Google Spreadsheets™

Google Spreadsheets are especially useful for sharing spreadsheet editing - see

section Collaborative Rules Management with Google Spreadsheets.

http://openrules.com/ruleeditors.htm
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets

OpenRules, Inc. OpenRules® User Manual

111

For technical people responsible for rules project management OpenRules

provides an Eclipse Plug-in that allows them to treat business rules as a natural

part of complex Java projects.

EXTERNAL RULES

OpenRules® allows a user to create and maintain their rules outside of Excel-

based rule tables. It provides a generic Java API for adding business rules from

different external sources such as:

1. Database tables created and modified by the standard DB management

tools

2. Live rule tables in memory dynamically modified by an external GUI

3. Java objects of the predefined type RuleTable

4. Problem-specific rule sources that implement a newly offered rules

provider interface.

With external rules you may keep the business parts of your rules in any

external source while the technical part (Java snippets) will remain in an Excel-

based template, based on which actual rules will be created by the

OpenRulesEngine. For example, you may keep your rules in a regular database

table as long as its structure corresponds to the columns (conditions and actions)

of the proper Excel template. Thus, the standard DB management tools, or your

own GUI that maintains these DB-based rule tables, de-facto become your own

rules management environment.

The external rules may also support a preferred distribution of responsibilities

between technical and business people. The business rules can be kept and

maintained in a database or other external source by business analysts while

developers can continue to use Excel and Eclipse to maintain rule templates and

related software interfaces.

API for External Rules

http://openrules.com/ruleproject.htm

OpenRules, Inc. OpenRules® User Manual

112

OpenRules® provides a generic Java API for external rules. There is a special

constructor,

OpenRulesEngine(String excelFileName, ExternalRules rules)

that has an additional parameter of the predefined Java type ExternalRules.

You may create an object of this type such as,

ExternalRules externalRules = new ExternalRules();

and then add different rule tables using the method:

addRuleTable(String ruleTableName,

 String ruleTemplateName,

 Object[][] ruleGrid);

The complete API is described at OpenRules® API. This simple interface gives a

developer the ability to bring rules from any external source and add them to

OpenRulesEngine as regular Java objects. If the rules in the external source are

changed, a developer may notify the ExternalRules object about this change by

using the method,

externarRules.setModified(true);

Then during the next rule engine's run, all rules will be dynamically reloaded.

OpenRules® provides 5 sample projects that demonstrate how to use External

Rules:

ExternalRulesFromJava: shows how to define rules as Java objects

ExternalRulesFromDB:
shows how to define rules in MS Access using

JDBC

ExternalRulesFromXML: shows how to define rules in XML files

ExternalRulesFromExcel: shows how to define rules as Excel Data tables

ExternalRulesFromGUI: shows how to build a web application that

http://openrules.com/external_rules_from_java.htm
http://openrules.com/external_rules_from_db.htm
http://openrules.com/external_rules_from_xml.htm
http://openrules.com/external_rules_from_excel.htm
http://openrules.com/external_rules_from_gui.htm

OpenRules, Inc. OpenRules® User Manual

113

allows a user to change and execute rules on the

fly without a restart

These projects can be found in the complete OpenRules® installation under the

section "External Rules". External rules can be invoked from regular rules

described in Excel files. Because these external rules are not known until run-

time, OpenRules® will produce warnings about these as yet unknown rules, but

the OpenRulesEngine will still execute them without problems. To suppress the

warnings and to keep track of all participating rules, you may fill out a newly

introduced optional table of the type "ExternalRules" that lists names of all

external rules along with their templates as in the following example:

ExternalRules

greetingRules defineGreeting

salutationRules defineSalutation

The projects below will produce greetings like "Good Morning, Mrs. Robinson!"

based on the current time and different customer's attributes such as gender and

marital status. They are similar to the standard project "HelloJavaTemplates"

but instead of using Excel-based rule tables they will use external rules.

The business logic for producing greetings and salutations is presented in the

Excel file HelloTemplates.xls. The first template

Rules void defineGreeting(App app, int hour)

C1 C2 A1

min <= hour hour <= max app.greeting = greeting;

int min int max String greeting

Hour From Hour To Set Greeting

 Unknown Greeting

OpenRules, Inc. OpenRules® User Manual

114

specifies how to define different greetings (Good Morning, Good Afternoon, etc.)

based on the hour of the day. If the parameter "hour" belongs to the interval

[min;max] defined by a concrete rule, then the attribute "greeting", of the

parameter "app" will be set to the proper greeting. If no rules are satisfied, this

multi-hit table will use the default greeting "Unknown Greeting".

The second template

Rules void defineSalutation(App app, Customer c)

C1 C2 C3 A1

c.gender.equals

(gender)

c.maritalStatus.

equals(status)
c.age < age

app.salutation =

salutation;

String gender String status int age String salutation

Gender Marital Status Age Less Than Set Salutation

Unknown

Salutation

specifies how to define different salutations (Mr., Mrs., etc.) based on customer

attributes Gender, Marital Status, and Age. If no rules are satisfied, this multi-

hit table will use the default salutation "Unknown Salutation".

External Rules from Java

The OpenRulesEngine can be created with an additional parameter of the

predefined type ExternalRules that allows for rule tables defined as Java

objects. The project "ExternalRulesFromDJava" demonstrates different ways of

defining external rules in Java.

Step 1. Defining Rule Tables in Java

All Java classes are typical for basic rule projects. In this project the main Java

class RunExternalRules shows different ways for adding rule tables to the

external rules. Here is the first rule table:

OpenRules, Inc. OpenRules® User Manual

115

externalRules.addRuleTable(

 "ExternalSummerGreeting", //table name

 "defineGreeting", //template name

 new String[][] { //rules

 new String[] {"0","11","Good Morning Summer"},

 new String[] {"12","17","Good Afternoon Summer"},

 new String[] {"18","21","Good Evening Summer"},

 new String[] {"22","24","Good Night Summer"}

 }

);

The first parameter specifies the rule table name. The second parameter

specifies the template upon which this table will be based. The third parameter

defines a grid that is a two-dimensional array, Object[][], containing actual

rules. This grid corresponds to the template "defineGreeting" - see above. The

first rule in the grid states that IF Hour From is "0" AND Hour To is "11" THEN

Set Greeting as "Good Morning Summer", etc.

The second rule table,

externalRules.addRuleTable(

 "ExternalWinterGreeting", //table name

 "defineGreeting", //template name

 new String[][] { //rules

 new String[] {"0","12","Good Morning Winter"},

 new String[] {"13","16","Good Afternoon Winter"},

 new String[] {"17","22","Good Evening Winter"},

 new String[] {"23","24","Good Night Winter"}

 }

);

is very similar to the first one but defines greeting rules for a winter season.

The third rule table,

externalRules.addRuleTable(

 "ExternalGreetingHorizontal", //table name

 "defineGreetingHorizontal", //template name

 new String[][] { //rules

 new String[] {"0","11","Good Morning"},

 new String[] {"12","16","Good Afternoon"},

 new String[] {"17","22","Good Evening"},

 new String[] {"23","24","Good Night"}

 }

);

OpenRules, Inc. OpenRules® User Manual

116

shows that you may use a horizontal template "ExternalGreetingHorizontal" and

still use the same vertical structure of your rules.

The fourth rule table,

externalRules.addRuleTable(

 "ExternalGreetingReverseOrder", //table name

 "defineGreeting", //template name

 new String[] { "A1","C1" }, //labels order differs from template order

 new Object[][] { // not all cells contains strings but other objects

 new Object[] {"Good Morning", new Integer(0),new Integer(11) },

 new Object[] {"Good Afternoon",new Integer(12),new Integer(17)},

 new Object[] {"Good Evening",new Integer(18),new Integer(21)},

 new Object[] {"Good Night",new Integer(22),new Integer(24)}

 }

};

shows several additional options that could be added to the ExternalRules

object. First of all, you can use all optional rules and conditions along with other

features available for "normal" rules and templates - as described above. The

array of Strings,

new String[] { "A1","C1" }

placed just before the grid informs OpenRulesEngine that this rule table starts

with the action A1 followed by the condition C1, thus violating the default

column order in the template. The grid Object[][] demonstrates the ability

to specify not only String but any Java objects as long as they correspond to the

types of parameters specified in the template.

If the type of objects inside the rule tables do not correspond to the templates,

the proper error will be produced. For example, if you make a mistake in the first

rule table by typing “O” instead of “0”

new String[] {"O","11","Good Morning Summer"}

you will receive a compilation error that will look like this:

org.openl.syntax.SyntaxErrorException: Error: For input string:

"O": java.lang.NumberFormatException

OpenRules, Inc. OpenRules® User Manual

117

at ExternalRules#ExternalSummerGreeting?row=0&column=0&openl=

java.lang.NumberFormatException: For input string: "O"

The error message points you to the name of the invalid external table

(ExternalRules#ExternalSummerGreeting) and to the coordinates of the

invalid cells inside the grid (row=0&column=0).

 Step 2. Executing External Rules from a Java Program

The main file HelloCustomer.xls defines the Environment of our rule project as

follows:

Environment

import.java hello.*

include ../include/HelloTemplates.xls

This application uses two simple Java beans: “Request” with one integer

attribute “hour” and “Response” with one String attribute “result”.

The main Java class RunExternalRules creates and executes an

OpenRulesEngine in the standard way:

String fileName = "file:rules/main/HelloCustomer.xls";

OpenRulesEngine engine =

 new OpenRulesEngine(fileName,externalRules);

Response response = new Response();

Request request = new Request();

request.setHour(Calendar.getInstance().get(Calendar.HOUR_OF_DAY));

Object[] params = new Object[] { request, response };

for (int i = 0; i < externalRules.getRuleTables().size(); i++) {

 RuleTable rules = (RuleTable)externalRules.getRuleTables().get(i);

 System.out.println(rules);

 engine.run(rules.getTableName(), params);

 System.out.println("Greeting generated by rules '" +

 rules.getTableName() +

 "' for hour " +request.hour +": " + response.result);

 System.out.println();

}

OpenRules, Inc. OpenRules® User Manual

118

To run the project, you may double-click on the file "run.bat". Here is an expected

output:

INITIALIZE OPENRULES ENGINE 5.3.0 (build 03092009) for

[file:rules/main/HelloCustomer.xls]

External rules table: ExternalSummerGreeting

External rules table: ExternalWinterGreeting

External rules table: ExternalGreetingHorizontal

External rules table: ExternalGreetingReverseOrder

IMPORT.JAVA=hello.*

INCLUDE=../include/HelloTemplates.xls

[../include/HelloTemplates.xls] has been resolved to

[file:<...>/rules/include/HelloTemplates.xls]

ExternalRules ExternalSummerGreeting template defineGreeting

0 11 Good Morning Summer

12 17 Good Afternoon Summer

18 21 Good Evening Summer

22 24 Good Night Summer

Greeting generated by rules 'ExternalSummerGreeting' for hour 16: Good

Afternoon Summer

ExternalRules ExternalWinterGreeting template defineGreeting

0 12 Good Morning Winter

13 16 Good Afternoon Winter

17 22 Good Evening Winter

23 24 Good Night

Greeting generated by rules 'ExternalWinterGreeting' for hour 16: Good

Afternoon Winter

ExternalRules ExternalGreetingHorizontal template

defineGreetingHorizontal

0 11 Good Morning

12 16 Good Afternoon

17 22 Good Evening

23 24 Good Night

Greeting generated by rules 'ExternalGreetingHorizontal' for hour 16:

Good Afternoon

ExternalRules ExternalGreetingReverseOrder template defineGreeting

Good Morning 0 11

Good Afternoon 12 17

Good Evening 18 21

Good Night 22 24

Greeting generated by rules 'ExternalGreetingReverseOrder' for hour 16:

Good Afternoon

External Rules from Database

OpenRules® allows you to keep your business rules in regular database tables

whose structures correspond to the columns (conditions and actions) of Excel's

templates based on which of the proper rule tables will be executed. This way

OpenRules, Inc. OpenRules® User Manual

119

the standard DB management tools can be used as your own rules management

environments.

The project "ExternalRulesFromDB", demonstrates how to define rules in a MS

Access database with regular tables (without Excel files saved as blobs). Because

we are using a standard JDBC interface, this project should work similarly with

other database management systems.

Step 1. Setting Up Database with Rule Tables

Use MS Access to create a new database, labeled "OpenRulesDB", and save it in

the subdirectory "DB" of the directory ExternalRulesFromDB. Using MS Access,

create the table "AllRules", which looks like this one:

RulesName TemplateName

greetingRules defineGreeting

salutationRules defineSalutation

This DB table has only two text columns "RulesName' and "TemplateName".

Now we have to create a simple DB table, "greetingRules", with a structure that

corresponds to our template "defineGreeting":

From To Greetings

0 11 Good

Morning

12 15 Good

Afternoon

16 21 Good

Evening

22 24 Good

Night

OpenRules, Inc. OpenRules® User Manual

120

Similarly, we will create a table, "salutationRules", that corresponds to our

template "defineSalutation":

Gender MaritalStatus AgeLessThan Salutation

Male

Mr.

Male Single 3 Little

Female Single

Ms.

Female Married

Mrs.

To make this database accessible from a Java program we have to setup the

proper data source. In Windows, we have to go to Control Panel, open

Administrative Tools, and select Data Sources (ODBC). Add a new User Data

Source with the following information:

Data Source Name: OpenRulesDB

Description: HelloExternalRulesFromDB

Click on the "Select" button and chose your just created OpenRulesDB.mdb file.

The above DB structure serves only as an example. You may organize your

database with rule tables differently with additional information about rule

tables including such attributes as "CreatedBy", "CreatedAt", "LastModifiedBy",

"LastModifiedAt", "Category", and many more attributes that accommodate your

particular needs.

Step 2. Defining a DB interface in Java

OpenRules, Inc. OpenRules® User Manual

121

To inform an OpenRulesEngine about external rules, you need to create an object

of the type ExternalRules and add to it all external RuleTables. Each instance of

the class RuleTable consists of:

- rule table name (String)

- template name (String)

- a grid of objects that represent the content of a rule tables (Object[][])

In our case, to create an instance of the class External Rules we should:

1) read all rows from the DB table "AllRules"

2) for every pair (RuleName;TemplateName) find the proper DB table and

create the required grid of the type Object[][] for all rows and all columns of

the DB table.

To accomplish this, we have created the class OpenRulesDB.java that contains

the method "readRuleTables()". This class is inherited from the standard

JDBC interface supported by the class DbUtil included in the OpenRules®

installation within the project "com.openrules.tools". Here is the code of

this method with comments:

public synchronized ExternalRules readRuleTables() {

 String mainTable = "AllRules";

 String columnWithRuleNames = "RulesName";

 String columnWithTemplateNames = "TemplateName";

 ExternalRules externalRules = new ExternalRules();

 try {

 String mainSQL = "SELECT * FROM " + mainTable;

 ResultSet mainRS = executeQuery(mainSQL);

 // FOR ALL RULE TABLES

 while(mainRS.next()) {

 String ruleTableName = mainRS.getString(columnWithRuleNames);

 String ruleTemplateName =

 mainRS.getString(columnWithTemplateNames);

 System.out.println("Rules " + ruleTableName + " template "

 + ruleTemplateName);

 try {

 int numberOfRows = count(ruleTableName);

 System.out.println("Total " + numberOfRows + " rows");

 String insideSQL = "SELECT * FROM " + ruleTableName;

 ResultSet rs = executeQuery(insideSQL);

 ResultSetMetaData md = rs.getMetaData();

 int numberOfColumns = md.getColumnCount();

OpenRules, Inc. OpenRules® User Manual

122

 System.out.println("Total " + numberOfColumns + " columns");

 Object[][] grid = new Object[numberOfRows][numberOfColumns];

 int rowIndex = 0;

 // FOR ALL TABLE's ROWS

 while (rs.next()) {

 Object[] row = new Object[numberOfColumns];

 // FOR ALL TABLE's COLUMNS

 for (int i=0; i< numberOfColumns; i++) {

 // Add grid element

 row[i] = rs.getObject(i+1);

 if (row[i] == null)

 row[i] = "";

 }

 grid[rowIndex++] = row;

 }

 rs.close();

 // ADD RULE TABLE

 externalRules.addRuleTable(ruleTableName,

 ruleTemplateName,grid);

 }

 catch(Exception e) {

 System.err.println("ERROR in the DB table " +

 ruleTableName + "\n" + e.toString());

 }

 }

 mainRS.close();

 }

 catch(Exception e) {

 System.err.println("ERROR in the DB table " +

 mainTable + "\n" + e.toString());

 }

 return externalRules;

 }

}

Step 3. Creating and Executing Rules from a Java Program

All other modules are typical for basic rule projects. The main Java file,

RunExternalRulesFromDB.java, is used to test the above rules:

import com.openrules.ruleengine.ExternalRules;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunExternalRulesFromDB {

 public static void main(String[] args) {

 // Read DB to create ExternalRules

 OpenRulesDB db = new OpenRulesDB();

 ExternalRules externalRules = db.readRuleTables();

 // Create OpenRulesEngine with external rules

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine =

 new OpenRulesEngine(fileName,externalRules);

 // Print external rules

 for (int i = 0; i < externalRules.getRuleTables().size(); i++)

 System.out.println(externalRules.getRuleTables().get(i));

OpenRules, Inc. OpenRules® User Manual

123

 // Create a test App with a test customer from HelloData.xls

 App app = (App) engine.run("getDefaultApplication");

 // Run OpenRulesEngine

 engine.run("generateGreeting",app);

 System.out.println("\nGenerated Greeting: " + app.getResult());

 }

}

Here we create an instance of OpenRulesEngine using the main Excel-file,

HelloCustomer.xls, and external rules received from the DB. The main file

HelloCustomer.xls defines the Environment as follows:

Environment

import.java hello.*

import.static com.openrules.tools.Methods

include ../include/HelloTemplates.xls

include ../include/HelloData.xls

This application uses two simple Java beans:

Customer.java:

String name;

String maritalStatus;

String gender;

int age;

App.java:

Customer customer;

String greeting;

String salutation;

String result;

The proper instance of Customer and App are created based on the Excel file,

HelloData.xls, using these data tables:

Data App apps

OpenRules, Inc. OpenRules® User Manual

124

customer.name customer.maritalStatus customer.gender customer.age

Customer Name Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method App getDefaultApplication()

return apps[0];

And finally, the engine will execute rules by calling the method "run":

engine.run("generateGreeting",app);

The proper method, "generateGreeting", is described in the file,

HelloCustomer.xl,s in the following table:

Method void generateGreeting(App app)

int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);

greetingRules(app, hour);

salutationRules(app, app.customer);

app.result = app.greeting + ", " + app.salutation + " " + app.customer.name + "!";

You may validate the entire rule project by double-clicking on the file

"compile.bat". Because the actual external rule tables, "greetingRules" and

"salutationRules", will become known only in run-time the proper OpenRules®

validator may produce errors (warnings) about unknown rule tables. You may

ignore these errors or you may explicitly inform OpenRules® about this fact by

adding an optional table to the file HelloCustomer.xls:

ExternalRules

greetingRules defineGreeting

OpenRules, Inc. OpenRules® User Manual

125

salutationRules defineSalutation

To run the project you may double-click on the file "run.bat". Here is an expected

output:

ExternalRules greetingRules template defineGreeting

0 11 Good Morning

12 15 Good Afternoon

16 21 Good Evening

22 24 Good Night

ExternalRules salutationRules template defineSalutation

Male Mr.

Male Single 3 Little

Female Single Ms.

Female Married Mrs.

Generated Greeting: Good Morning, Mrs. Robinson!

External Rules from XML

OpenRules® allows you to keep your business rules in XML files which

correspond to the columns (conditions and actions) of Excel's templates based

upon which the proper rule tables will be executed. While you may use any XML

processing software, this sample project demonstrates how to use a simple XML

interface provided by OpenRules®.

Step 1. Defining Rule Tables in XML

You may create a subdirectory "xml" in the directory "rules" and place different

xml-files into it. The first file, "GreetingRules.xml", defines a rule table with the

name "greetingRules" that will be based on the template with the name

"defineGreeting":

<?xml version="1.0" encoding="UTF-8"?>

<GreetingRules ruleTableName="greetingRules"

templateName="defineGreeting" type="Array of Rule(s)">

 <Rule from="0" to="11" greeting="Good Morning" />

 <Rule from="12" to="16" greeting="Good Afternoon" />

 <Rule from="17" to="21" greeting="Good Evening" />

 <Rule from="22" to="24" greeting="Good Night" />

</GreetingRules>

OpenRules, Inc. OpenRules® User Manual

126

Similarly, we create the second file, "SalutationRules.xml":

<?xml version="1.0" encoding="UTF-8"?>

<SalutationRules ruleTableName="salutationRules"

templateName="defineSalutation">

 <Rule

 gender="Female"

 maritalStatus="Married"

 salutation="Mrs."

 />

 <Rule

 gender="Female"

 maritalStatus="Single"

 salutation="Ms."

 />

 <Rule

 gender="Male"

 maritalStatus=""

 salutation="Mr."

 />

 <Rule

 gender="Male"

 maritalStatus="Single"

 maxAge="5"

 salutation="Little"

 />

</SalutationRules>

Please note that the last rule contains an extra attribute, "maxAge". OpenRules®

does not require any specification of the XML document and will dynamically

recognize its structure.

Step 2. Reading XML rules in Java

To inform an OpenRulesEngine about external rules, you need to create an object

of the type ExternalRules and add to it all external RuleTables. Each instance of

the class RuleTable consists of:

OpenRules, Inc. OpenRules® User Manual

127

- rule table name (String)

- template name (String)

- a grid of objects that represent the contents of a rule table (Object[][])

In this project, we will create an instance of the class External Rules directly in

the Excel method "getExternalRules":

Method ExternalRules createExternalRules()

ExternalRules externalRules = new ExternalRules();

addGreetingRules(externalRules);

addSalutationRules(externalRules);

return externalRules;

This method will execute two other methods, "addGreetingRules" and

"addSalutationRules", that will read the above xml-files and will add the proper

rule tables to the newly created ExternalRules object.

Before reading the xml files, we have to specify the proper xml schemas in the

Environment table placed in the main Excel file HelloXMLRules.xls:

Environment

import.java com.openrules.table.external.Objects

import.schema

file:rules/xml/GreetingRules.xml

file:rules/xml/SalutationRules.xml

OpenRules® dynamically defines the Java classes, GreetingRules and

SalutationRules, that will be used to read the proper XML files.

Now we may specify the method "addGreetingRules":

Method ExternalRules addGreetingRules(ExternalRules externalRules)

OpenRules, Inc. OpenRules® User Manual

128

GreetingRules greetings = GreetingRules.load("file:rules/xml/GreetingRules.xml");

Objects[] grid = new Objects[greetings.Rule.length];

for(int i = 0; i < greetings.Rule.length; ++i) {

 GreetingRules.Rule r = greetings.Rule[i];

 Objects row = new Objects(3);

 row.set(0,r.from); row.set(1,r.to); row.set(2,r.greeting);

 grid[i] = row;

}

externalRules.addRuleTable(greetings.ruleTableName, greetings.templateName, grid);

First we load the rules from the xml-file defining its relative path using the

standard OpenRules® URL notation:

 file:rules/xml/GreetingRules.xml

All objects specified in the file GreetingRules.xml becomes available to the Java

code through the object "greetings" of the dynamically defined type

GreetingRules. In particular, the object "greetings.Rule" points to the array of

objects of the dynamic type "Rule" as it was defined in the xml-file.

Next, we create a "grid" as an array of the predefined type Objects, which is used

by OpenRules® to simplify the handling of the multi-dimensional array. Looping

through all elements of the array greetings.Rules, we add new rows to the object

"grid". Data elements inside each rule are available through their names as

defined in the xml-file: r.from, r.to, and r.greeting.

Similarly, we specify the method "addSalutationRules":

Method ExternalRules addSalutationRules(ExternalRules externalRules)

SalutationRules salutations = SalutationRules.load("file:rules/xml/SalutationRules.xml");

Objects[] grid = new Objects[salutations.Rule.length];

for(int i = 0; i < salutations.Rule.length; ++i) {

 SalutationRules.Rule r = salutations.Rule[i];

 Objects row = new Objects(4);

 row.set(0,r.gender); row.set(1,r.maritalStatus); row.set(2,r.maxAge); row.set(3,r.salutation);

 grid[i] = row;

}

externalRules.addRuleTable(salutations.ruleTableName, salutations.templateName, grid);

OpenRules, Inc. OpenRules® User Manual

129

Step 3. Creating and Executing Rules from a Java Program

All other modules are typical for basic rule projects. The main Java file,

RunExternalRulesFromXML.java, is used to test the above rules:

import com.openrules.ruleengine.ExternalRules;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunExternalRulesFromXML {

 public static void main(String[] args) {
 // The first engine reads XML-based rules described at HelloXMLRules.xls

 String xlsMainData = "file:rules/main/HelloXMLRules.xls";

 OpenRulesEngine engine1 = new OpenRulesEngine(xlsMainData);

 ExternalRules externalRules =

 (ExternalRules) engine1.run("createExternalRules");
 // Print External Rules

 for (int i = 0; i < externalRules.getRuleTables().size(); i++)

 System.out.println(externalRules.getRuleTables().get(i));
 // The second engine reads test data and execute external rules
 // created by the first engine

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine2 =

 new OpenRulesEngine(fileName,externalRules);

 App app = (App) engine2.run("getDefaultApplication");

 engine2.run("generateGreeting",app);

 System.out.println("\nGenerated Greeting:");

 System.out.println(app.getResult());

 }

}

The first instance, “engine1", of the class OpenRulesEngine is based on the main

Excel-file, HelloXMLRules.xls. We execute the method, "createExternalRules", to

create external rules from the xml files. The second instance "engine2" of the

OpenRulesEngine uses the main Excel-file, HelloCustomer.xls, and the newly

created external rules.

The main file, HelloCustomer.xls, defines the Environment as follows:

Environment

import.java hello.*

import.static com.openrules.tools.Methods

include ../include/HelloTemplates.xls

OpenRules, Inc. OpenRules® User Manual

130

include ../include/HelloData.xls

This application uses two simple Java beans:

Customer.java:

String name;

String maritalStatus;

String gender;

int age;

App.java:

Customer customer;

String greeting;

String salutation;

String result;

The proper instance of Customer and App are created based on the Excel file,

HelloData.xls, using these data tables:

Data App apps

customer.name customer.maritalStatus customer.gender customer.age

Customer Name Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method App getDefaultApplication()

return apps[0];

And finally, engine2 will execute the rules by calling the method "run":

engine2.run("generateGreeting",app);

The proper method, "generateGreeting", is described in the file,

HelloCustomer.xls. in the following table:

OpenRules, Inc. OpenRules® User Manual

131

Method void generateGreeting(App app)

int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);

greetingRules(app, hour);

salutationRules(app, app.customer);

app.result = app.greeting + ", " + app.salutation + " " + app.customer.name + "!";

You may validate the entire rule project by double-clicking on the file

"compile.bat". Because the actual external rule tables, "greetingRules" and

"salutationRules", will become known only at run-time the proper OpenRules®

validator may produce errors (warnings) about unknown rule tables. You may

ignore these errors or you may explicitly inform OpenRules® about this fact by

adding an optional table to the file, HelloCustomer.xls:

ExternalRules

greetingRules defineGreeting

salutationRules defineSalutation

To run the project you may double-click on the file "run.bat". Here is an expected

output:

INITIALIZE OPENRULES ENGINE 5.3.0 (build 03092009) for

[file:rules/main/HelloXMLRules.xls]

IMPORT.JAVA=com.openrules.table.external.Objects

IMPORT.SCHEMA=file:rules/xml/GreetingRules.xml

IMPORT.SCHEMA=file:rules/xml/SalutationRules.xml

ExternalRules greetingRules template defineGreeting

0 11 Good Morning

12 16 Good Afternoon

17 21 Good Evening

22 24 Good Night

ExternalRules salutationRules template defineSalutation

Female Married null Mrs.

Female Single null Ms.

Male null Mr.

Male Single 5 Little

INITIALIZE OPENRULES ENGINE 5.3.0 (build 03092009) for

[file:rules/main/HelloCustomer.xls]

External rules table: greetingRules

External rules table: salutationRules

OpenRules, Inc. OpenRules® User Manual

132

IMPORT.JAVA=hello.*

IMPORT.JAVA=com.openrules.tools.Operator

IMPORT.STATIC=com.openrules.tools.Methods

INCLUDE=../include/HelloTemplates.xls

[../include/HelloTemplates.xls] has been resolved to

[file:<..>/ExternalRulesFromXML/rules/include/HelloTemplates.xls]

INCLUDE=../include/HelloData.xls

[../include/HelloData.xls] has been resolved to

[file:<..>/ExternalRulesFromXML/rules/include/HelloData.xls]

Generated Greeting:

Good Afternoon, Mrs. Robinson!

External Rules from Excel

OpenRules® allows you to keep your business rules in Excel data tables that

correspond to the columns (conditions and actions) of Excel's templates based

upon which the proper rule tables will be executed.

 Step 1. Defining Rule Tables in Excel Data Tables

We will create the main xls-file HelloRules.xls in the subdirectory "rules/mainl".

The first Data table defines "greetingRules" which will be based on the template

with the name "defineGreeting":

Data GreetingRule greetingRules

from to greeting

From To Greeting

0 11 Good Morning

12 17 Good Afternoon

18 22 Good Evening

23 24 Good Night

To access this table from java we define the following method:

Method GreetingRule[] getDefaultGreetingRules()

return greetingRules;

OpenRules, Inc. OpenRules® User Manual

133

This data table uses the datatype, GreetingRules, which is specified in the

proper Java class:

public class GreetingRule {

 int from;

 int to;

 String greeting;

 public int getFrom() {

 return from;

 }

 public void setFrom(int from) {

 this.from = from;

 }

 public int getTo() {

 return to;

 }

 public void setTo(int to) {

 this.to = to;

 }

 public String getGreeting() {

 return greeting;

 }

 public void setGreeting(String greeting) {

 this.greeting = greeting;

 }

}

Similarly, we create the second Data table "salutationRules":

Data SalutationRule salutationRules

gender maritalStatus maxAge salutation

Gender Marital Status Age Less Than Set Salutation

Female Married Mrs.

Female Single Ms.

Male Mr.

Male Single 10 Little

and the proper method:

Method SalutationRule[] getDefaultSalutationRules()

return salutationRules;

OpenRules, Inc. OpenRules® User Manual

134

This data table uses the datatype, SalutationRules, which is specified in the proper

Java class:

public class SalutationRule {

 String gender;

 String maritalStatus;

 String maxAge;

 String salutation;

 public String getGender() {

 return gender;

 }

 public void setGender(String gender) {

 this.gender = gender;

 }

 public String getMaritalStatus() {

 return maritalStatus;

 }

 public void setMaritalStatus(String maritalStatus) {

 this.maritalStatus = maritalStatus;

 }

 public String getMaxAge() {

 return maxAge;

 }

 public void setMaxAge(String maxAge) {

 this.maxAge = maxAge;

 }

 public String getSalutation() {

 return salutation;

 }

 public void setSalutation(String salutation) {

 this.salutation = salutation;

 }

}

Step 2. Creating and Executing External Rules from a Java Program

All other modules are typical for basic rule projects. The main Java file

RunExternalRulesFromXML.java is used to test the above rules:

import com.openrules.ruleengine.ExternalRules;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunExternalRulesFromExcel {

 public static void main(String[] args) {

 // The first engine

OpenRules, Inc. OpenRules® User Manual

135

 String xlsMainRules = "file:rules/main/HelloRules.xls";

 OpenRulesEngine engine1 = new OpenRulesEngine(xlsMainRules);

 GreetingRule[] greetingRules =

 (GreetingRule[])engine1.run("getDefaultGreetingRules");

 String[][] greetingGrid = new String[greetingRules.length][3];

 for (int i = 0; i < greetingRules.length; i++) {

 GreetingRule rule = greetingRules[i];

 greetingGrid[i] = new String[] {

 Integer.toString(rule.from),

 Integer.toString(rule.to),

 rule.greeting

 };

 }

 SalutationRule[] salutationRules =

 (SalutationRule[])engine1.run("getDefaultSalutationRules");

 String[][] salutationGrid =

 new String[salutationRules.length][4];

 for (int i = 0; i < salutationRules.length; i++) {

 SalutationRule rule = salutationRules[i];

 salutationGrid[i] = new String[] {

 rule.gender,

 rule.maritalStatus,

 rule.maxAge,

 rule.salutation

 };

 }

 // create external rules

 ExternalRules externalRules = new ExternalRules();

 externalRules.addRuleTable(

 "greetingRules", //table name

 "defineGreeting", //template name

 greetingGrid

);

 externalRules.addRuleTable(

 "salutationRules", //table name

 "defineSalutation", //template name

 salutationGrid

);

 // Display external rules

 for (int i = 0; i < externalRules.getRuleTables().size(); i++)

 System.out.println(externalRules.getRuleTables().get(i));

 // The second engine

 String fileName = "file:rules/main/HelloCustomer.xls";

 OpenRulesEngine engine2 =

 new OpenRulesEngine(fileName,externalRules);

 App app = (App) engine2.run("getDefaultApplication");

 engine2.run("generateGreeting",app);

 System.out.println("\nGenerated Greeting:");

 System.out.println(app.getResult());

 }

}

OpenRules, Inc. OpenRules® User Manual

136

The first instance, “engine1", of the class OpenRulesEngine, is based on the main

Excel-file, HelloRules.xls. We create the array, greetingRules, by executing the

method, "createExternalRules", to generate external rules from the xml files:

 GreetingRule[] greetingRules =

 (GreetingRule[])engine1.run("getDefaultGreetingRules");

Then we convert this array into a simple "greetingGrid" of the type

String[][]. Similarly, we create the grid, "salutationRules".

Next, we create an instance of ExternalRules and add two rule tables into it:

ExternalRules externalRules = new ExternalRules();

externalRules.addRuleTable(

 "greetingRules", //table name

 "defineGreeting", //template name

 greetingGrid

);

externalRules.addRuleTable(

 "salutationRules", //table name

 "defineSalutation", //template name

 salutationGrid

);

The second instance, "engine2," of the OpenRulesEngine uses the main Excel-

file, HelloCustomer.xl,s and the newly created external rules:

OpenRulesEngine engine2 =

 new OpenRulesEngine(fileName,externalRules);

The main file, HelloCustomer.xls, defines the Environment as follows:

Environment

import.java hello.*

import.static com.openrules.tools.Methods

OpenRules, Inc. OpenRules® User Manual

137

include ../include/HelloTemplates.xls

include ../include/HelloData.xls

This application uses two simple Java beans:

Customer.java:

String name;

String maritalStatus;

String gender;

int age;

App.java:

Customer customer;

String greeting;

String salutation;

String result;

The proper instances of Customer and App are created based on the Excel file,

HelloData.xls, using these data tables:

Data App apps

customer.name customer.maritalStatus customer.gender customer.age

Customer Name Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method App getDefaultApplication()

return apps[0];

And finally, engine2 will execute rules by calling the method "run":

OpenRules, Inc. OpenRules® User Manual

138

engine2.run("generateGreeting",app);

The proper method, "generateGreeting", is described in the file,

HelloCustomer.xls, in the following table:

Method void generateGreeting(App app)

int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);

greetingRules(app, hour);

salutationRules(app, app.customer);

app.result = app.greeting + ", " + app.salutation + " " + app.customer.name + "!";

You may validate the entire rule project by double-clicking on the file

"compile.bat". Because the actual external rule tables, "greetingRules" and

"salutationRules", will become known only at run-time the proper OpenRules®

Validator may produce errors (warnings) about unknown rule tables. You may

ignore these errors or you may explicitly inform OpenRules® about this fact by

adding an optional table to the file HelloCustomer.xls:

ExternalRules

greetingRules defineGreeting

salutationRules defineSalutation

To run the project you may double-click on the file "run.bat". Here is an expected

output:

INITIALIZE OPENRULES ENGINE 5.3.0 (build 03092009) for

[file:rules/main/HelloRules.xls]

IMPORT.JAVA=hello.*

ExternalRules greetingRules template defineGreeting

0 11 Good Morning

12 17 Good Afternoon

18 22 Good Evening

23 24 Good Night

ExternalRules salutationRules template defineSalutation

Female Married null Mrs.

Female Single null Ms.

Male null null Mr.

Male Single 10 Little

OpenRules, Inc. OpenRules® User Manual

139

INITIALIZE OPENRULES ENGINE 5.3.0 (build 03092009) for

[file:rules/main/HelloCustomer.xls]

External rules table: greetingRules

External rules table: salutationRules

IMPORT.JAVA=hello.*

IMPORT.JAVA=com.openrules.tools.Operator

IMPORT.STATIC=com.openrules.tools.Methods

INCLUDE=../include/HelloTemplates.xls

[../include/HelloTemplates.xls] has been resolved to

[file:<..>/ExternalRulesFromExcel/rules/include/HelloTemplates.xls]

INCLUDE=../include/HelloData.xls

[../include/HelloData.xls] has been resolved to

[file:<..>/ExternalRulesFromExcel/rules/include/HelloData.xls]

Generated Greeting:

Good Afternoon, Mrs. Robinson!

External Rules from GUI

OpenRules® allows you to keep your business rules in Excel data tables that

correspond to the columns (conditions and actions) of Excel's templates based on

which the proper rule tables will be executed.

Step 1. Defining A Graphical User Interface

This project illustrates how to create a web application that will consist of two

parts:

1) Data input and Rule Engine Execution

2) Online Rules Editing

The view "Generate Customer Greeting" will allow a user to enter basic

information about a customer and will generate a greeting like "Good Morning,

Mrs. Robinson!" based on the current time. Here is an example of the proper

view:

OpenRules, Inc. OpenRules® User Manual

140

By clicking on the button "Generate Greeting" a user could produce a new

greeting in accordance with the latest greeting and salutation rules. By clicking

on the button, "Greeting Rules", a user will be taken to a web-based rule editor to

modify the Greeting Rules:

By clicking on the button, "Salutation Rules", a user will be taken to a web-based

rule editor to modify the Salutation Rules:

OpenRules, Inc. OpenRules® User Manual

141

This editor shows how to make changes in the rule attributes; it also allows a

user to add rules by clicking on the hyperlink "Add Rule", or to delete rules by

clicking on the red cross.

Step 2. Defining Implementation Approach

We will build this web application using OpenRules® Forms by defining 3 Excel-

based layouts for each of the above views and using navigation logic described as

processing flow rules. We will deploy our application on the Tomcat server. As

usual, we will create the following files:

File Directory Purpose

HelloExternalRulesFromGUI.xls ./war/rules/main

Describes the Environment table

and the main method that will be

executed during every interaction

with a web client

HelloForms.xls ./war/rules/gui
Describes all screen layouts and

processing flow rules

OpenRules, Inc. OpenRules® User Manual

142

Dialog.xls ./war/rules/gui
The standard OpenRules® file

borrowed from the project

openrules.forms.lib

HelloData.xls ./war/rules/data Rule templates

index.jsp ./
The entry point to this JSP-based

web application

What makes this application special is the need to reinitialize the rule engine

that generates a greeting each time the greetings and/or salutations have been

modified. However, it is not necessary to reinitialize a rule engine associated

with an already opened OpenRulesSession with all layouts and related rule

tables. So, we need to carefully distributes greeting generation information and

GUI information between two different rule engines while making sure that re-

initialization of the first engine is done very quickly.

When we start an application for the first time, we want to display the default

rules (defined in an Excel file) and we also want to use the default data about a

customer (defined in another Excel file).

In this implementation, we will define a special Java class HelloManager whose

responsibilities will include these and other data management tasks. The

manager will support two rule engines:

1. A rule engine that reads the default greeting and salutation rules from

the file, war/rules/main/HelloDefaultRules.xls. Only this engine

will deal with greeting rules and rule templates presented in the

file, war/rules/logic/HelloTemplates.xls.

2. A rule engine associated with the OpenRulesSession that will handle

all GUI problems and will also read the default data about a customer

from the Excel file, “HelloData.xls”.

Thus, the entry point to our web application "index.jsp" will look as follows:

OpenRules, Inc. OpenRules® User Manual

143

<%@ page import="com.openrules.forms.gui.jsp.*" %>

<%@ page import="com.openrules.forms.*" %>

<%@ page import="hello.rules.*" %>

<%@ page import="com.openrules.ruleengine.*" %>

<%

String s_attr = "openrules_session";

OpenRulesSession openrules_session = (OpenRulesSession)

session.getAttribute(s_attr);

if (openrules_session == null) {

 // Create manager using data from HelloDefaultRules.xls

 String xlsMainRules =

"file:./webapps/HelloExternaRulesFromGUI/rules/main/HelloDefaultRule

s.xls";

 HelloManager man = new HelloManager(xlsMainRules);

 // Create OpenRulesSession using HelloExternaRulesFromGUI.xls

 String xlsMainForms =

"file:./webapps/HelloExternaRulesFromGUI/rules/main/HelloExternaRule

sFromGUI.xls";

 openrules_session = new OpenRulesSession(xlsMainForms);

 session.setAttribute(s_attr, openrules_session);

 System.out.println("NEW SESSION based on " + xlsMainForms);

 man.setFormsEngine(openrules_session.getOpenRulesEngine());

 // Read default rules and data from Excel files

 man.getDefaults();

 Dialog dialog = openrules_session.getDialog();

 dialog.put("manager",man);

}

%>

<HTML><HEAD><TITLE>OpenRules</TITLE></HEAD>

<body>

<%

 System.out.println("PROCESS REQUEST");

 openrules_session.processRequest(session, request, out);

%>

</body>

</HTML>

OpenRules, Inc. OpenRules® User Manual

144

The first rule engine will be created by the constructor

HelloManager(xlsMainRules). The second rule engine, automatically created by

the OpenRulesSession, will be set for HelloManager by the statement:

 man.setFormsEngine(openrules_session.getOpenRulesEngine());

The Environment table for the first rule engine is located in the file

HelloDefaultRules.xls:

Environment

import.java hello.rules.*

include ../logic/HelloTemplates.xls

The Environment table for the second rule engine is located in the file

HelloExternaRulesFromGUI.xls:

Environment

import.static com.openrules.tools.Methods

import.java hello.rules.*

include

../gui/Dialog.xls

../data/HelloData.xls

../gui/HelloForms.xls

The main execution loop is implemented by the following method:

Method TableLayout main(Dialog dialog)

OpenRules, Inc. OpenRules® User Manual

145

HelloManager man = (HelloManager) dialog().get("manager");

if (man == null)

 return fatalErrorLayout("HelloManager is not defined if index.jsp");

defineNextProcessingStep(man);

if (dialog().errors == 0)

{

 processingFlowRules(man);

 defineNextProcessingStep(man);

}

return mainLayout();

Step 3. Creating Supporting Java Classes

We define a Java package,, "hello.rules" with the following classes:

Customer (Customer.java)

 String name

 String gender

 String maritalStatus

 int age

App (App.java)

 Customer customer

 String greeting

 String salutation

GreetingRule (GreetingRule.java)

 int from

 int to

 String greeting

These classes are basic Java beans used inside rules and forms. To demonstrate

the use of a more complex rule editor, we will implement the rule table for

http://openrules.com/docs/xls/Customer.java
http://openrules.com/docs/xls/App.java
http://openrules.com/docs/xls/GreetingRule.java

OpenRules, Inc. OpenRules® User Manual

146

salutation rules as an OpenRules® dynamic table. To do this, we will define two

classes:

SalutationRule implements Checkable (SalutationRule.java)

 String gender

 String maritalStatus

 String maxAge

 String salutation

 HelloManager manager

and the class, SalutationRules, that extends DynamicTable (see

SalutationRules.java) by defining two methods:

public String getHeaderLayoutName() {

 return "salutationsTableHeader";

}

public String getRowLayoutName() {

 return "salutationsTableRow";

}

The main Java class is a placeholder for all other objects:

HelloManager (HelloManager.java)

 OpenRulesEngine ruleEngine

 OpenRulesEngine formsEngine

 GreetingRule[] greetingRules

 SalutationRule[] defaultSalutationRules

 SalutationRules salutationRules

 App app

 ExternalRules externalRules

http://openrules.com/docs/xls/SalutationRule.java
http://openrules.com/docs/xls/SalutationRules.java
http://openrules.com/docs/xls/HelloManager.java

OpenRules, Inc. OpenRules® User Manual

147

The object, "ruleEngine", is defined in the constructor for the object,

"formsEngine", defined in the index.jsp. When the application is initialized the

manager executes the method "getDefaults":

public void getDefaults() {

 greetingRules =

 (GreetingRule[])ruleEngine.run("getDefaultGreetingRules");

 defaultSalutationRules =

 (SalutationRule[])ruleEngine.run("getDefaultSalutationRules");

 salutationRules = new SalutationRules(formsEngine);

 for (int i = 0; i < defaultSalutationRules.length; i++) {

 SalutationRule rule = defaultSalutationRules[i];

 rule.setManager(this);

 salutationRules.addNewRow(rule);

 }

 createExternalRules();

 externalRules.setModified(true);

 ruleEngine.log("There is " +

 getExternalRules().getRuleTables().size()

 + " external tables");

 Customer customer =

 (Customer) formsEngine.run("getDefaultCustomer");

 app = new App();

 app.setCustomer(customer);

}

This method receives the greetingRules from the file HelloDefaultRules.xls using

the method "getDefaultGreetingRules". It receives the

defaultSalutationRules using the method "getDefaultSalutationRules" and then

creates salutationRules to support the proper dynamic graphical table. It then

creates an instance of the type ExternalRules, using this method:

public void createExternalRules() {

 String[][] greetingGrid = new String[greetingRules.length][3];

 for (int i = 0; i < greetingRules.length; i++) {

 GreetingRule rule = greetingRules[i];

 greetingGrid[i] = new String[] {

 Integer.toString(rule.from),

 Integer.toString(rule.to),

 rule.greeting

 };

 }

http://openrules.com/external_rules_from_gui.htm#index.jsp

OpenRules, Inc. OpenRules® User Manual

148

 String[][] salutationGrid =

 new String[salutationRules.getRows().size()][4];

 for (int i = 0; i < salutationRules.getRows().size(); i++) {

 SalutationRule rule =

 (SalutationRule)salutationRules.getRows().get(i);

 salutationGrid[i] = new String[] {

 rule.gender,

 rule.maritalStatus,

 rule.maxAge,

 rule.salutation

 };

 }

 externalRules = new ExternalRules();

 externalRules.addRuleTable(

 "greetingRules", //table name

 "defineGreeting", //template name

 greetingGrid);

 externalRules.addRuleTable(

 "salutationRules", //table name

 "defineSalutation", //template name

 salutationGrid);

 externalRules.setModified(false);

 ruleEngine.setExternalRules(externalRules);

}

 And finally, the manager creates the default application, "app", with a customer

received from the file HelloData.xls:

Data Customer customers

customer.name customer.maritalStatus customer.gender customer.age

Customer Name Marital Status Gender Age

Robinson Married Female 24

Smith Single Male 19

Method Customer getCustomer()

return customers[0];

Step 4. Creating Graphical Layouts in Excel

OpenRules, Inc. OpenRules® User Manual

149

All GUI realted forms and rules are described in the file HelloForms.xls. The

“mainLayout” specifies a general layout for all three layouts:

Layout TableLayout mainLayout()

properties

width 100%

cellspacing 4

cellpadding 2

border 1

style background-color:lightblue

dialog().nextLayout

 OpenRules, Inc.

The layout "GenerateGreeting":

Layout TableLayout generateGreetingLayout(App app, Customer c)

<h3>Generate Customer Greeting </h3>

currentTime()

"Name:" [c.name]

"Age:" [c.age]

"Gender:" [c.gender]["Male,Female"]

"Marital Status:" <F type="radio" >[c.maritalStatus]["Single,Married"] </F>

<hr/>

actionButton("Generate Greeting"); actionButton("Greeting Rules");
actionButton("Salutation

Rules");

"Generated Greeting:" <C> app.result </C>

There are two layouts to support "GreetingRules":

OpenRules, Inc. OpenRules® User Manual

150

Layout TableLayout greetingRulesLayout(HelloManager man)

<h3>Greeting Rules</h3>

Rules "Define Greeting"

greetingRulesTable(man);

actionButton("Save Changes"); actionButton("Salutation Rules"); actionButton("Generate Greeting");

Layout TableLayout greetingRulesTable(HelloManager man)

Hour From Hour To Greeting

[man.greetingRules[0].from] [man.greetingRules[0].to]
[man.greetingRules[0].greeting][getPossib

leGreetings()]

[man.greetingRules[1].from] [man.greetingRules[1].to]
[man.greetingRules[1].greeting][getPossib

leGreetings()]

[man.greetingRules[2].from] [man.greetingRules[2].to]
[man.greetingRules[2].greeting][getPossib

leGreetings()]

[man.greetingRules[3].from] [man.greetingRules[3].to]
[man.greetingRules[3].greeting][getPossib

leGreetings()]

This form has a fixed number of rules (rows), so a user may only change the values

of rules attributes. The layout, "SalutationRules", represents a dynamic table:

Layout TableLayout salutationRulesLayout(HelloManager man)

<h3> Salutation Rules</h3>

Rules "Define Salutation"

man.salutationRules.createTable();

actionHyperlink("Add Rule");

actionButton("Save

Changes");
actionButton("Greeting Rules");

actionButton("Generate

Greeting");

Layout TableLayout salutationsTableHeader()

OpenRules, Inc. OpenRules® User Manual

151

Gender
Marital

Status

Age Less

Than
Salutation Delete

Layout TableLayout salutationsTableRow(SalutationRule rule)

[rule.gender]

["Male,Female"]

[rule.maritalStatus]

["Married,Single"]
[rule.maxAge]

[rule.salutation]

[getPossibleSalutations()]

deleteRuleButton

(rule);

Layout TableLayout deleteRuleButton(SalutationRule rule)

<F type="image" src="../openrules.forms.lib/images/delete.png">

 [][] [rule.manager.salutationRules.deleteRow(rule); dialog().setLastAction("Delete Rule")]

</F>

Here is the rule table that specifies processing flow:

Rules void processingFlowRules(HelloManager man)

IF

Current Step is

AND

Action is

THEN

Execute Code

AND

Go To The Step

 Init GenerateGreeting

GenerateGreeting { man.cleanUp(); } GenerateGreeting

GenerateGreeting Generate Greeting { man.generateGreeting(); } GenerateGreeting

GenerateGreeting Greeting Rules GreetingRules

GenerateGreeting Salutation Rules SalutationRules

GreetingRules Save Changes { man.updateRules(); } GreetingRules

GreetingRules Salutation Rules SalutationRules

GreetingRules Generate Greeting GenerateGreeting

SalutationRules Save Changes { man.updateRules(); } SalutationRules

SalutationRules Add Rule { man.addSalutationRule(); } SalutationRules

SalutationRules Delete Rule SalutationRules

SalutationRules Greeting Rules GreetingRules

SalutationRules Generate Greeting GenerateGreeting

OpenRules, Inc. OpenRules® User Manual

152

As you can see, the action "Save Changes" leads to the execution of the

manager's method "updateRules":

public void updateRules() {

 createExternalRules();

 getExternalRules().setModified(true);

 showRules();

}

This method will create a new instance of the external rules, (based on the latest

changes introduced by the rule editor), and it will mark the external rules as

"modified", which will force a rule engine to reinitialize itself before the next run

of the method "generateGreeting":

public void generateGreeting() {

 ruleEngine.run("greetingRules",app);

 ruleEngine.run("salutationRules",app);

}

Step 5. Deploying and Executing the Web Application

To deploy this web application on the Tomcat server specified in the

file build.properties, it is enough to double-click on deploy.bat. To start the

application make sure that your Tomcat is up and running and double-click

on run.bat.

OPENRULES® PROJECTS

Pre-Requisites

OpenRules® requires the following software:

- Java SE JDK 1.5 or higher

- Apache Ant 1.6 or higher

- MS Excel or OpenOffice or Google Docs (for rules and forms editing only)

- Eclipse SDK (optional, for complex project management only)

Sample Projects

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://office.microsoft.com/home/
http://download.openoffice.org/1.1.1/index.html
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=http://spreadsheets.google.com/ccc?new
http://www.eclipse.org/downloads/

OpenRules, Inc. OpenRules® User Manual

153

The complete OpenRules® installation includes the following workspaces:

openrules.decisions - decision models projects

openrules.rules - various rules projects
openrules.dialog – rules-based web questionnaires
openrules.web - rules-based web applications & web services
openrules.solver - constraint-based applications.

Each project has its own subdirectory, e.g. "DecisionHello". OpenRules
®
 libraries

and related templates are located in the main configuration project,

“openrules.config”, included in each workspace. A detailed description of the

sample projects is provided in the Installation Guide.

Main Configuration Project

OpenRules® provides a set of libraries (jar-files) and Excel-based templates in the

folder “openrules.config” to support different projects.

Supporting Libraries

All OpenRules® jar-files are included in the folder, “openrules.config/lib”. For the

decision management projects you need at least the following jars:

 openrules.all.jar

 poi-3.6-20091214.jar

 commons-logging-1.1.jar (or higher)

 commons-logging-api-1.1.jar (or higher)

 commons-lang-2.3.jar (or higher)

 log4j-1.2.15.jar (or higher)

 commons-beanutils.jar (or higher)

http://openrules.com/downloads/protected/build/openrules_6.0.1.web.zip
http://openrules.com/downloads/protected/build/openrules_6.0.1.solver.zip
http://openrules.com/pdf/OpenRulesInstallationGuide.pdf

OpenRules, Inc. OpenRules® User Manual

154

If you use supporting libraries with convenience Operators, methods like “out”,

and a simple JDBC interface you will also need

 com.openrules.tools.jar

If you use the JSR-94 interface you will also need

 com.openrules.jsr94.jar

If you use external rules from a database you will also need

 openrules.db.jar

 openrules.dbv.jar

 derby.jar

 commons-cli-1.1.jar.

Different workspaces like “openrules.decisions”, “openrules.rules”, etc.

include the proper versions of the folder “openrules.config”.

Predefined Types and Templates

The Excel-based templates that support the Decision Model included in the

folder, “openrules.config”:

 DecisionTempaltes.xls

 RuleFamilyExecuteTemplates.xls

 RuleFamilyValidateTemplates.xls

 RuleFamily1ExecuteTemplates.xls

 RuleFamily2ExecuteTemplates.xls

Sample decision projects include Excel tables of the type “Environment” that

usually refer to “../../../openrules.config/DecisonTemplates.xls”.

You may move all templates to another location and simply modify this reference

making it relative to your main xls-file.

OpenRules, Inc. OpenRules® User Manual

155

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com.

mailto:support@openrules.com

