The Decision Table Template
For Geospatial Business Rules

Alex Karman
CTO and Co-Founder
Revolutionary Machines, Inc.
www.rev-mac.com

San Jose, Oct 13-15, 2014
OpenRules Now Supports Spatial Rules

• Leverages the popular JTS Topology Suite (“JTS”)
• Supports the Egenhofer Relationships (“DE9-IM”) for 2D points, polygons and line strings
 – Contains, touches, crosses, overlaps, disjoint, etc.
• Supports distance and area calculations; and ranking by distance or area
• Supports aggregates (max/min) of spatial rules
• Supports non-spatial mereological rules
 – Part of/comprises
• Loads Geographic Markup Language (GML) from text files with a GeometryDatabaseBuilder utility
Motivation

• Last year, we used OpenRules to handle business rules related to security constraints and service level agreements in a data center management project.

• This year, the customer asked us if OpenRules could manage fraud detection and privacy rules in a healthcare project in the same data center.

• We looked at the problem domain and saw a large number of spatial rules.
Spatial Business Rules Are Everywhere

• Healthcare
 – Hospital Referral Region, Hospital Service Area, Hospital, Patient, Emergency Routes

• Sales
 – Supplier and buyer territories, census block demographics

• Utilities
 – Markets are usually defined geographically

• Local government
 – Cadasters, zones, counties, municipalities
Most Spatial Business Rules Only Require a Simple Vocabulary

• Describe how simple points, polygons and lines interact
• Describe distances between them
• Describe “at least” or “no more than” rules (aggregate spatial rules)
Most Spatial Business Rules
Never Use Most GIS Features

• Continuous field data
 – Weather, climate, netCDF, raster

• Slope and aspect
 – Digital elevation model, bathymetry, viewshed

• Topology
 – The shoreline borders the shore

• Spatial statistics
 – Autocorrelation, Moran’s I, Geary’s C, etc.

• Spatial Reference System, Projections
Therefore
Most Business Rule Projects

• Should never need a GIS system
• Should never need a GIS person
• Should have a single unbroken phase of rule development performed by the same people
• Should have a single rule repository
• Should have a single rule execution environment
• **Spatial business rules should not cause project separation, duplication or delay**
Goals

• Create a simple spatial business rule spreadsheet template
• Express spatial business rules in plain English
• Allow spatial rule spreadsheets to be used in combination with non-spatial business rule spreadsheets
 – Decision Model: the “conclusion” of a spatial business rule family can serve as the “condition” of another business rule family
• Make it simple to load the spatial data from GML files
 – GeoDatabaseBuilder class
JTS Topology Suite

• Java spatial engine
• Started in 2000
• Stable, peer reviewed, and widely used
• Used in GeoServer, OpenJUMP, and uDIG
• Converts GML into spatial objects in memory, and evaluates the spatial relationships between them

• **Consistent** results
GML

- Geography Markup Language, an Open Geospatial Consortium ("OGC") standard
- It is an XML file that conforms to the GML schema

```xml
<gml:featureMember>
  <gml2:Placemark>
    <gml:pointProperty>
      <gml:Point srsName="LL84">
        <gml:coordinates>-112.025980391177,33.4539329678913,0
        </gml:coordinates>
      </gml:Point>
    </gml:pointProperty>
  </gml2:Placemark>
</gml:featureMember>
```
New Glossary Type: GeoEntity

<table>
<thead>
<tr>
<th>Type</th>
<th>GeoEntity</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td></td>
<td>id</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>name</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
<td>geometry</td>
</tr>
</tbody>
</table>

Maps to Java bean com.openrules.spatial.GeoEntity
Egenhofer Relationships
Several Hospital Service Areas Form One Hospital Referral Region

HSA 1

HSA 2

HSA 3
Linear Algebra (DE-9IM)
Usually Expressed
As Spatial Predicates

1. Equals
2. Disjoint
3. Touches
4. Contains
5. Covers
6. Intersects
7. Within
8. Covered By
9. Crosses
10. Overlaps

New Decision Table Type: DecisionTableSpatial

<table>
<thead>
<tr>
<th>#</th>
<th>Main Entity Type</th>
<th>Relationship</th>
<th>Related Entity Type</th>
<th>Oper</th>
<th>Value</th>
<th>Conclusion</th>
<th>Spatial Significance Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HRR</td>
<td>Contains</td>
<td>HSA</td>
<td>Is</td>
<td>TRUE</td>
<td>=</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>HRR</td>
<td>Touches</td>
<td>HSA</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>HRR</td>
<td>Is Disjoint From</td>
<td>HSA</td>
<td>Is</td>
<td>FALSE</td>
<td>+=</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>HRR+5</td>
<td>Contains</td>
<td>HSA</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Route</td>
<td>Crosses</td>
<td>HSA</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Airport</td>
<td>Overlaps</td>
<td>County</td>
<td>Is</td>
<td>TRUE</td>
<td>=-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>HRR</td>
<td>Distance</td>
<td>Hospital</td>
<td><</td>
<td>250</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HRR</td>
<td>Area</td>
<td><</td>
<td>25</td>
<td></td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>County</td>
<td>Area</td>
<td><</td>
<td>25</td>
<td></td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>HRR</td>
<td>Is Among 25 Closest To</td>
<td>Hospital</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Facility</td>
<td>Is Part Of</td>
<td>University</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>University</td>
<td>Comprises</td>
<td>Facility</td>
<td>Is</td>
<td>TRUE</td>
<td>+=</td>
<td>4</td>
</tr>
</tbody>
</table>
Aggregate Rules

<table>
<thead>
<tr>
<th>#</th>
<th>Main Entity Type</th>
<th>Relationship</th>
<th>Type of Related Entities</th>
<th>Oper</th>
<th>Value</th>
<th>Spatial Significance Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRR</td>
<td>Contains</td>
<td>HSA</td>
<td>>=</td>
<td>5</td>
<td>+=</td>
<td>2</td>
</tr>
<tr>
<td>HRR</td>
<td>Contains</td>
<td>HSA</td>
<td><</td>
<td>2</td>
<td>-=</td>
<td>1</td>
</tr>
<tr>
<td>HRR</td>
<td>Overlaps</td>
<td>County</td>
<td>>=</td>
<td>2</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>Airport</td>
<td>Distance <=5</td>
<td>Hospital</td>
<td>>=</td>
<td>1</td>
<td>+=</td>
<td>5</td>
</tr>
<tr>
<td>Airport</td>
<td>Distance >25</td>
<td>Hospital</td>
<td>ln</td>
<td>5..15</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>Airport</td>
<td>Distance <10</td>
<td>Hospital</td>
<td><</td>
<td>1</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>Residence</td>
<td>Distance <20</td>
<td>Hospital</td>
<td>></td>
<td>2</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>Hospital</td>
<td>Distance <15</td>
<td>Residence</td>
<td>></td>
<td>1200</td>
<td>+=</td>
<td>1</td>
</tr>
<tr>
<td>HRR</td>
<td>Distance <=5</td>
<td>Hospital</td>
<td>></td>
<td>5</td>
<td>+=</td>
<td>3</td>
</tr>
<tr>
<td>Hospital</td>
<td>Distance <=5</td>
<td>Hospital</td>
<td>></td>
<td>5</td>
<td>+=</td>
<td>3</td>
</tr>
</tbody>
</table>
Aggregate Rules

<table>
<thead>
<tr>
<th>Rule Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRR has at least 5 HSAs in it</td>
</tr>
<tr>
<td>HRR has fewer than 5 HSAs in it</td>
</tr>
<tr>
<td>HRR overlaps at least two Counties</td>
</tr>
<tr>
<td>At least one hospital is within 5 km from the Airport</td>
</tr>
<tr>
<td>Between 5 and 15 Hospitals are > 25 km from the Airport</td>
</tr>
<tr>
<td>No Hospital is within 10 km from the airport</td>
</tr>
<tr>
<td>More than 2 hospitals within 20 km from the Residence</td>
</tr>
<tr>
<td>More than 1200 residences within 20 km from the Hospital</td>
</tr>
</tbody>
</table>
Mereological Rules
(Non-Spatial “Part-Of” Rules)

• Sometimes, we think we have discovered a spatial rule

• Then we realize that we don’t care about the geography at all

• Example: Harvard has a Facility in Mumbai, India

• We only care that the Facility “Is Part Of” the University, and that the University “Comprises” the Facility. We don’t care about the distance.

• Mereological rules work with any two kinds of Java Beans, as long as one has a property reference to the other
Importing Sample Application in Eclipse

- Import DecisionSpatial
- Import openrules.config
- Link the projects
- If not Windows, change the file separators in GeoDatabaseBuilder.java from `\` to `/`
- Main class: com.openrules.spatial.Main
Java Code

- **Spatial Beans**
 - Polygons: County, Hospital Service Area, Hospital Referral Region
 - Points: Airport, Hospital
 - Lines: Route

- **Non-Spatial Beans**
 - University, Facility, Window
GML Data Files

- Counties, HSAs, HRRs
- xsd files are supplied but not needed
- Point data is both ingested and created programmatically
Rules

- Template
- Egenhofer rules
 - EntityToEntityRules
- Aggregate rules
 - EntityToCountsRules
- Mereological Rules
 - EntityToEntityRules
- Glossary
- Higher-level rule family
 - Rules.xls
Modifying the Sample Project

• Easiest way: just modify the decision tables
 – EntityToEntityRules.xls
 – EntityToCountsRules.xls

• Otherwise:
 – Add GML
 – Modify GeoDatabaseBuilder.java

• Like any other sample project:
 – Add new JavaBean classes
 – Modify Main.java, Glossary, Decision.xls
public static boolean build() {
 boolean result = true;
 // List<Geometry> counties = GeoDatabase.getCountyGeometries("./data\counties_us_gml.gml");
 // List<Geometry> hrrs = GeoDatabase.getHRRGeometries("./data\hrr_gml.gml");
 // List<Geometry> hsas = GeoDatabase.getHSASGeometries("./data\hso_gml.gml");
 List<Geometry> counties = GeoDatabase.getCountyGeometries("./data\counties_us_gml.gml");
 List<Geometry> hrrs = GeoDatabase.getHRRGeometries("./data\hrr_gml.gml");
 List<Geometry> hsas = GeoDatabase.getHSASGeometries("./data\hso_gml.gml");
 // ReadGML.setPrint(true);
 // List<Geometry> hospitals = GeoDatabase.getHospitalGeometries("./data\hospitals.gml");
 List<Geometry> hospitals = GeoDatabase.getHospitalGeometries("./data\hospitals.gml");
 if (counties != null)
 Log.info("There are " + counties.size() + " counties");
 else
 result = false;
 if (hrrs != null)
 Log.info("There are " + hrrs.size() + " HRRs");
 else
 result = false;
 if (hsas != null)
 Log.info("There are " + hsas.size() + " HSAs");
 else
 result = false;
 if (hospitals != null)
 Log.info("There are " + hospitals.size() + " hospitals");
 else
 result = false;
 return result;
}
Custom Class 2: Main.java

```java
public static void main(String[] args) {
    String fileName = "file:rules/main/Decision.xls";
    // Build EntityRepository from GML files
    EntityRepository.build();

    // Create Decision
    Decision decision = new Decision("DetermineSpatialSignificanceScore", fileName);
    decision.put("report", "On");
    decision.saveRunLog(true);

    GeoEntity mainEntity = EntityRepository.hrrs[0];
    GeoEntity relatedEntity = EntityRepository.hsas[0];
    run(decision, "FIRST RUN", mainEntity, relatedEntity);

    mainEntity = EntityRepository.hospitals[0];
    relatedEntity = EntityRepository.hsas[0];
    run(decision, "SECOND RUN", mainEntity, relatedEntity);

    mainEntity = EntityRepository.hrrs[1];
    relatedEntity = EntityRepository.hospitals[10];
    run(decision, "THIRD RUN", mainEntity, relatedEntity);

    Facility f1 = new Facility();
    f1.setId("Facility 1");
    Facility f2 = new Facility();
    f2.setId("Facility 2");
    Facility f3 = new Facility();
    f3.setId("Facility 3");
    University u = new University();
    u.setId("University 1");
    Facility[] facilities = { f1, f2, f3 };
    u.setFacilities(facilities);
    mainEntity = f2;
    relatedEntity = u;
    run(decision, "FOURTH RUN", mainEntity, relatedEntity);
}
```
Where Can We Go From Here?

- **Spatial Loading from spreadsheet**
 - Two column table: entity type and .gml file name
- **A “stipulation spreadsheet”**
 - So you don’t have to find actual geometries to test the downstream effects of a spatial rule
- **Maven and Jenkins Integration**
- **Linear Referencing System Support**
 - Utilities, transportation networks, supply chains
 - Social networks
- **GeoSPARQL integration**
 - also uses GML and DE-9IM
 - Will provide spatial visualization
 - Will provide spatial rule validation
About Us

Revolutionary Machines, Inc. is a start-up company, based in Reston VA, that seeks to advance the development of technologies that will improve our world. We focus on the intersection of the physical world and the information world; where we employ data science techniques to help index, understand and improve enterprise, government and private domains of interest. We are preparing for the challenge of the Internet of Things and Augmented Reality through open source hardware and software initiatives, and by employing our expertise in Semantic Web, GIS, systems integration, sensors, and associated communications systems.
Thank You

• Please visit Revolutionary Machines at www.rev-mac.com
• Please email me at alex.karman@rev-mac.com
• Please download the DecisionSpatial sample project at www.openrules.com