OPENRULES AND
APACHE SPARK
INTEGRATION

OpenRules, Inc.
www.openrules.com

http://www.openrules.com/

OpenRules, Inc. OpenRules and Apache Spark Integration

Table of Contents

L1011 e T (7ot o [RN 3
Design Steps and Performance RESUILScevvvvuuiirieveniiisivesiissssnssesssesssssssssnssnns 3
Creating OpenRules-based DeCiSiON S€rViCe...........ccceeeervevuriiirievniisssvnnsesssesnsssssssnnssnns 5
Creating 0 Large DALASEtcceueevvveirineiersuiiineisrsnisisisisisisssssismssssrssssssssssssssssssnsssses 5
Creating SPArk APPliCALION..........cccuueeeeveeeriiiiireeiiisiinniiisiiisiisssisssiisssssmssesssssssssssssnsssnns 6
Configuring and PAcKQgingceeveeueciiiineeiisiinnniissieneiisssssssssssssnssesssssssssssssnsssnns 7
Creating Spark Cluster and Running Applicationceeeeeeeneeeeeereenerenerereesseeeaneeens 9
Performance IMELIICS.........ceeuuueeeeneeeeeneeeensereeneeeneseseessessasesesasessnsssssnssssnsssssnsssssnssssnnsans 17

Performance Results for 100M ReCOrdS.........ccoiirrrrmuueiiiiniiininnnnesisinninimsnssesseseeas 17

Performance Results for 1B RECOrdS........ccccceeeiiiiimrrmnniiininiinninneiniinnininnssssssessesaes 18
(a7 et 17 [RN 19

20

OpenRules, Inc. OpenRules and Apache Spark Integration

INTRODUCTION

This manual explains how to integrate OpenRules and Apache Spark to efficiently execute

hundreds of millions of complex rules-based transactions.
e OpenRules® Decision Manager helps enterprises develop and maintain operational

decision services that can be deployed on-premise or on the cloud and invoked from any

decision-making business applications. OpenRules helps subject matter experts to
produce superfast decision services with very complex business logic.

e Apache® Spark™ is an open-source, distributed processing system used for big data
workloads. open-source cluster computing framework with in-memory processing to
speed up analytic applications. Today Apache Spark is the most popular engine for
scalable computing used by thousands of companies, including 80% of the Fortune 500.

OpenRules-based decision services can be integrated with an Apache Spark application that

provides high scalability using cluster deployment and highly efficient parallel execution.

In this manual, we will demonstrate OpenRules-Spark integration using a simple decision service
“VacationDays” that calculates employees’ vacation days. While this service is very fast (takes
less than a millisecond per employee), but when there are too many employees (say 1 billion)
the sequential execution of this service could still take hours. However, if we put this service
inside a Spark application, we will show that the total execution time for 1 billion of employees

is under 3 minutes averaging 1.6 million decisions per second!

DESIGN STEPS AND PERFORMANCE RESULTS

We designed an OpenRules-Spark Integration demo within the Amazon EMR Serverless runtime

environment. The following diagram shows how our demo decision service “VacationDays”

works in the Spark application:

30

http://openrules.com/
https://spark.apache.org/
https://openrulesdecisionmanager.com/building-decision-services/
https://openrulesdecisionmanager.com/building-decision-services/
https://openrulesdecisionmanager.com/deploying-decision-services/
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html

OpenRules, Inc. OpenRules and Apache Spark Integration

osrecorss UL mmen aine oo obr
from CSV file ataframe ataframe Calculation ataframe Report
) Text
Employee 1 minors
Record 1 c pI !] reqular
Record 2 mployee |
Record 3 Employee 3 senior
Record 4 Employee 4
Record 5 Employee 5
.F-E.ecord 1B Employee 1B
Input from Report file
33 bucket

into S3 bucket

Here are the main design steps for preparing and running our demo decision service:

1. Prepare Data and Request Dataframe

a. Generate 1B records (employees) in a CSV file and load it into the AWS S3
bucket

b. Prepare Request Dataframe
2. Decision Service Transformation

a. Apply OpenRules-based decision service “VacationDays” for each of 1B records
3. Metrics Calculation
a. Apply Spark analytics to all 1B employees with already calculated vacations
days: we categorize all employees into 3 groups (minor, regular, senior) and

calculate average, minimal, maximal, and total vacation days for each category

4. Report Results

The total execution time for all steps was 7 min 21 seconds. The decision service transformation

took less than 3 minutes producing 6M decisions per second! Here are the produced metrics:

Decision Task elapsed time : 165,809 ms
Total processed records : 1,000,000,000

Decisions per second : [~6,031,363

Vacation Days statistics by age groups.

e B B s b $fercccnccncnccncnccna +
| category| totalVacationDays | averageVacationDays |minVacationDays |[maxVacationDays |
e e et S e e bt e bt S e L +
|minor |1519564785 |25.33 |22 |27 I
| regular |16488653513 |22.9 |22 |27 I
| senior |5858096754 |26.63 |24 |30 I
e e e $rccccncncnccnccnccnccaa S e et Prcccccncncccccna -

40©

OpenRules, Inc. OpenRules and Apache Spark Integration

In the following sections, we will describe all steps in detail allowing OpenRules users to

reproduce the same demo included in the standard OpenRulesSamples workspace using their

own Apache Spark environment.

CREATING OPENRULES-BASED DECISION SERVICE

The standard installation workspace “OpenRules Decision Manager” comes with a sample
decision model “VacationDays” that calculates vacation days for an employee using various
business rules. You may build, test, and deploy this decision model as a regular jar file using the
standard “package.bat” (>mvn install). You may invoke this model using a simple Java API with

one employee:

public- static void main(String[]-args) {
DecisionModel model = new DecisionModelVacationDays();
Goal goal = model.createGoal();

Employee employee = new Employee: ();
employee.setId("Mary Grant”);
employee. setAge(46);
employee.setService(18);
goal.use("Employee”, -employee);
goal.execute();
System.out.println{“Vacation Days =

+ employee. getVacationDays());

CREATING A LARGE DATASET

While this decision service takes less than a millisecond to process 1 employee, it still will take a
lot of time if we want to apply it to a large number of employees (say 1 billion) and use just a
sequential execution. That’s why we decided to put this service inside a Spark application and
rely on its clusters with massive parallel execution. But first, we need to generate the proper
large dataset. So, we created a simple Java program that uses a random generator to generate
any number of Employees and save them in a CSV file. You can see its code here. We used this
generator to create two test datasets, one with 100M of employees and another with 1B of

employees. We uploaded these datasets to the AWS S3 Input bucket “openrules-spark-demo”.

50

https://openrulesdecisionmanager.com/building-decision-services/install-samples/
https://openrulesdecisionmanager.com/installation/
https://openrulesdecisionmanager.com/decision-models/vacation-days/
http://openrules.com/Java/EmpGenerator.java

OpenRules, Inc. OpenRules and Apache Spark Integration

Now we need to put our decision service in a Spark application. While Spark is a multi-
language platform, we decided to write our Spark application in Java. You may find its

complete source code at Calculate\VVacationDays.java. We will explain the key pieces of

this application.

First, we need to set up a Spark context:

final SparkSession- spark- = SparkSession.builder()
.appName("VacaticnDays")
.getorCreate();

Next, we need to read the data into a dataset:

final Dataset<Row: dflsv = spark.read()
Sormat{“csv”
.option("header”, "true")
.load(inputFile};

The decision service “VacationDays” expects a Java object of class Employee as its input. When
our Spark application receives a collection of employees from the CSV file, it will need to convert
each dataset records onto an Employee object. This will be done by our first Spark
transformation function “convert”:

'/ - convert- Row- to- Employee

final MapFunction<Row,Employee? convert = r -» {
Employee e = new Employee();
e.setld(r.getAs("Id"));
e.setfAge(Integer.parselnt(r.getas("Age")));
e.setService(Integer.parseInt{r.geths("Service™)));
return-e;

}s
Then we will need to invoke the decision model to calculate vacation days for each employee. It
can be done similarly to the above Java API. This can be done by our second Spark
transformation function “decisionTask”.

//-decision model- runner

final MapFunction<Employee,Employee: decisionTask =-e--»-{
final Goal goal = new VacationDaysModel().createGoal();
goal.use("Employee”, e);
goal.execute();
return- (Employee) - goal.take("Employee™);

b

Now we can apply these two transformations to the dataset. The following code will calculate

vacation days for each employee and capture how much time it took to do the calculations.

6©

http://openrules.com/Java/CalculateVacationDays.java

OpenRules, Inc. OpenRules and Apache Spark Integration

/7 run-decisions
long start = System.currentTimeMillis();

Dataset<Employees> dfEmp- = dflsv
.map(convert , Encoders.bean(Employee.class))
.map(decisicnTask, Encoders.bean(Employee.class));

long: count- =-dfEmp.count(};
long elapsed- = System.currentTimeMillis() - start;

Then we can apply any analytics supported by Spark to the results. In this demo, we decided to
group the dataset into 3 age categories (minor, regular, and senior) and calculate metrics such

as average, minimal, maximal, and total vacation days for each category:

/f-analytics
Dataset<Row> aggregated = dfEmp
~withColumn(“category”,
expr("case when age <=-18 then "minor' when-age »>= 55 then 'senior' else 'regular' end")
.groupBy("category™)
+agg(

N
]

sum("vacaticnDays").as("totalVacaticnDays"),
round(avg("vacationDays"),-2).as("averageVacationDays"),
min("vacationDays").as("minVacaticnDays"),
max(“vacationDays").as(" "maxVacaticnDays"))
.orderBy("category”);
string-result-= aggregated.showString(3, @, false);

And finally, we may create a simple report and store it in a text file:

//-statistics
long- tps-=-{count-*-1888)-/-clapsed;

reportFile.ifPresent{report - -» {
StringBuilder sb = new StringBuilder();
sh.append(String. format(" Decision Task elapsed time : ¥,d ms\n", elapsed));
sh.append(String. format("” Total processed records- - :-%,dn", count)};
sh.append(5tring. format(" Decisicns per-second s, dvn™, - tps)y;
sh.append("\n");
sh.append(String. format(" Vacation Days statistics by age groups.'n"));
sh.append(result);
spark.createDataset(Arrays.aslist(sb.toString()), Encoders.STRING())
Jwrite()
.mode {SaveMode . Overwrite)
Jdext(report);

I”

We use Maven to configure and build our Spark application. The project’s “pom.xml” file is a

standard Maven project file, but there are some technical details worth mentioning. To deploy

70

OpenRules, Inc. OpenRules and Apache Spark Integration

our application to a cluster as a Spark job, we need to create a single jar that contains our code
and all required dependencies, except Spark libraries, as they are provided by the cluster

environment. We mark Spark dependency as “provided”

{dependency
<groupldrorg.apache.spark</groupIds
<artifactldrspark-sql ${scala.version}</artifactIds
<version>${spark.version}</versicn:
<exclusions>
<exclusion>
<groupldrorg.slfaj</grouplds
<artifactId»>slfdj-simple</artifactId>
<fexclusion®
<fexclusions:
<scoperprovided</scopes
K/ dependencysl

Also, we exclude not used class packages from the final jar to reduce the size of the jar.

<plugins>
<pluginz
<groupIdrorg.apache.maven.plugins</groupId>
<artifactId»maven-shade-plugin</artifactId>
<version:3.4.1</version>
<executions>
<execution>
<phaserpackage</phase>
<goals>
<goalrshade</goals
</goals>
<configuration>
<minimizeJAR>true</minimizeJAR>
<artifactSet>
<excludes>
<excludercom.fasterxml. jackson.core:®</exclude>
<excluderorg.apache.logging.logdj:*</exclude>
<excluderorg.fusesource.jansi:*</exclude>
</excludes>
<fartifactsSet>
<transformers>
<transformer
<manifestEntries>
<Main-Class»vacation.days.spark.CalculateVacationDays</Main-Class>
<Version:${project.version}</Version>
</manifestEntries>
</transformers
</transformers>
¢/configurations
<fexecution>
<fexecutions:
</plugin>
</plugins>

org.apache.maven.plugins.shade.rescurce.ManifestResourceTransformer”>

When we run the command “>mvn package”, it should build a JAR file VacationDaysSpark-
1.0.0.jar in the folder “target”. After that, we are ready to deploy our application to a Spark

cluster and perform a simple benchmarking to measure the performance of the OpenRules

8©

OpenRules, Inc. OpenRules and Apache Spark Integration

decision model running as a Spark transformation step. To make the created jar file
VacationDaysSpark-1.0.0.jar available for a Spark cluster. For this reason, we upload it into the

same bucket “openrules-spark-demo” where we placed our large CSV file with test employees.

The simplest way to configure and run a Spark cluster is to use Amazon EMR (Elastic Map
Reduce) service. We used it to create an EMR Serverless application and submit an EMR job with

our jar file. First, we created EMR Studio and then selected the link “Applications”:

EMR Studio X
Dashboard
Workspaces

¥ Serverless

Applications

¥ Clusters
EMR on EC2

EMR on EKS

After a click on the button “Create application” we received:

EMR Studio » Applications

Then we filled in an application name, software version, and hardware type:

90

https://aws.amazon.com/emr/
https://us-east-1.console.aws.amazon.com/emr/home?region=us-east-1#/serverless

OpenRules, Inc. OpenRules and Apache Spark Integration

Application settings info

Mame

May include up to 64 alphanumeric, underscore, hyphen, forward slash, hash, and period characters.

Type

‘ Spark v ‘

Release version

‘ emr-8.9.0 v ‘

Architecture Info
Choose an instruction set architecture (I3A) option for your application.

O x86_64

This architecture uses x86 processors and is compatible with most third-party tools and libraries.

() arm&4 - new
This architecture uses AWS Graviton2 processors. You might have fo recompile some third-party tocls and libraries.

To process a large number of records (100M or even 1B) our cluster should have enough power.
So, we selected “Custom settings” and configured our cluster with 3 “warm” executors, where

each executor has 16 vCPU and 32G of memory.

100

OpenRules, Inc. OpenRules and Apache Spark Integration

EMR Studio » Applications » VacationDaysApp » Configure application

Configure application: VacationDaysApp

Architecture options

Architecture Info
Choosea an instruction set architecture {I5A) option for your application.
O x36_64

This architecture uses x88 processors and is compatible with most third-party toods and libraries.

armad - new
This architecture uses AWS Graviton2 processors. “ou might have to recompile some third-party tools and libranes.

v Pre-initialized capacity - optional info

“Your application intemally uses workers to run workloads. Pre-initialize capacity to create a wam pool of workers that are ready to
respond in seconds. Use this option if you want jobs to start immediately. Charges apply for each worker when the application is started.
Learn mare [A

Reset to default |

Enable pre-initialized capacity

Spark drivers Spark execufors
1 RE
¢ Size of driver (4 vCPUs, 16 GB memory, 20 GB ¥ Size of executor (16 vCPUs, 32 GB memory, 20
disk) GB disk)

CPU per executor (wCPU)

il '!'|

CPU selection affects memory and disk constraints.

Memory per executor (GB)

- |

Minimurn 32 GB, maximum 120 GB (& GB increments).

Dizk per executor (GB)

= |
Minimurn 20 GB, maximum 200 GB.

We left all other settings unchanged and clicked on the button:

110

OpenRules, Inc. OpenRules and Apache Spark Integration

The created applications in the studio dashboard:

EMR Studic » Applications

Applicatiens (1) ifo Create application
O Find appications |A|I Slaluz ¥ |.'-.|' time 1 (]
Hame - Status v Application D = Type « Release version w Architecture Last modified (UTC -5:000
VacationDaysapp @ Startad 00f3c1kr42b&om0s Spark amr=5.9.0 w85 _64 Mar 6. 2023, 14:32

The application is created but not yet started. We clicked on the application name (highlighted
above) and then hit the button “Start application”:

VacationDaysApp | & || stertappiestion | action ¥

EMR Service took about 2-3 min to provision and start our Spark cluster.
While the application was starting, we configured our benchmarking job by selecting the “Job

runs” tab and then clicking on the button “Create job”:

Fropertics Job runs Taps

Job runs (0) mf e

Then we filled in all details about the job “CalculateVacationDays”.

The next step was a creation of a new execution role:

12©

OpenRules, Inc. OpenRules and Apache Spark Integration

Create an IAM role >

@ Create an 1AM role with the Amazon-EMR-Semverless-SampleRuntimeRole [4 policy aitached. This policy provides
read access to Amazon 53 buckels with EMR samples, as well as creafe and read access to the AWS Glue Data
Catalog. If your job needs read or write access to 33 buckets in your account, specify the buckets below to add
permissions to the 1AM role.

Buckets for the |1AM role to access
MHone
© All buckets in this account

() Specific buckets in this account

Then we specified the location of our jar file (already uploaded to our S3 bucket) and the main
class name. Our code accepts 3 arguments:

- input_file

- output_folder

- report_folder.

Script location: s3://openrules-spark-demo/VacationDaysSpark-1.0.0.jar

Main class: vacation.days.spark.CalculateVacationDays

Script arguments: ["s3://openrules-spark-demo/employee.csv","s3://openrules-spark-

demo/result","s3://openrules-spark-demo/report"]

130

OpenRules, Inc. OpenRules and Apache Spark Integration

EMR Studio » Applications » VacationDaysApp » Submit job

Submit job

Job details info

Mame:

| CalculateVacationDays |

Runtime role

The 1AM role assumed by the job. This role must have permissions to access your data sowrces, targets, scripts, and any libraries used by the
job. Leam mare [A

| AmazonEMR-ExecutionRole-167 78093285738 v |)

Script locafion
The location of the main JAR or Python script in Amazon 53 that you want to run.

33 URI

| Q, s3J/openrules-spark-demo/VacationDaysSpark-1.0.0.jar x | Browse 53

Main class
Required for jar script files. Main class is the entry point for the application. For example, org.apache spark examples. SparkPi.

| vacatien.days.spark.CalculateVacationDays

Secript arguments

An array of arguments passed to your main JAR or Python seript. Your code should handle reading these parameters. Each argument in the
aray must be separated by a comma.

["=3:fopenrules-spark-demo/employee csv' "s3Vopenrules-spark-
demofresult”,"s3:./openrules-spark-demofreport”]

Previously we configured our Spark cluster to use 3 executors with 16 vCPUs. Now we needed to
tell the framework to use all CPUs for this job. To do this, we expanded the “Spark properties”
section and set the property “spark.executor.cores” to 16, and then hit the “Submit job” button

at the bottom of the page.

14 ©

OpenRules, Inc. OpenRules and Apache Spark Integration

v Spark properties - 0plional info

Additional configuration properties that you can specsfy for each job. Amazon EMR uses default application properties to help you get

started quickly.
Edit in table Edit in text
Key Value - optional
O, spark.executor cores * | | Q18 b 4 Remove

Add new property

“fou can add up to 48 more properties.

After the job is submitted, we can monitor the job execution by clicking on the job’s name

Job runs (13) ko | &) || Wiew application Uls w || Clone job || Cancel job |m

Q, Find job runs by name, ID, fags, or staius | Any run sfatus * | Start time in last 30 days * 1 2 > @&
Jab run name v Run status < Job rum 10 v Start ime [UTC -5:00) W End time (UTC -5:00) + Run time
| @ CalculaieVacationDays Giiunmr-g 00#8cqs dajgTLE09 Mar & 223 14:43 -

Then we clicked on “View application UIl” and selected “Spark Ul (Running jobs)”:

Cal.culatedvacationl:}ays | o | View application Uis & H Clane job H Caneel job
Spark Ul {Running jobs) [3
Job details
Job run name v FRunstatus ¥ JobruniD v Starttime (JTC-5:00) ¥ End tme(UTC-5:00) ¥ Run time
| ©@ ColculatevacationDays © Running 00fBeqddajgTAB00 Mar 6, 2023, 1443 ;)

150

OpenRules, Inc.

Spark Jobs

User: hadoop

Total Uptime: 1.4 min
Scheduling Mode: FIFO
Active Jobs: 1
Completed Jobs: 3

b Event Timeline

~ Active Jobs (1}

Page: 1

Jab

Id = Description Submitted
3 showString at CalculateVacationDaysjava:30 2023/03/06

showString at CalculateVacationDaysjava:90 19:44:47

Page:| 1

-~ Completed Jobs (3)

Page: 1

lab

Id ~ Description Submitted
2 count at CaloulateVacationDays java:73 2023,/03/06

count at CaloulateVacationDays. java:73 19:44:486

1 count at CaloulateVacationDays java:73 2023/03/06
count at CaloulateVacationDays java:73 194344

0 load at CalculateVacationDays java:dT 2023/03/06
load at CalculateMacationDaysjava:d7? 194342

- Completed Stages (1)

Page: | 1

Stage

Id ~ Description Submitted

1 count at 2023/03/06
CalculateVacationDays.java:f3 19:43:44

+details

OpenRules and Apache Spark Integration

1 Pages. Jump o 1 CShow 100 items ina page. Go
Stages: Tasks (for all stages):
Duration Succeeded/Total Succeaded/Total
Ts 01 (/45 (48 running)
1 Pages. Jump ta 1 Show 100 items in a page. Go
1 Pages. Jump to| 1 .Show 100 itemsin a page. Go
Stages: Tasks {for all stages):
Duration Succeeded/Total Succeeded,/Total
02s 17101 skipped) L \1@#8skipped)
10min - 1/1 L 4Ems
25 71 ISR | . S——
1 Pages. Jumpte 1 .Show 100 |items in a page., Go
Tasks: Shuffle Shuffle
Duration Succeeded/Total Input OQutput Read Write
1omin (EEEEN 27 23 KiB

GiB

We refreshed the job list and saw that the job was completed and “Run status” was “Success”.

16 ©

OpenRules, Inc. OpenRules and Apache Spark Integration

12 >y @

Job runs (13) inf

Q, Find job runs by name, i, tage, or status ANy Tun slatus v Starttime In last 30 days =

- Jab run 1D T Start time [UTC -5:00) L End time [UTC -5:00) v Run time

Job run name v Run status

(& Success DDEegE0oj 74500 Mar & 2023, 14:43 Mar &, 2023, 14:45 2 mim, 28 s2Ls

[+] CalculateVacationDays

Then we opened the openrules-spark-demo S3 bucket and saw that there was a folder named

‘report’ which contained the file _SUCCESS and text file part-00000-6ffb5360-b7a2-47d4-87ff-

00033f069131-c000.txt that contains the jobs report data.

Name & Type ¥ Last modified v Size ¥ flt;r:ge
[_success March &, 2023, 14:45:51 (UTC- 08 Siamiard
_SUICCESS - 05:00) andarg
I:_l::(l;l-:';Il-C'JC{IC--r.'-pIrJSBECI-L:?aE-d 7d4-87H-00033f069131- txt ;J:E;':,E 2023, 14:45:51 (UTC- ?29.2 standard
We downloaded this text file with the execution results.
Here is what we saw in the downloaded text file:
Decision Task elapsed time : 62,481 ms
Total processed records : 180,880,804
Decisions per second : ~1,688,486
Vacation Days statistics by age groups.
H---m - e it e Fommm oo e +
| category|totalVacationDays | averageVacationDays |minVacationDays |maxVacationDays |
H---m - e it e Fommm oo e
|minor | 152815650 |25.33 |22 |27
|regular |1648943535 |22.9 |22 |27
|senior |585711171 |26.63 |24 |30
H---m - e it e Fommm oo e

These results look very good:

170

https://s3.console.aws.amazon.com/s3/object/openrules-spark-demo?region=us-east-1&prefix=report/part-00000-6ffb5360-b7a2-47d4-87ff-00033f069131-c000.txt
https://s3.console.aws.amazon.com/s3/object/openrules-spark-demo?region=us-east-1&prefix=report/part-00000-6ffb5360-b7a2-47d4-87ff-00033f069131-c000.txt

OpenRules, Inc. OpenRules and Apache Spark Integration

1. 100,000,000 records from a CSV file were loaded into the Spark cluster.

2. Our VacationDays decision service was executed for all 100M records within 62,481
milliseconds (a bit more than 1 minute).

3. The Spark cluster’s workers, running in parallel, executed the OpenRules rule engine
averaging 1,6M decisions per second.

4. The results were grouped by age categories and for each category, we calculated
various metrics.

5. The entire execution cycle took 2 min 29 secs.

Then we uploaded another sample CSV file with 1B records, its size is about 28Gb.
The cluster completed the entire job processing 1B records in 7 min 21 secs.
Here are the execution results:

___ e

Decision Task elapsed time : 165,888 ms
Total processed records : 1,808@,000,000
Decisions per second : ~6,831,363

Vacation Days statistics by age groups.

fommmme T RN T e e +
| category | totalVacationDays | averageVacationDays |minVacationDays |maxVacationDays|
fommmme T RN T e e +
minor	1519564785	25.33	22	27
regular	16488653513	22.9	22	27
senior	5858096754	26.63	24	30
Fmmmmm Fmmmmm e fmmmm e Fommmmmmm e Fmmmm e -

1. 1,000,000,000 records from a CSV file were loaded into the Spark cluster.

2. Our VacationDays decision service was executed for all 1B records within 165,800
milliseconds (less than 3 minutes).

3. The Spark cluster’s workers, running in parallel, executed the OpenRules rule engine
averaging 6M decisions per second.

4. The results were grouped by age categories and for each category, we calculated
various metrics.

5. The entire execution cycle took 7 min 21 secs.

180

OpenRules, Inc. OpenRules and Apache Spark Integration

This tutorial provides step-by-step instructions for how to integrate OpenRules-based Decision
Service in the Apache Spark application to achieve maximal performance for huge datasets.
OpenRules-Spark integration provides high scalability using cluster deployment and highly

efficient parallel execution.

We used a simple “VacationDays” that calculates employees’ vacation days as a sample. We put
this service inside a Spark application without any changes, and it was able to handle 1 billion
records in under 3 minutes averaging 1.6 million decisions per second! Any OpenRules-based
decision service can be similarly deployed as a Spark application with superfast performance
and minimal configuration efforts.

If you have any questions about OpenRules-Spark integration, direct all your technical questions

to support@openrules.com.

190

mailto:support@openrules.com

