
OpenRules, Inc.

www.openrules.com

May-2014

OPENRULES
®

Open Source Business
Decision Management System

Release 6.3

Web Services

http://www.openrules.com/

OpenRules, Inc. OpenRules Web Services

2

TABLE OF CONTENTS

Table of Contents .. 1

Introduction .. 3

Environment ... 3

Building Web Service: Project “DecisionHelloWSCustomer” ...4

Testing Web Service: Project “DecisionHelloWSCustomerClient” ...7

More Rule Service Examples .. 10

Technical Support ... 10

OpenRules, Inc. OpenRules Web Services

3

INTRODUCTION

OpenRules® is as an open source Business Decision Management System

(BDMS) with proven records of delivering and maintaining reliable decision

support software. The detailed description of OpenRules® can be found in the

User Manual.

If your system is based on the Service-oriented architecture, you will probably

prefer to incorporate your business rules in a special type of decision services.

Such services should be loosely coupled and easily pluggable into your decision

making processes. With OpenRules you define and maintain your business rules

using a combination of Excel, Java, and Eclipse. You may test your rules as a

stand-alone application or execute them locally using a simple Java API.

However, when you are ready to integrate your business rules into an enterprise

level application, OpenRules provides a "push-button" mechanism for

deployment of business rules as Web Services.

This manual is devoted to creation of OpenRules®-based web services. A simple

example demonstrates how to create a decision and deploy it as a web service

and how to create a client that can utilize this service. The standard OpenRules®

installation comes with several samples of rules-based web services.

ENVIRONMENT

If you know how to deploy a Java program as a web service, you should have no

problems to deploy an OpenRules®-based project as well. Usually OpenRules

projects can be invoked using Java API defined by the standard classes

OpenRulesEngine or Decision – read about OpenRules API more in the User

Manual. Such projects usually utilize a rule repository that can be accessed

using standard URL protocols such as “file:”, “classpath:”, “ftp:”, “http:”, etc.

When a Java program that uses such repositories is deployed as a web service,

http://www.openrules.com/
http://openrules.com/pdf/OpenRulesUserManual.pdf
http://openrules.com/architecture_soa.htm
http://openrules.com/pdf/OpenRulesUserManual.pdf
http://openrules.com/pdf/OpenRulesUserManual.pdf

OpenRules, Inc. OpenRules Web Services

4

you just have to make sure that this service still may access the same rule

repository.

In the example below, we will use the following open source tools:

 Apache Tomcat as a deployment server

 Apache Axis 1.4 (not Axis 2) as a reliable and stable base on which to

implement Java Web services. If you have problems to find Axis 1.4 you

may download it from it http://openrules.com/downloads/my/axis-1_4.zip - it

is an exact copy of the Apache installation.

The deployment properties are usually described in the file “build.properties”

and should correspond to your Tomcat and Axis installations. Here is an example

of the build properties:

deployment properties
appserver.home=C:/apache-tomcat-6.0
deploy.path=${appserver.home}/webapps
tomcat.manager.url=http://localhost:8080/manager
tomcat.manager.username=tomcat
tomcat.manager.password=tomcat

axis.lib=C:/axis-1_4/lib

Building Web Service: Project “DecisionHelloWSCustomer”

The standard OpenRules® installation comes with the basic (not a web service)

project “DecisionHelloJava” that shows how to invoke an Excel-based decision

from a Java program. This project does the following:

- Creates a customer as an instance of the Java class Customer

- Creates a response as an instance of the Java class Response

- Creates and executes a decision that is based on the customer’s attributes

such as gender, marital status, and age is supposed to generate a response

that contains a greeting like “Good Afternoon, Mrs. Robinson!”

The rules used by this decision are located in Excel files starting with

“file:rules/main/Decision.xls”.

http://tomcat.apache.org/
http://axis.apache.org/axis/
http://openrules.com/downloads/my/axis-1_4.zip

OpenRules, Inc. OpenRules Web Services

5

Our objective is to deploy the same decision as a web service on Tomcat using

Apache Axis. So, we will create a new project “DecisionHelloWSCustomer” using

exactly the same Excel-based rules and Java classes Customer and Response.

After copying the project folder “DecisionHelloJava” to the new folder

“DecisionHelloWSCustomer”, we will create a new sub-folder “war” that will be a

placeholder for all files that constitute a future war-file

“DecisionHelloWSCustomer.war” – the main deployment objective. Its name also

defined in the file “build.properties” as the property “war.name”.

We will move the folder “rules” with all rules to “war/rules” without any changes.

In the source folder “src” we will create a Java package

“com.openrules.examples” and will move the same Java classes Customer and

Response to this package.

Now we need to add a very simple new class “DecisionHelloWSCustomer” to this

package. It will serve as a launcher for our future web service. Below is its code:

package com.openrules.examples;

import com.openrules.ruleengine.Decision;

public class DecisionHelloWSCustomer {

 static Decision decision;

 static String mainExcelFile =
"file:./webapps/DecisionHelloWSCustomer/rules/main/DecisionHelloWSCustomer.xls";

 static String decisionName = "DetermineCustomerGreeting";

 public DecisionHelloWSCustomer() {
 init();
 }

 public Response hello(Customer customer, Response response) {
 decision.put("customer", customer);
 decision.put("response", response);
 decision.execute();
 return response;
 }

OpenRules, Inc. OpenRules Web Services

6

 static boolean initialized = false;

 static synchronized protected void init() {
 if (initialized)
 return;

 decision = new Decision(decisionName, mainExcelFile);

 initialized = true;
 }
}

During the first invocation of the web service, an instance of this class will be

created with a static object Decision that is based on the rule repository defined

by the main Excel file

 "file:./webapps/DecisionHelloWSCustomer/rules/main/DecisionHelloWSCustomer.xls"

This path points to a relative location inside Tomcat server into which our web

service will be deployed. A user may choose any other location using different

URL protocols.

The method

 Response hello(Customer customer, Response response)

specifies a signature for our web service that will take a customer and a response

as parameters and after the processing will return a modified response.

The folder “war/WEB-INF” contains the folder “classes” in which all binaries will

be moved. To complete our configuration we need to add a standard Axis 1.4

configuration file “service-config.wsdd” to the folder “war/WEB-INF”. A

template for this file comes with Axis 1.4 and you should only add several lines

specific for you web service. In our case we added the following lines:

<!-- ************************ your service definition *********************
***************************** read axis docs before changing it ******* -->

 <service name="DecisionHelloWSCustomer" provider="java:RPC">
 <parameter name="className"
value="com.openrules.examples.DecisionHelloWSCustomer"/>
 <parameter name="allowedMethods" value="hello"/>

OpenRules, Inc. OpenRules Web Services

7

 <beanMapping qname="myNS:Customer" xmlns:myNS="urn:com.openrules.examples"
 languageSpecificType="java:com.openrules.examples.Customer"/>
 <beanMapping qname="myNS:Response" xmlns:myNS="urn:com.openrules.examples"
 languageSpecificType="java:com.openrules.examples.Response"/>
 </service>

<!-- ******************* end of your service definition ************* -->

The tag “<service” defines the name "DecisionHelloWSCustomer" of our web service.

The parameter “className” points to our class DecisionHelloWSCustomer with one

allowed method “hello”. We also need to define “beanMapping” tags to associate

the concepts Customer and Response with our Java classes Customer and

Response located in the package “com.openrules.examples”.

We may run “build.bat” to generate a war-file “DecisionHelloWSCustomer.war”

and to check that there are no syntax errors. Then we may run “deploy.bat” to

copy this war to the proper Tomcat’s “webapps” directory.

Now we are ready start Tomcat that will expand this war file to a ready to go

subfolder “webapps/ DecisionHelloWSCustomer”. To validate if our web service

was correctly generated, open “run.html” with any Internet browser. It should

show a generated WSDL file located at this address:

Testing Web Service: Project “DecisionHelloWSCustomerClient”

We will create a special test project “DecisionHelloWSCustomerClient” to test

the web service described above. All supporting Java classes for this test project

can be automatically generated utilizing Axis 1.4. The file “build.properties”

describes the configuration parameters:

axis.lib=C:/axis-1_4/lib

local.wsdl=http://localhost:8080/DecisionHelloWSCustomer/services/DecisionHelloWSCustomer

generated.dir=gen

client.classname=examples.openrules.com.DecisionHelloWSCustomerClient

Here is a brief description of these parameters:

OpenRules, Inc. OpenRules Web Services

8

- axis.lib points to the folder that contains standard Axis jar-files

- local.wsdl points to URL of our web service

- generated.dir is the name of source folder in which all generated Java

classes will be saved

- client.classname points to the main Java class that will be used for

testing. Note that it the package name “examples.openrules.com” is a

reversed name of the initial package “com.openrules.examples”.

To generate all supporting Java classes, make sure that your Tomcat server with

the deployed web service (described by local.wsdl) is up and running. Double-

click on “generate.axis.clien.bat”. It will read our WSDL file from the running

Tomcat and will generate a Java package “examples.openrules.com” with the

following classes:

- DecisionHelloWSCustomer

- DecisionHelloWSCustomerService

- DecisionHelloWSCustomerServiceLocator

- DecisionHelloWSCustomerSoapBindingStub

- Customer

- Response.

Now we need to manually create the main test class

DecisionHelloWSCustomerClient that is based on these generated classes. To

make sure that it is not being overwritten during re-generation, we will put this

class in a different source folder “src” but in the package with the same name

“examples.openrules.com”. Here is its code:

public class DecisionHelloWSCustomerClient {

 public static void main(String[] args) throws Exception {
 new DecisionHelloWSCustomerClient().testHello();
 }

 public void testHello() throws Exception {
 DecisionHelloWSCustomerSoapBindingStub binding;
 try {
 binding = (DecisionHelloWSCustomerSoapBindingStub)
 new DecisionHelloWSCustomerServiceLocator()
 .getDecisionHelloWSCustomer();

OpenRules, Inc. OpenRules Web Services

9

 } catch (ServiceException jre) {
 if (jre.getLinkedCause() != null)
 jre.getLinkedCause().printStackTrace();
 throw new
 Exception("JAX-RPC ServiceException caught: " + jre);
 }

 // Time out after a minute
 binding.setTimeout(60000);

 // Test operation
 Customer customer = new Customer();
 customer.setName("Robinson");
 customer.setAge(5);
 customer.setGender("Male");
 customer.setMaritalStatus("Single");
 customer.setHour(16);
 Response response = new Response();
 response = binding.hello(customer, response);
 System.out.println("greeting: " + response.getGreeting()
 + " salutation: " + response.getSalutation());
 System.out.println(response.getResult());
 }

}

In the method testHello() we create a “binding” as an instance of the generated

class DecisionHelloWSCustomerSoapBindingStub. Then we create test instances

of the classes “Customer” and “Response”. Then we execute our web service for

this customer and response using the code

 response = binding.hello(customer, response);

After executing our rules-based decision it returns an object response that

already contains a greeting and a salutation for this customer.

Note. If you receive an error that state that the file

“file:./webapps/DecisionHelloWSCustomer/rules/main/DecisionHelloWSCustomer.xls”

is not found, you may want to go back to your web service and add an additional

“.” to the definition of your main Excel file (e.g. “file:../webapps/..”). It depends

on the way you start your Tomcat (as a service or not). Of course, then you

should regenerate your web service, restart Tomcat, and try again.

OpenRules, Inc. OpenRules Web Services

10

MORE RULE SERVICE EXAMPLES

The standard OpenRules® installation comes with several more samples of rules-

based web services. The workspace “openrules.web” include in the complete

version, contains two additional projects “HelloWS” and “HelloWSCustomer”.

They are based not on Decision but rather on basic rule projects that are invoke

using the OpenRulesEngine. Additionally these projects demonstrate how to

automatically generate the main web service files by defining additional

generation properties in the file “build.properties”. These projects come with

readme-files that describe how they are organized and can be built.

TECHNICAL SUPPORT
Direct all your technical questions to support@openrules.com or to this

Discussion Group.

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

