
OpenRules, Inc.

www.openrules.com

June-2012

OPENRULES
®

Open Source Business
Decision Management System

Release 6.2.1

Database Integration

http://www.openrules.com/

OpenRules, Inc. OpenRules Database Integration

2

TABLE OF CONTENTS

Introduction .. 3

Accessing Data Located in Database ... 3

Simple DB Access Library ..3

Example "HelloCustomerDB" with DB-based Customers ..4

Example "DecisionPatientTherapyDB" with DB-based Patients ..6

Creating and Maintaining Rules in Database ... 7

Simple DB-based Rule Repository ..7

Database Structure... 8

Example "HelloJavaDB" with rules inside Apache Derby DB 8

Database Configuration File "db.properties" ... 10

Simple Database Administration Interface .. 11

Example "RulesRepositoryDB" with rules inside Java Derby DB................................ 13

Pure DB-based Rule Repository (no Excel) ... 16

Example "RulesRepositoryPureDB" ... 16

Main Java Launcher .. 17

Defining Database Properties .. 18

Special OpenRulesEngine Constructor ... 19

Changes in the Main.xls file ... 19

Database Administration Interface .. 20

DB-based Rules Repository with Version Control ... 21

Database Structure... 21

Repository Versioning Concept .. 22

Example "RulesRepositoryDBV" with rules inside Apache Derby 23

Maintaining Multiple Repository Versions .. 29

Database Administration Interface .. 33

Custom DB Protocols .. 35

Using External Rules to Access Custom Rule Repositories ... 35

Supporting Jars and Projects ... 35

Technical Support ... 36

OpenRules, Inc. OpenRules Database Integration

3

INTRODUCTION

OpenRules® is as an open source Business Decision Management System

(BDMS) with proven records of delivering and maintaining reliable decision

support software. The detailed description of OpenRules® can be found in the

User Manual.

This manual is devoted to an integration of OpenRules® with relational

databases. There are two aspects of such integration:

1. Accessing data located in a database

2. Saving and maintaining rules in a database as Blob objects

3. Using External Rules to access custom rule repositories.

The standard OpenRules® installation comes with sample projects that explain

how to use access database and use DB-protocols to create and maintain

business rules.

ACCESSING DATA LOCATED IN DATABASE

You may use any 3rd party tools to access data from a database and use it to

create Java objects that will be processed by OpenRulesEngine or Decisions. At

the same time, OpenRules® provides simple JDBC-based interfaces for accessing

relational databases.

Simple DB Access Library

The standard OpenRules® installation comes with the library

“com.openrules.tools.jar” that contains different convenience Java classes. In

particular, it include such classes as Database, DatabaseIterator, and DBUtil

that utilize the standard JDBC interface. The sources of the proper Java classes

are handily available as a project “com.openrules.tools”.

http://www.openrules.com/
http://openrules.com/pdf/OpenRulesUserManual.pdf

OpenRules, Inc. OpenRules Database Integration

4

OpenRules® provide a convenience Java class DatabaseIterator that allows you to

iterate through any table of a relational database. You may use standard Data

Source configuration facilities to define a data source with the name “dbName”

that point to a concrete database created using MS Access, MS SQL, or Oracle.

Assuming that this database includes a table with the name “tableName”, you

should be able to iterator through this table using the following pseudo-code:

 DatabaseIterator iter = new DatabaseIterator(dbName, tableName);
 while (iter.hasNext()) {
 DynaBean bean = iter.next();
 // Create an object from a data record
 MyObject object = new MyObject();
 object.setAttr1((String) bean.get("attr1 name"));

 Double attr2 = (Double) bean.get("attr2 name");
 object.setAttr2(attr2.doubleValue());
 …

 // execute OpenRulesEngine or Decision for this object
 }
 iter.close();

DatabaseIterator utilizes Apache Commons BeanUtils. We will demonstrate the

use of DatabaseIterator in the example below.

Example "HelloCustomerDB" with DB-based Customers

This example included in the workspace “openrules.rules” demonstrates how to

read customers from a database and process them with an instance of

OpenRulesEngine. MS Access comes with a standard database

“DBStudents.accdb” containing basic information about students. We consider

students as our customers.

First, we will make this database known to our application by adding the proper

data source. To do this in MS Windows we need to open a Control Panel, select

Administrative Tools, and then “Set up data sources (ODBC)”. It will open

“ODBC Data Source Administrator”. Select the tab “System DSN” and click on

“Add”. You will see the following dialog:

http://commons.apache.org/beanutils/

OpenRules, Inc. OpenRules Database Integration

5

Select “Microsoft Access Driver (*mdb,*accdb)” and click on “Finish”.

Note. If you have problems to find Microsoft Access Driver, read

http://goo.gl/w4vNo or http://msdn.microsoft.com/en-

us/library/windows/desktop/ms712362(v=vs.85).aspx.

In the next dialog enter Data Source Name “HelloStudents”, then any

description, and click on “Select” to select already created file

“DBStudents.accdb”. Then click “OK”. Now we should be able to read the table

“Students” it from a Java program using a JDBC interface.

We will reuse the same Java classes Customer and Response that were used in

the basic OpenRules example “HelloJava”. To map only necessary fields from a

database to our class we will use dynamic beans:

 public static void main(String[] args) {
 String fileName = "file:rules/main/HelloCustomer.xls";
 String methodName = "helloCustomer";

 OpenRulesEngine engine = new OpenRulesEngine(fileName);
 String dbName = "HelloStudents";
 String tableName = "Students";

http://goo.gl/w4vNo
http://msdn.microsoft.com/en-us/library/windows/desktop/ms712362(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms712362(v=vs.85).aspx

OpenRules, Inc. OpenRules Database Integration

6

 DatabaseIterator iter = new DatabaseIterator(dbName, tableName);
 while (iter.hasNext()) {
 DynaBean bean = iter.next();
 // Create a customer from a data record
 Customer customer = new Customer();
 String first = (String)bean.get("first name");
 String last = (String)bean.get("last name");
 String gender = (String)bean.get("gender");
 String maritalStatus = (String)bean.get("marital status");
 customer.setName(first + " " + last);
 customer.setGender(gender);
 customer.setMaritalStatus(maritalStatus);

 Response response = new Response();
 Object[] objects = new Object[] { customer, response };
 engine.run(methodName,objects);
 System.out.println("From Java : " +
 response.getMap().get("greeting") + ", " +
 response.getMap().get("salutation") +
 customer.getName() + "!"
);
 }
 System.out.print("\nRead and processed total " + n + " records");
 iter.close();
 }

This program will read every student from the table “Students”, convert it to an

instance of Customer, and run it through the proper greeting rules. Note that the

engine is created only once and processes all customers.

Example "DecisionPatientTherapyDB" with DB-based Patients

This example included in the workspace “openrules.decision” demonstrates how

to read customers from a database and process them with an instance of the

class Decision. It utilizes the same database this time using students as patients.

We will define the class PatientIterator as a subclass of the class

DatabaseIterator that reads and converts students to patients. Instead of

OpenRulesEngien this example uses decisions. The xdetailed description of this

project can be found at

http://openrules.com/pdf/Tutorial.DecisionPatientTherapyDB.pdf.

http://openrules.com/pdf/Tutorial.DecisionPatientTherapyDB.pdf

OpenRules, Inc. OpenRules Database Integration

7

CREATING AND MAINTAINING RULES IN DATABASE

The key component of OpenRules® is an enterprise-level Rule Repository that

usually utilizes a popular spreadsheet mechanism to represent business rules

placed in regular Excel files. Along with rules repositories organized as a

hierarchy of Excel files, OpenRules® allows you to use standard relational

databases to keep and maintain your business rules. To do this, you may place

your Excel files with OpenRules® tables into any relational database as Blob

objects. OpenRules® provides a direct access to Excel files saved in a database

without necessity to download them into a file system. OpenRules® supports

several protocols that handle DB-based rules repositories:

 Simple DB protocol "db:" this protocol supports one table in which all

Excel files are saved as Blob objects with unique keys that usually correspond

to relative paths of these files in a file system. It supports a very simple

protocol "db:<filepath>" such as "db:/hello/rules/include/HelloRules.xls". The

provided example shows how to configure this protocol using one Excel-based

Environment table and a file “db.properties”.

 DB protocol "db:" without Excel the same “db:” protocol can be configured

without use of any external (not DB-based) configuration files.

 Versioning DB protocol "dbv:" this protocol additionally to the features

provided by the simple DB protocol allows a user to maintain different rules

versions and provides checkin/checkout facilities. It supports the

protocol"dbv://<repository>:<version>/<filepath>" such as

"db://rules:25/include/DiscountRules.xls".

 Custom DB protocols with any user-defined name. A user can customize

the standard OpenRules® protocols to take into consideration specifics of

their databases.

Simple DB-based Rule Repository

OpenRules® provides a simple protocol "db:<filepath>" that allows you to use

standard databases to keep and maintain your business rules. To do this, you

http://www.openrules.com/RuleRepository.htm

OpenRules, Inc. OpenRules Database Integration

8

may place your Excel files with tables into any relational database as Blob

objects (binary large objects). OpenRules® provides a direct access to Excel files

saved in a database without necessity to download them into a file system. This

protocol supports one database table in which all Excel files are saved as Blob

objects with unique keys that usually correspond to relative paths of these files

in a file system.

Database Structure

The "db:<filepath>" protocol assumes that all Excel files are saved in one

database table called "dbstorage" with the following structure:

 name - a primary key up to 255 characters

 content - a BLOB object

For example, if your Excel files were initially located in the folder "rules/include/"

you may copy them to the database using keys such as

"/rules/include/FileName.xls". After that, you do not have to change a structure

of your OpenRules® Environment table - just use the property "include.path"

with the value "db:/rules/include/". All included Excel files that were described

in the property "include" as "<FileName.xls>" would be directly available to

OpenRulesEngine.

Example "HelloJavaDB" with rules inside Apache Derby DB

This example demonstrates how to convert a basic rules project "HelloJava" to

work with rules placed into the standard open source Java database known

as Apache Derby. This project is included into the standard OpenRules®

installation under the name "HelloJavaDB". It has exactly the same structure as

HelloJava - even the Java code was not changed. We have only added a new

folder "db" in which we created a Derby database as a placeholder for rules

previously kept in the folder "rules". The folder "db" initially contains only two

bat-files: db.bat and loadall.bat that are used to create and administer the

database from a command-line interface. Here what we did with HelloJava

http://db.apache.org/derby/

OpenRules, Inc. OpenRules Database Integration

9

project and what you may do with your own rule projects to move their

repositories to a database.

1. Eclipse project HelloJavaDB has one additional library in its Java Build

Path: it refers to derby.jar that we included in the updated

openrules.config/lib.

2. We created an instance of Derby database "dbstorage" inside the folder

"db". To do this, we launched a console window (command prompt),

navigated to the /db directory, and executed the following command:

 >db -i

3. We added a database configuration file “db.properties” into the folder

"rules/main" that already contains the main file HelloCustomer.xls.

4. This particular project contains only 3 Excel files:

1) rules/main/HelloCustomer.xls the main file for a rules engine to

start with. It contains only one Environment table

2) rules/include/HelloRules.xls: greeting and salutation rules

3) rules/include/HelloMethod.xls: a table with a method that calls the

rules from HelloRules.xls.

The main xls-file HelloCustomer.xls continues to be used outside the

database serving as an OpenRules® configuration file. To upload two

other Excel files to the database we executed the following commands:

>db -u /HelloRules.xls -f ../rules/include/HelloRules.xls

>db -u /HelloMethods.xls -f ../rules/include/HelloMethods.xls

Here "-u" stands for "upload", the string "/HelloRules.xls" is a database

key for the rules that were uploaded from the local file

"../rules/include/HelloRules.xls".

5. You always may check the content of your database by command:

>db -l "*"

In our case this command will display:

List for '*'

/HelloRules.xls

/HelloMethods.xls

OpenRules, Inc. OpenRules Database Integration

10

6. To inform OpenRulesEngine that now it should look rather to the

database than to a local file system, we only have to change slightly the

main file rules/main/HelloCustomer.xls. It used to contain the following

Environment table:

Environment

include.path ../include/

include
<HelloRules.xls>

<HelloMethods.xls>

import.java hello.*

import.static com.openrules.tools.Methods

7. The modified Environment table will look like here:

Environment

datasource classpath:db.properties

include.path db:/

include
<HelloMethods.xls>

<HelloRules.xls>

import.java hello.*

import.static com.openrules.tools.Methods

8. Please, note that we did not change the structure of the project that

potentially may involve a lot of changes. We only added a new data

source that is our database configuration file "db.properties" and changed

the property "include.path" that now is based on the protocol "db:". In

this case we expect that the file "db.properties" is located in the

classpath. However, we also could use any other standard protocol to

locate this file, for example "file:rules/main/db.properties".

9. Now, we can execute the rules directly from the database using the same

Java program RunHelloCustomer, for example by double-clicking on

run.bat.

Database Configuration File "db.properties"

The configuration file "db.properties" is used to define a concrete database

configuration. Its location is specified in the OpenRules® main xls-file inside an

Environment table using the property "datasource". Here is an example of the

db configuration file for the HelloJavaDB project:

OpenRules, Inc. OpenRules Database Integration

11

==
OpenRules Data Source Protocol Properties

openrules.protocol.name=db
openrules.protocol.class=com.openrules.db.DbDataSourceHandler

DB Access Properties

db.user=embedded
db.password=none
db.url=jdbc:derby:C:/_openrules/openrules.examples/HelloJavaDB/db/dbstorage;create=true
db.driver=org.apache.derby.jdbc.EmbeddedDriver
db.selectSql=select content from dbstorage where name = ?

Optional DB Administration Properties

db.statementfactory.class=com.openrules.jdbc.StatementFactoryDerbyEmbedded
db.createDDL=CREATE TABLE dbstorage (NAME VARCHAR(255) NOT NULL,CONTENT BLO

B,PRIMARY KEY(NAME))
db.insertSql=insert into dbstorage(name,content) values(?,?)
db.listSql=select name from dbstorage where name like ?
db.deleteSql=delete from dbstorage where name like ?
==

The property "openrules.protocol.name" defines the name of the simple protocol

provided by OpenRules® with its implementation class described by the property

"openrules.protocol.class". Both these properties could be customized.

To access the database we have to specify 5 properties:

1) db.user - a user name (here is "embedded" is the default name for Apache

Derby).

2) db.password - a user password

3) db.url - defines a physical location of the database. You should make sure that

this location corresponds to your file structure (!)

4) db.driver - defines a JDBC driver

5) db.selectSql - shows how the db protocol will access the database.

Other parameters are optional. However, if you use a database command-line

administration interface provided by OpenRules® (see examples above), then

these 5 properties should be present.

Simple Database Administration Interface

OpenRules, Inc. OpenRules Database Integration

12

You may use any DB administration interface to create a table "dbstorage" inside

your database and to upload Excel files into this table. However, for your

convenience OpenRules® provide a simple command-line interface for the DB

administration. Here is the list of the available commands and options:

Option "Initialize": -i or --init

Usage: db -i

This option initializes a data storage. Warning: existing data will be destroyed

Option "Upload File": -u or --up

Usage: db -u <key> -f <local-file-path>

This option uploads the content of <local-file-path> into the database

using the <key>. If <local-file-path> is a folder all files and subfolders

this folder will be uploaded by adding their relative paths to the <key>.

Example: db -u /insurance/policy/DriverDiscountRules.xls -f

../rules/insurance/policy/DriverDiscountRules.xls

Option "Upload Directory": -dir or ----from-dir

Usage: db -u <key> -dir <local-dir-path>

This option recursively uploads the entire content of the directory <local-dir-

path>

into the database using the <key>.

Example: db -u /hello/rules/include/ -f ../rules/include/

Option "Download": -d or --down

Usage: db -u <key>

This option downloads data from database using this <key>

Example: db -d /insurance/policy/DriverDiscountRules.xls -f

c:/temp/DriverDiscountRules.xls

This command will download file DriverDiscountRules.xls into the directory

c:/temp.

Option "Remove": -rm or --remove

OpenRules, Inc. OpenRules Database Integration

13

Usage: db -rm "<mask>"

This option removes data from database using this <mask>. The mask can

include

wildcards '*' and '?'

Example: db -rm "*" will remove all uploaded files from the database

Option "List": -l or --list

Usage: db -l

This option lists all keys in the storage. You may use a mask to list only

that satisfy the optional mask. The mask can include wildcards '*' and '?'.

Example: db -l "*" will display all uploaded files

Option "File": -f or --file

Usage: db -f <local-file-path> ...

This option is used with options -u and -d.

Option "Help": -h or --help

Usage: db -h

This option displays a list of all options.

Example "RulesRepositoryDB" with rules inside Java Derby DB

This example demonstrates how to convert a more complex rules hierarchy from

a file system to a database. We will take the directory "rules" from a standard

OpenRules® example "RulesRepository" as a basis and will convert it to the new

project "RulesRepositoryDB". Here are the major conversion steps.

1. Eclipse project RulesRepositoryDB has one additional library in its Java

Build Path: it refers to derby.jar that is included in the updated

openrules.config/lib.

2. Create an instance of Derby database "dbstorage" inside the folder "db". To

do this, we executed the following command from a system console (being inside

OpenRules, Inc. OpenRules Database Integration

14

the db directory):

 >db -i

3. Add a database configuration file db.properties into the folder "rules/main"

that already contains the main file Main.xls.

4. This project contains many Excel files:

rules/main/Main.xls the main file for a rules engine to start with. It contains

only the Environment table

rules/CategoryA/RulesA1.xls

rules/CategoryA/RulesA2.xls

rules/CategoryA1/RulesA1.xls

rules/CategoryA1/SubCategoryA1/RulesA11.xls

rules/CategoryA1/SubCategoryA1/RulesA12.xls

rules/CategoryB/RulesB1.xls

rules/CategoryB/RulesB2.xls

rules/Common/libA/libRulesX.xls

rules/Common/libA/libRulesY.xls

The main xls-file Main.xls will continue to be used outside the database serving

as a OpenRules® configuration file. To upload all other Excel files to the

database we may execute many command like this one:

>db -u /examples/RulesRepositoryDB/CategoryA/RulesA1.xls -f

../rules/CategoryA/RulesA1.xls

or alternatively we may execute only one command:

>db -u /examples/RulesRepositoryDB/rules -f ../rules

to copy all files and subfolder starting from ../rules folder into the database. All

files from the directory "../rules" will be uploaded. The proper keys will be

OpenRules, Inc. OpenRules Database Integration

15

created automatically. If now we enter the command:

>db -l "*"

it will display:

===

List for '*'

/examples/RulesRepositoryDB/rules/CategoryA/RulesA1.xls

/examples/RulesRepositoryDB/rules/CategoryA/RulesA2.xls

/examples/RulesRepositoryDB/rules/CategoryA/SubCategoryA1/RulesA11.xls

/examples/RulesRepositoryDB/rules/CategoryA/SubCategoryA1/RulesA12.xls

/examples/RulesRepositoryDB/rules/CategoryB/RulesB1.xls

/examples/RulesRepositoryDB/rules/CategoryB/RulesB2.xls

/examples/RulesRepositoryDB/rules/Common/libA/libRulesX.xls

/examples/RulesRepositoryDB/rules/Common/libA/libRulesY.xls

===

5. To inform OpenRulesEngine that now it should look rather to the database

than to a local file system, we only have to change slightly the main file

rules/main/Main.xls. It used to contain the following Environment table:

Environment

include.path ../

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

6. The modified Environment table will look like here:

Environment

datasource classpath:db.properties

include.path db:/examples/RulesRepositoryDB/rules/

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

OpenRules, Inc. OpenRules Database Integration

16

<CategoryB/RulesB2.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

7. The db configuration file rules/main/db.properties will be exactly the same

as above with one exception - a physical location of the database file:

db.url=jdbc:derby:C:/_openrules/openrules.examples/RulesRepositoryDB/db/db

storage;create=true

Make sure that you change this property to an absolute or relative path that

corresponds to your directory structure.

8. Now, we can execute the rules directly from the database by double-clicking

on compile.bat and run.bat.

Pure DB-based Rule Repository (no Excel)

In the previous example we still used two configuration files (Main.xls and

db.properties) to define a database configuration. However, OpenRules® allows a

user to exclude such configuration files and rely only on the database records. It

could be important when a user wants to use OpenRules® within its db-centric

environment, for example deploying rule services in OJVM (Java Virtual

Machine in the Oracle Database) that requires that all of its resources be

available on the Java class path.

Example "RulesRepositoryPureDB"

In the above example “RulesRepositoryDB” we used external (not DB-based)

configuration files:

http://openrules.com/docs/man_repositoryDB1.html#db.properties

OpenRules, Inc. OpenRules Database Integration

17

 The main xls-file “file: rules/main/Main.xls” to contains the Environment

table with a reference to the “datasource” like “classpath:db.properties”

 The text file “db.properties” that describes a database connection properties.

In this example “RulesRepositoryPureDB”, we demonstrate how to remove these

files.

Main Java Launcher

The previous example “RulesRepositoryDB” used the following Java launcher:

 public static void main(String[] args) {

 String fileName = "file:rules/main/Main.xls";
 OpenRulesEngine engine = new OpenRulesEngine(fileName);

 Appl appl = new Appl();
 Object[] objects = new Object[] { appl };
 engine.run("main",objects);

 }

Main.xls defined a data source as the “db.properties” file, that included an

connection URL as

 db.url=jdbc:derby:/OR/openrules.examples/RulesRepositoryDB/db/dbstorage

The new Java launcher will look like below:

 public static void main(String[] args) {

 String fileName =
 "db:/examples/RulesRepositoryDB/rules/main/Main.xls";
 Properties properties = OpenRulesEngine.getDbProperties();
 properties.setProperty(DaoOptions.CONNECT_URL,
 "jdbc:derby:/OR/openrules.examples/RulesRepositoryDB/db/dbstorage");
 OpenRulesEngine engine =
 new OpenRulesEngine(properties,fileName);

 Appl appl = new Appl();
 Object[] objects = new Object[] { appl };
 engine.run("main",objects);

 }

Please note that instead of the protocol “file:”

 String fileName = "file:rules/main/Main.xls";

now we use the protocol “db:”

OpenRules, Inc. OpenRules Database Integration

18

 String fileName =

 "db:/examples/RulesRepositoryDB/rules/main/Main.xls";

Defining Database Properties

OpenRules® (starting with the release 6.2.1) provides a Java API for setting

database properties. The static method

Properties properties = OpenRulesEngine.getDbProperties();

allows a user to get the default properties tuned for the Derby database. Here is

the list of the default properties:

Property Name Default Value

USER embedded

PASSWORD none

CONNECT_URL none

DRIVER org.apache.derby.jdbc.EmbeddedDriver

SELECT_SQL select content from dbstorage where name = ?

STATEMENT_FACTORY_CLASS com.openrules.jdbc.StatementFactoryDerbyEm

bedded

CREATE_DDL create table dbstorage (name varchar(255) not

null,content blob,primary key(name))

INSERT_SQL insert into dbstorage(name,content) values(?,?)

LIST_SQL select name from dbstorage where name like ?

DELETE_SQL delete from dbstorage where name like ?

All names of properties are static members of the standard public interface

DaoOptions. You may reuse (or redefine) these defaults but you always need to

specify the property DaoOptions.CONNECT_URLas it was done above:

 properties.setProperty(DaoOptions.CONNECT_URL,
 "jdbc:derby:/OR/openrules.examples/RulesRepositoryDB/db/dbstorage");

that point to the actual location of your database using a “jdbc:” protocol.

OpenRules, Inc. OpenRules Database Integration

19

Special OpenRulesEngine Constructor

OpenRules® (starting with the release 6.2.1) provides a special constructor

public OpenRulesEngine(Properties dbProperties,String fileName);

that creates an instance of the class OpenRulesEngine based on the

“dbProperties”. The parameter “filename” as usual points to the main xls-files

that in this case is expected to be located in a database as a Blob object, e.g.

 String fileName =
 "db:/examples/RulesRepositoryDB/rules/main/Main.xls";

The filename should start with the protocol “db:”. The proper “Main.xls” as

usual contains an Environment table that describes the rule project structure

with references to all other “include”-files and “import”-classes. However, it does

not contain a “datasource” that used to point to “db.properties” – they are already

defined.

If you want to use a decision project, you may create a rule engine as above, and

then create a decision as in the examples below:

 public static void main(String[] args) {

 String fileName =
 "db:/examples/RulesRepositoryDB/rules/main/Decision.xls";
 Properties properties = OpenRulesEngine.getDbProperties();
 properties.setProperty(DaoOptions.CONNECT_URL,
 "jdbc:derby:/OR/openrules.examples/RulesRepositoryDB/db/dbstorage");
 OpenRulesEngine engine =
 new OpenRulesEngine(properties,fileName);

 Decision decision = new Decision(“MyDecision”, engine);
 Appl appl = new Appl();
 Decision.put(“appl”,appl);
 decision.execute();

 }

Changes in the Main.xls file

OpenRules, Inc. OpenRules Database Integration

20

Previously the file Main.xls contained this Environment table:

Environment

datasource classpath:db.properties

include.path db:/examples/RulesRepositoryDB/rules/

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

The modified Environment table will look like here:

Environment

include.path ../

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

Please, note that we remove a pointer to not-needed anymore file “db.properties”

and only changed “include.path”. All additional rule repository tables (such as

Method “main” in the Main.xls remain unchanged.

Database Administration Interface

If you keep your rule repository completely in a database (as Blob objects) you

will probably rely on your own DB administration interface to upload Excel files

in your database. However, you still may use a simple, command-line DB

administration interface provided by OpenRules®. In the above example

“RulesRepositoryPureDB”, we used a sub-directory “db” copied from the example

“RulesRepositoryDB”. We still needed the file “db.properties” (saved in the

OpenRules, Inc. OpenRules Database Integration

21

rules/main) to replace a slightly modified Main.xls file to the new database using

commands:

>db -rm /examples/RulesRepositoryDB/main/Main.xls

>db -u /examples/RulesRepositoryDB/main/Main.xls -f ../rules/main/Main.xls

The only difference with a previous “db.properties” is that now the property

“db.url” points to a new physical location of our database:

db.url=jdbc:derby:/_SourceRepo/openrules.rules/RulesRepositoryPureDB/db/dbs

torage

You even do not have to change the path names for the all files saved in the

"dbstorage".

DB-based Rules Repository with Version Control

OpenRules® provide a protocol "dbv://<repository:version>/<filepath>" that

allows you to use standard databases to keep and maintain your business rules.

This protocol is similar to "db:<filepath>" but additionally provides version

control capabilities. This protocol assumes that you place your Excel files with

OpenRules® tables into any relational database as Blob objects (binary large

objects). OpenRules® provides a direct access to Excel files saved in a database

without necessity to download them into a file system. This protocol supports

one table in which all Excel files are saved as Blob objects with unique keys that

usually correspond to relative paths of these files in a file system. You may

check-in or check-out your Excel files in a way similar to standard version

control systems such as Subversion and tell OpenRules® engine which version of

rules saved in the database you want to use.

Database Structure

http://openrules.com/docs/man_repositoryDB1.html
http://subversion.tigris.org/

OpenRules, Inc. OpenRules Database Integration

22

The "dbv://<repository:version>/<filepath>" protocol assumes that all Excel

files are saved in one database table called "dbstorage" with the following

structure:

 revision - an integer, not null, a primary key

 name - a string up to 255 characters, not null

 author - a string up to 64 characters, not null

 comments - a CLOB object (large objects consisting of single-byte fixed-width

character data)

 content - a BLOB object, a placeholder for an Excel file

 deleted - a single character, not null, default is 'N'

 timestamp - a timestamp, not null, default is the current timestamp.

You may initialize a repository with your own name, say "rules" and start

checking in your Excel files into this repository.

Repository Versioning Concept

The "dbv:" protocol supports a simple check-in/check-out mechanism that in

general is similar to the Subversion check-in/check-out. Upon checking in, all

files in the database are uniquely identified by an automatically assigned

revision number and their names. When you check in a file that is already

checked-in the previous copy is not deleted and is still available under its own

revision number. The latest revision number becomes a current revision number

of the repository. It is always possible to get access to the different states of

repository by their revision numbers. For example,

 "dbv://rules:25/policy/Driver.xls"

provides an access to the file "/policy/Driver.xls" whose revision number is equal

or less than 25. Your OpenRules® Environment table may define the property

"include" with the value

 "dbv://rules:/policy/Driver.xls"

http://subversion.tigris.org/

OpenRules, Inc. OpenRules Database Integration

23

In this case when a version number is missing, OpenRulesEngine will pick up

the latest revision of the file with the name "/policy/Driver.xls".

Example "RulesRepositoryDBV" with rules inside Apache Derby

This example demonstrates how to convert a rules hierarchy from a file system

to a database. We will take the directory "rules" from a standard OpenRules®

example "RulesRepository" as a basis and will convert it to the new project

"RulesRepositoryDBV" with ability to use different rules revisions. This project

is included into the complete OpenRules® installation. Here are the conversion

steps.

1. Initially the project "RulesRepositoryDBV" has the same structure as the

project "RulesRepository". The Java code will not be changed. We will check-

in all rules from the folder "rules" into the standard open source Java

database known as Apache Derby. Add a new folder "db" as a placeholder

for a Derby database.

2. Add to the folder "db" the following bat-file "db.bat"

===

@echo off

cd %~dp0

set db.properties=../rules/main/db.properties

set CONFIG=../../openrules.config/lib

set CLASSPATH=%CONFIG%/openrules.dbv.jar

set CLASSPATH=%CLASSPATH%;%CONFIG%/commons-cli-1.0.jar

set CLASSPATH=%CLASSPATH%;%CONFIG%/derby.jar

java -DDB_PROPERTIES="%db.properties%" -classpath "%CLASSPATH%"

com.openrules.dbv.admin.DB %*

===

This file will be used as a command-line interface to create and administer the

database.

http://db.apache.org/derby/

OpenRules, Inc. OpenRules Database Integration

24

3. Add to the folder "rules/main/" the following file "db.properties". It will be

used as the database configuration file:

==

OpenRules Data Source Protocol Properties

openrules.protocol.name=dbv

openrules.protocol.class=com.openrules.dbv.DbvDataSourceHandler

DB Access Properties

db.user=embedded

db.password=none

db.url=jdbc:derby:/_openrules/openrules.examples/RulesRepositoryDBV/db/repository;create=true

db.driver=org.apache.derby.jdbc.EmbeddedDriver

db.statementfactory.class=com.openrules.jdbc.StatementFactoryDerbyEmbedded

db.createDDL=\

CREATE TABLE repo (\

REVISION INT NOT NULL,\

NAME VARCHAR(255) NOT NULL,\

AUTHOR VARCHAR(64) NOT NULL,\

COMMENTS CLOB,\

CONTENT BLOB,\

DELETED CHAR(1) NOT NULL DEFAULT 'N',\

TIMESTAMP TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,\

PRIMARY KEY(REVISION)\

)

db.selectSql=select content from dbstorage where name = ?

DB Administration Properties

db.implementation.class=com.openrules.dbv.admin.impl.RepoDAOImpl

===

The folder "../rules/main/" is a natural place for the file "db.properties" because

this folder already contains the main file Main.xls used by an OpenRulesEngine.

4. The property "openrules.protocolname" defines the name "dbv" of this data

source protocol. The property "openrules.protocol.class" defines its

implementation class provided by OpenRules® using openrules.dbv.jar.

OpenRules, Inc. OpenRules Database Integration

25

To access the database we have to specify 5 properties:

1) db.user - a user name (here is "embedded" is the default name for Apache Derby.

2) db.password - a user password

3) db.url - defines a physical location of the database. You should make sure that this

location corresponds to your file structure (!)

4) db.driver - defines a JDBC driver

5) db.selectDDL - defines how the repository will be created.

6) db.selectSql - shows how the db protocol will access the database.

The remaining three properties define are used by a database command-line

administration interface provided by OpenRules® (see below).

5. Switch to a command line interface and position yourself into the newly

created directory "db". We will create a new repository called "rules" inside a

Derby database. To do that, we execute the following command from a

system console:

 >db -r rules -i

First, a new instance of tne Derby database will be created in accordance

with the property "db.util" from the db.properties file. In our case it is

defined as:

db.url=jdbc:derby:/_openrules/openrules.examples/RulesRepositoryDBV/db/re

pository;create=true

Make sure that first you change this property to an absolute or relative path that

corresponds to your directory structure. Thus, a subfolder "repository" will be

created inside the folder "db".

6. This project contains many Excel files:

OpenRules, Inc. OpenRules Database Integration

26

rules/main/Main.xls the main file for a rules engine to start with. It contains

only the Environment table

rules/CategoryA/RulesA1.xls

rules/CategoryA/RulesA2.xls

rules/CategoryA1/RulesA1.xls

rules/CategoryA1/SubCategoryA1/RulesA11.xls

rules/CategoryA1/SubCategoryA1/RulesA12.xls

rules/CategoryB/RulesB1.xls

rules/CategoryB/RulesB2.xls

rules/Common/libA/libRulesX.xls

rules/Common/libA/libRulesY.xls

Let's add one more file rules/Common/Version.xls to display the current

repository version using the following method:

Method void displayVersion()

out("This is a DEVELOPMENT revision of the rules

repository");

7. The main xls-file Main.xls will continue to be used outside the database serving

as a OpenRules® configuration file.

8. To check-in all Excel files (except of Main.xls) to the database we will execute the

following commands:

>db -ci /Common/Version.xls -f ../rules/Common/Version.xls -u admin -m

"initial check-in"

>db -ci /Common/libA/libRulesX.xls -f ../rules/Common/libA/libRulesX.xls -u

admin -m "initial check-in"

>db -ci /Common/libA/libRulesY.xls -f ../rules/Common/libA/libRulesY.xls -u

admin -m "initial check-in"

>db -ci /CategoryA/RulesA1.xls -f ../rules/CategoryA/RulesA1.xls -u admin -m

"initial check-in"

OpenRules, Inc. OpenRules Database Integration

27

>db -ci /CategoryA/RulesA2.xls -f ../rules/CategoryA/RulesA2.xls -u admin -m

"initial check-in"

>db -ci /CategoryA/SubCategoryA1/RulesA11.xls -f

../rules/CategoryA/SubCategoryA1/RulesA11.xls -u admin -m "initial check-

in"

>db -ci /CategoryA/SubCategoryA1/RulesA12.xls -f

../rules/CategoryA/SubCategoryA1/RulesA12.xls -u admin -m "initial check-

in"

>db -ci /CategoryB/RulesB1.xls -f ../rules/CategoryB/RulesB1.xls -u admin -m

"initial check-in"

>db -ci /CategoryB/RulesB2.xls -f ../rules/CategoryB/RulesB2.xls -u admin -m

"initial check-in"

After every check-in the system will display the latest revision number like here:

>db -ci /CategoryB/RulesB2.xls -f ../rules/CategoryB/RulesB2.xls -u admin -m

"initial check-in"

File ../rules/CategoryB/RulesB2.xls has been checked in

rules:9:/CategoryB/Rules

B2.xls

Repository at revision 9.

If now we enter the command:

>db -l "*"

it will display something like this:

===

>db -l "*"

/Common/Version.xls r.1 2007-05-18 06:41:40

/Common/libA/libRulesX.xls r.2 2007-05-18 06:02:41

OpenRules, Inc. OpenRules Database Integration

28

/Common/libA/libRulesY.xls r.3 2007-05-18 06:17:41

/CategoryA/RulesA1.xls r.4 2007-05-18 06:31:41

/CategoryA/RulesA2.xls r.5 2007-05-18 06:46:41

/CategoryA/SubCategoryA1/RulesA11.xls r.6 2007-05-18 06:01:42

/CategoryA/SubCategoryA1/RulesA12.xls r.7 2007-05-18 06:30:42

/CategoryB/RulesB1.xls r.8 2007-05-18 06:48:42

/CategoryB/RulesB2.xls r.9 2007-05-18 06:04:43

Repository at revision 9.

===

9. To inform OpenRulesEngine that now it should look rather to the database than

to a local file system, we only have to change slightly the main file

rules/main/Main.xls. It used to contain the following Environment table:

Environment

include.path ../

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

10. The modified Environment table will look like here:

Environment

datasource classpath:db.properties

include.path dbv://rules/

include
<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

OpenRules, Inc. OpenRules Database Integration

29

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/Version.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

11. Now, we can execute the rules directly from the database by double-clicking on

compile.bat and run.bat. The results will be displayed as:

[java] ==

[java] OpenRulesEngine: file:rules/main/Main.xls

[java] ==

[java] This is a DEVELOPMENT revision of the rules repository

[java] Execute RulesA1

[java] Execute RulesA11

[java] Execute LibRulesX

[java] Sat May 19 09:57:38 BST 2007

[java] Execute RulesA2

[java] ==

Maintaining Multiple Repository Versions

You may use revisions to maintain different version of your rules repositories.

Let's consider the following scenario using a rules repository we created above as

an example. The current state of this repository will always represent the latest

rules development version. At certain point of development we may decide to

label the current state of repository as a release with some arbitrary name. For

example, let's label the current state of our rules repository as "Alpha Release".

Remember the last revision number was 9. For the testing purposes let's modify

the file /Common/Version.xls to display the words "Alpha Release" instead of

development. We can check-out this file and make the following changes in it:

http://openrules.com/docs/man_repositoryDB2.html#revision9

OpenRules, Inc. OpenRules Database Integration

30

Method void displayVersion()

out("This is a ALPHA RELEASE of the rules repository - revision 10");

You may wonder why we use revision 10 instead of 9. Because when we check-in

back the modified Version.xls it will make the repository revision equal to

9+1=10. Here are the results of this check-in:

>db -ci /Common/Version.xls -f ../rules/Common/Version.xls -u admin -m

"ALPHA RELEASE"

File ../rules/Common/Version.xls has been checked in

rules:10:/Common/Version.xls

Repository at revision 10.

To run OpenRulesEngine against this particular Aplha Release (revision 10) of

our rules repository, we have to modify the OpenRules® configuration file

Main.xls as follows:

Environment

datasource classpath:db.properties

include.path dbv://rules:10/

include

<CategoryA/RulesA1.xls>

<CategoryA/RulesA2.xls>

<CategoryB/RulesB1.xls>

<CategoryB/RulesB2.xls>

<Common/Version.xls>

<Common/libA/libRulesX.xls>

<Common/libA/libRulesY.xls>

import.java myjava.package1.*

import.static com.openrules.tools.Methods

OpenRules, Inc. OpenRules Database Integration

31

Revision 10 is ALPHA RELEASE

Please pay attention that we only changed "dbv://rules/" to "dbv://rules:10/". We

also added an optional comment under the Environment table.

If you double-click to the run.bat now, it will produce the following results:

[java] ==

[java] OpenRulesEngine: file:rules/main/Main.xls

[java] ==

[java] This is a APLHA RELEASE of the rules repository - revision 10

[java] Execute RulesA1

[java] Execute RulesA11

[java] Execute LibRulesX

[java] Sat May 19 09:57:38 BST 2007

[java] Execute RulesA2

[java] ==

How to run OpenRulesEngine against different versions of the rules repository at

the same time? It is a matter of where you want to place different versions of

your Main.xls file. For example, let's place a new Main.xls (for the Alpha

Release) in the folder "rules/main.alpha" while the folder "rules/main" will

continue to keep our old Main.xls (without any revision number). Directing the

OpenRulesEngine to one Main.xls or another will execute different versions. For

example, let's change the main Java module of this particular project Appl.java

to make it execute OpenRulesEngine first for the DEVELOPMENT and then for

the ALPHA releases. Here is a modified code of Appl.java:

public static void main(String[] args) {

 runRuleEngine("file:rules/main/Main.xls");

 runRuleEngine("file:rules/main.alpha/Main.xls");

}

public static void runRuleEngine(String mainXlsFile) {

OpenRules, Inc. OpenRules Database Integration

32

 OpenRulesEngine engine = new OpenRulesEngine(mainXlsFile);

 System.out.println(

 "\n==\n" +

 "OpenRulesEngine: " + mainXlsFile +

 "\n==\n");

 Appl appl = new Appl();

 Object[] objects = new Object[] { appl };

 String methodName = "main";

 engine.run(methodName,objects);

 System.out.println(

 "\n==\n");

}

If you double-click to the run.bat now, it will produce the following results:

[java] ==

[java] OpenRulesEngine: file:rules/main/Main.xls

[java] ==

[java] This is a DEVELOPMENT revision of the rules repository

[java] Execute RulesA1

[java] Execute RulesA11

[java] Execute LibRulesX

[java] Sat May 19 09:57:38 BST 2007

[java] Execute RulesA2

[java] ==

.....

[java] ==

[java] OpenRulesEngine: file:rules/main.alpha/Main.xls

[java] ==

[java] This is a APLHA RELEASE of the rules repository - revision 10

[java] Execute RulesA1

[java] Execute RulesA11

[java] Execute LibRulesX

OpenRules, Inc. OpenRules Database Integration

33

[java] Sat May 19 09:57:38 BST 2007

[java] Execute RulesA2

[java] ==

Database Administration Interface

OpenRules® provide a command-line interface for the DB administration using

the "dbv:" protocol. You may see concrete examples above. Here is the list of

the available commands and options:

Option "Initialize": -i or --init

Usage: db -i or db -r <repo> -i

This option initializes a repository <repo>. By default the bat-file db.bat is using

"-r rules", so the option -r <repo> may be omitted. Warning: Existing data will be

destroyed

Example: db -i

Option "Check-In": -ci or --checkin

Usage: db -ci <repo-path> -f <local-file-path> [-u <user>] [-m <message>]

This option checks in (uploads) the content of <local-file-path> into the database

using the <repo-path> as its name. The file will be given a new revision name

that is equal to (the current repository revision + 1). The user name and message

(if any) will be attached to this revision. If <user> is not specified, the option will

use the name specified by the property "db.user" inside the file "db.properties".

Example: db -ci /Common/libA/libRulesX.xls -f

../rules/Common/libA/libRulesX.xls -u admin -m "initial check-in"

Option "Check-Out": -co or --checkout

Usage: db -co <repo-path> -f <local-file-path> [-rev <revision-number>]

This option checks out (downloads) data from the database repository "rules"

using this <repo-path> and <revision-number> into the <localfile-path>. If

revision is omitted the latest revision will be used.

http://openrules.com/docs/man_repositoryDB2.html#checkin

OpenRules, Inc. OpenRules Database Integration

34

Example: db -co /Common/libA/libRulesX.xls -f

../rules/Common/libA/libRulesX.xls -rev 10

This command will download file DriverDiscountRules.xls into the directory

c:/temp.

Option "Remove": -rm or --remove

Usage: db -rm "<mask>"

This option removes data from the repository using this <mask>. The mask can

include

wildcards '*' and '?'

Example: db -rm "*" will remove all files from the rules repository

Option "List": -l or --list

Usage: db -l <mask> [-rev <number>]

This option lists items checked-in to the rules repository. The mask is used to

specify different items in the repository. The mask can include wildcards '*' and

'?'.

Example: db -l "*" -rev 9 will display all checked-in files with a revision number 9

or under.

Option "History": -y or --history

Usage: db -y <repo-path>

This option display detailed information about all revisions for the selected

<repo-path>.

Example: db -y /Common/Version.xls will display all revisions of the file

/Common/Version.xls

Option "Revision": -rev or --revision

 Usage: -rev <number>

 This option is used with option -co.

Option "File": -f or --file

 Usage: -f <local-file-path>

 This option is used with options -ci and -co.

OpenRules, Inc. OpenRules Database Integration

35

Option "Help": -h or --help

 Usage: db -h

 This option displays a list of all options.

Custom DB Protocols

To take into consideration specifics of their databases, advanced users may

create custom DB protocols with their own names. To customize the standard

OpenRules® protocols a user can make modifications in a configuration file

"db.properties" are required. The users also may create and register their own

db-protocol implementations using the OpenRules® source code as an example.

USING EXTERNAL RULES TO ACCESS CUSTOM RULE

REPOSITORIES

If you do not want to use your own organization of rules in any database (not the

one supported by standard protocols such as “db:”) you may utilize the concept of

External Rules. The detailed description of external rules coming from a custom

database is provided at http://openrules.com/external_rules_from_db.htm. It comes

with a detailed rule project “ExternalRulesFromDB”.

SUPPORTING JARS AND PROJECTS

If you use access a database using DatabaseIterator you need to add only one jar-

file “com.openrules.tools.jar” to your classpath. It is included in the standard

configuration project “openrules.config/lib”. The standard projects that

demonstrate the use of database iterators are:

 HelloCustomerDB

 DecisionPatientTherapyDB.

If you use a database protocol like “db:” or “dbv:” you need the following jar-files

to be added to your classpath:

 openrules.db.jar

 openrules.dbv.jar

http://openrules.com/rulesrepository.htm#External Rules
http://openrules.com/external_rules_from_db.htm

OpenRules, Inc. OpenRules Database Integration

36

 derby.jar

 commons-cli-1.1.jar.

They are included in the standard configuration project “openrules.config/lib”.

The following standard projects may serve as prototypes for your own

OpenRules® projects with database interfaces:

 HelloJavaDB

 RulesRepository

 RulesRepositoryDB

 RulesRepositoryPureDB

 RulesRepositoryDBV.

They can be found in the workspace “openrules.rules” available as a part of the

complete product release.

TECHNICAL SUPPORT
Direct all your technical questions to support@openrules.com or to this

Discussion Group.

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

