

FIRST THREE CHAPTERS

Get the entire book from Amazon for just $9.95

DMN in Action with OpenRules

A Practical Guide for Development of Business Rules and Decision
Management Applications using Decision Model and Notation (DMN)
Standard and OpenRules

By Jacob Feldman, PhD

ISBN 978-1-5206053-8-8

Copyright © 2017 Jacob Feldman. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval systems, without the
prior written permission of the copyright holder.

Company and product names mentioned herein are the trademarks or
registered trademarks of their respective owners.

https://www.amazon.com/dp/B06W579JYM

Introduction

DMN in Action with OpenRules 2

Table of Contents

Preface ... 3

Dialog-Session 1: Introducing Major Concepts by Building an

Executable Decision Model ... 10

Dialog-Session 2: Enhancing Decision Model “Determine

Customer Greeting” .. 33

Dialog-Session 3: Integrating Tested Decision Models with IT . 43

References ... 58

Remaining chapters:

Get the entire book from Amazon for just $9.95

https://www.amazon.com/dp/B06W579JYM

Preface

DMN in Action with OpenRules 3

Preface

About Business Decision Modeling and DMN. Nowadays

Business Decision Modeling is rapidly becoming major

technological and methodological framework to support

decision making approaches across a wide range of business

problems from loan origination and insurance underwriting to

clinical guidelines and recommendations. The recently

introduced OMG standard “Decision Model and Notation

(DMN)” [1] brings standardization to decision modeling, an

emerging best practice. Decision Modeling clearly defines a

business target, shows how to orchestrate decision

management techniques, supports interoperability, and

integrates decision models into modern enterprise

architectures. DMN quickly became a mainstream approach

supported by many Business Rules and Decision Management

tools [6].

To Whom This Guide Is Oriented. This guide is oriented to

people who want to build operational decision models for their

own business environments. They’ve probably already looked at

the DMN standard itself and quickly figured out that the text of

the standard is more oriented to DMN vendors (implementers)

than to practitioners. They’ve probably read or at least

navigated through recently published DMN textbooks like [2]-

[4], which are trying to cover all (!) DMN aspects and to provide

methodological recommendations for how to apply DMN in the

real-world decision modeling.

Thus, we expect that our readers are already convinced of the

value of the decision modeling proposition. However, they still

http://www.omg.org/spec/DMN/Current/
http://openjvm.jvmhost.net/DMNtools/

Preface

DMN in Action with OpenRules 4

have problems with understanding what actually should be

done to build their own operational decision models.

How Readers Create Executable Decision Models. The

objective of this guide is to help readers quickly learn how to

apply the DMN approach to build working decision models. To

achieve this objective, this book will guide readers on how to

create working decision models for simple and complex

business problems. More importantly, readers should be able to

execute (!) their decision models and integrate them into their

own IT systems. That’s why we called this guide “DMN in

Action”!

While DMN is supposed to take care of future interoperability

(tool independence), a reader needs to choose concrete DMN

tools to actually create and execute decision models. Without

using such tools it’s simply impossible to achieve our objective.

So, as readers go through this guide, they can utilize the

following tools:

1) Microsoft Excel: without doubt the most popular tool

among business analysts in any industry. Our readers will

mainly use Excel as the best table editor to create and

enhance business decision models.

2) OpenRules: a highly popular open source business rules

and decision management system. Our readers will use

OpenRules to test (that assumes an ability to execute!) their

decision models.

The website www.DmnInAction.com offers a reader two

options: 1) open, analyze, and execute all decision models

online without any download; 2) install a free evaluation version

of OpenRules and analyze/modify/execute all provided or your

own decision models.

https://products.office.com/en-us/business/office
http://www.openrules.com/
http://www.dmninaction.com/

Preface

DMN in Action with OpenRules 5

Instead of Excel a reader may use Google Docs or Open Office. If

a reader prefers to use a DMN implementation [6] different

from OpenRules, they still can do it, but the described DMN

constructs need to be adjusted to the tool-specific DMN

representations.

How this Guide Is Written. This guide was written in style of

dialog between the AUTHOR and the READER. The guide

consists of multiple dialog-sessions, during which AUTHOR and

READER are trying to build concrete decision models. They are

freely discussing why and how they are actually building

decision models, not avoiding possible missteps, pitfalls, and

alternative approaches.

From one decision model to another the AUTHOR will lead the

inquisitive and receptive READER to different decision modeling

concepts and notions emphasizing and/or demystifying

especially complicated aspects, and directing the reader’s

attention to special situations that occur in real-world decision

modeling.

About the Reader. We consider the READER to be a subject

matter expert or a business analyst without any programming

experience. He or she may be proficient in Excel but more

importantly is a person who really wants to understand how to

build good decision models that can be adjusted and enhanced

over time as business conditions change.

Only once, in the Dialog-Session 3, will the READER be joined by

the DEVELOPER, who also will be “inquisitive and receptive” but

from a purely IT integration perspective.

The actual reader of this guide will find this text to be perhaps

more like a freely told story or, rather a freely conducted

Preface

DMN in Action with OpenRules 6

discussion. Being represented by a fictional READER, the actual

reader will hopefully find the answers to a lot of his/her own

questions, and will eventually gain an intrinsic understanding of

the DMN-based decision modeling technique.

About the Author. The fictional AUTHOR in this guide

represents me, Jacob Feldman, the Chief Technology Officer of

the OpenRules, Inc., a US corporation that created and

maintains the open source Business Rules and Decision

Management system commonly known simply as “OpenRules”

[5]. Over the course of dialog-sessions I will try to share my

multi-year experience as a decision modeling practitioner who

has helped our customers develop and maintain production-

quality decision models in various business domains.

I want to warn the readers that this guide by no means is a

DMN textbook as it does not cover all the items introduced in

the DMN standard. On the contrary, it concentrates on the most

frequently used decision modeling constructs described in DMN

and uses their particular implementations in the OpenRules

formats.

As the AUTHOR, I took a liberty of choosing the DMN concepts

that are most frequently used and helpful and those which

should be avoided. I simply don’t mention some concepts

currently included in the DMN standard which I do not

recommend for use. In particular, the AUTHOR will not talk

about hit policies with priorities or about pure programming

constructs such as loops or if-then-else statements included in

the DMN Friendly Enough Expression Language (FEEL). As the

AUTHOR, I promised the READER to stay away from

programming, and I try to stick to this promise over the course

of all (well, almost all) dialog-sessions. At the same time, the

http://www.openrules.com/

Preface

DMN in Action with OpenRules 7

READER and I will actively use the FEEL syntax to represent

various business expressions and calculation formulas.

The nice thing about the DMN standard is that it allows vendors

to compete on different representations of the same DMN

concepts as long as they have the same semantic meaning. The

reader may find that OpenRules graphical representations of

some DMN concepts are slightly different from examples

included in the current DMN specification. For instance, we do

not use single-character and double-character abbreviations for

hit policies which are supposed to be placed into a separate cell

of every decision table. Instead, we use keywords such as

“DecisionTableSingleHit” or “DecisionTableMultiHit” in decision

table titles.

Finally, I believe it is extremely important to keep this guide as

small as possible (no more than 150 pages) and to allow the

reader to start developing their own decision models ASAP.

They can do this right after going through the first 3-4 dialog-

sessions and actually modifying and executing the provided

examples of decision models. In general, the guide provides

many examples that can be used as working prototypes.

Learning by example is the quickest and easiest way to learn

fundamental decision modeling concepts.

How to Use this Guide. It is not necessary to read the entire

guide. Even if you read only the first two dialog-sessions, you

will get a good introduction to practical decision modeling

techniques. The third dialog-session “Integration with IT” allows

you to invoke your IT colleagues to make sure that your future

real decision models will be as easily integrated into your

specific IT infrastructure as it is explained in the guide using a

simple example.

Preface

DMN in Action with OpenRules 8

Each dialog-session starts with a list of the discussed topics, and

you may skip sessions that are of no interest to you. So, you can

read dialog-sessions in the presented order, or you may read

them in accordance with your actual interest and needs.

What is really important is not just to go through the printed

examples but also download, analyze, and execute the

described decision models using the supporting software. It will

allow you to look at all implementation details directly in Excel

including the use of dropdown lists, data validation, cell

merging, outlines, and other well-known and very helpful Excel

constructs. All figures may also be seen directly in Excel by

downloading the related projects from www.DmnInAction.com.

Supporting Software. This guide comes with the software that

includes all described decision models in Excel format. To do

this, visit www.DmnInAction.com website and you will be able

to download them from the page “Decision Models”. You also

may open OpenRules Why-Analyzer to select, analyze, and test

all these decision models online without any downloads or

installations.

If you want to download these decision models to your own

computer and modify and execute them locally, you may

receive the supporting software for free by submitting a

request to OpenRules. Alternatively, you may get an evaluation

copy directly from www.OpenRules.com and use it to run the

existing or to create your own decision models.

I recommend you to check www.DmnInAction.com from time

to time as it is being constantly updated with new decision

models not described in this guide (yet).

http://dmninaction.com/
http://dmninaction.com/
https://dmninaction.wordpress.com/decision-models/
http://openjvm.jvmhost.net/WhyAnalyzer
http://openrules.com/Book.htm
http://www.openrules.com/download_eval.htm
http://dmninaction.com/

Preface

DMN in Action with OpenRules 9

Acknowledgments. First of all, I want to thank the subject

experts with whom I was fortunate enough to work developing

complex business rules, optimization and machine learning

applications over the last two decades. Secondly, I want to

thank all the people who helped to bring the DMN standard to

the everyday reality for many decision management

practitioners worldwide. It would not have happened without

previous work and the current support by key architects and

actual developers of various business rules and decision

management products. Special thanks should go to the authors

of the “big” books that together provide methodological

guidance for business decision modeling techniques in general

and the DMN standard in particular.

And finally, I want to share a little story about people who had

no direct acquaintance with modern decision modeling

techniques but who essentially incentivized me to write this

guide. Many years ago, preparing for my university entrance

exams, I read a math book simply known at that time among

Soviet high school students as “Tarasov and Tarasova” (by the

last name of the authors). The book was written in a very

unusual style of dialogs between TEACHER and STUDENT. It was

a really enlightening guide that not only demystified complex

mathematical concepts but gave me an initial feeling of the

beauty and intrinsic integrity of mathematics in general. Thank

you, Tarasov & Tarasova!

Jacob Feldman, PhD

Monroe, New Jersey

February 2017

https://dmcommunity.org/tools/
https://dmcommunity.org/resources/books/

Dialog-Session 1

DMN in Action with OpenRules 10

Dialog-Session 1: Introducing Major

Concepts by Building an Executable Decision

Model

Discussed Topics:

Decision Requirement Diagram (DRD)

Tabular Decisions and Sub-Decisions

Rules Repository

Decision Tables

Glossary

Test Cases

Executing Decision Model

Implementation Steps

Related OpenRules Projects:

DecisionHello

DecisionHelloWorld

AUTHOR. Hi again. You told me that you’ve already had a

chance to look at the DMN standard, and even looked through

several of the latest decision modeling books. Now you want to

start building actual decision models.

READER. Yes, and I already understand that DMN and

supporting tools may help me to build decision models.

However, I have difficulty grasping exactly what decision models

are and how I can create workable models myself.

AUTHOR. Many business analysts or subject matter experts who

start working with DMN initially face the same issue. I believe

the best solution is to create a decision model that you can

“touch”, execute and analyze. Today we’ll specify and build a

relatively simple but complete decision model that

demonstrates major decision modeling constructs. You will be

http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionHello/DecisionHello.zip
http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionHello/DecisionHelloWorld.zip

Dialog-Session 1

DMN in Action with OpenRules 11

able not only create a decision model but also to test it using

your own test cases and to evaluate the produced results.

READER. I’d like to “touch” a decision model.

AUTHOR. I hope you will at the end of this session. We will start

with our own version of “Hello World”, that is traditionally the

first program people create when they learn a new

programming language.

READER. But during our preliminary discussion, you said DMN is

oriented to business people like me and you do not plan to

teach me any programming language.

AUTHOR. Right, and we will stay away from programming. First,

we will define a simple business problem, which I call “Greeting

a Customer”. Let’s assume that we want our future decision

model to produce a greeting like “Good Afternoon, Mrs.

Robinson!” based on the current time of the day and some

information about the customer. For example, such a decision

model can be used by an IVR system…

READER. What is IVR?

AUTHOR. You usually deal with an Interactive Voice Response

(IVR) system when you make a call to any customer support

system and a nice voice asks you to push “hundreds” of buttons

before you can reach a live agent.

READER. I hate those systems.

AUTHOR. Me too. Anyway, the first thing that any good

interactive system should do is to greet you properly as a

valuable customer. The Fig. 1-1 shows different variations of

possible greetings:

Dialog-Session 1

DMN in Action with OpenRules 12

We may assume that “Name” and other related information

about the customer is already known. What we want is to

automatically define a Greeting (one out of 4 alternatives) and

a Salutation (one out of 3 alternatives).

READER. It looks quite simple: we can choose a Greeting based

on the time of the day and we can choose a Salutation based on

the customer’s gender.

AUTHOR. In the real IVR system even this “simple” problem may

become much more complex, but let’s move forward with what

you just said. So, we want to build a decision model capable of

producing greetings similar to those in Fig. 1-1 based on some

information about the customer. First of all, I suggest giving our

decision model a name, e.g. “DetermineCustomerGreeting”.

READER. Why did you omit spaces between these 3 words?

AUTHOR. Besides humans who create and maintain this

decision model, this name will also be used by an information

system that will invoke (execute) our decision model. So, let’s

consider the absence of spaces as our convention.

Dialog-Session 1

DMN in Action with OpenRules 13

READER. OK. One more question: should the names of other

decision models start with the word “Determine”?

AUTHOR. Not at all, it is your choice. At the same time, it is a

good practice to name your decision model in accordance with

what it actually does, e.g. later on we plan to consider decision

models “DeterminePatient Therapy”, “CalculateTaxReturn”,

“DefineLoanEligibility”, etc. OK, let’s start building our first

decision model.

READER. I think we should create decision tables that define our

Greeting and Salutation words.

AUTHOR. Quite good, you better call them not “words” but

rather decision variables. The decision tables usually specify the

decision logic or the “HOW” of your decision model. However,

it’s always better to start with an answer to the question

“WHAT” that shows the structure of our future decision model.

For example, from looking at the Fig. 1-1 it is only natural to

conclude that our decision “DetermineCustomerGreeting”

consists of two sub-decisions “DefineGreeting” and

“DefineSalutation”, and these sub-decisions can be defined

using the proper decision tables.

DMN recommends starting with creation of a so called

“Decision Requirement Diagram” or DRD. We can do it with any

generic diagramming tool such as MS Visio and a specialized

tool such a Decisions First Modeler. However, I promised you

that our main tool over this course will be Excel. Using basic

Excel “Insert+Shapes”, I can rather quickly create the first DRD

for our decision model. It is presented on Fig. 1-2:

https://products.office.com/en-us/Visio/
http://decisionsfirst.com/

Dialog-Session 1

DMN in Action with OpenRules 14

This diagram tells us that to “DetermineCustomerGreeting” we

need to “DefineGreeting” and to “DefineSalutation”. We also

specified a business object “Customer” that provides

information for these two decision tables.

In Excel, it is easy to add a hyperlink to each element of the

diagram to open to the proper file/table when you click on this

element. It makes the DRD a very convenient navigation tool.

READER. Probably DRDs will be useful for more complex

decision model, but for such a simple case as ours, this picture

probably is not necessary.

AUTHOR. In real world, DRD is useful not only to give a generic

view of the decision model, but also to serve as a glue that puts

different decision tables together and allows an underlying

decision engine to execute our decision models. As Bruce Silver

wrote, “Decision logic is verifiable and executable. What you

draw is what you execute” [3]

To make the DRD on Fig. 1-2 executable, OpenRules allows you

to present it in the equivalent tabular format:

http://methodandstyle.com/how-dmn-is-different/

Dialog-Session 1

DMN in Action with OpenRules 15

This is an example of an OpenRules table of the type “Decision”

that starts with the proper keyword at the left top corner

followed by the name of the table, in this case

“DetermineCustomerGreeting”. The first column contains

descriptions of sub-decisions in plain English (spaces are

allowed), and the second column contains the actual names of

tables that implement these sub-decisions (no spaces).

READER. Do I always have to specify both a diagram and the

equivalent table “Decision”?

AUTHOR. No. To execute your decision model with OpenRules it

is enough to define only its tabular format “Decision”. However,

we are working with several diagraming tool vendors on an

integration that will allow our users to automatically generate

tables of the type “Decision” directly from the DRDs.

When we define the structure of our decision model, we can

describe the actual business logic by creating two decision

tables: “DefineGreeting” and “DefineSalutation”. Let me create

the first table and you will create the second one.

READER. OK. I’ve seen that you placed the DRD and our table

“DetermineCustomerGreeting” in the Excel file “Decision.xls”.

Will we create these two tables in the same file?

AUTHOR. We can use the same file and different Excel

worksheets. However, within real-world decision models people

Dialog-Session 1

DMN in Action with OpenRules 16

place different decision modeling constructs in different files

and even in different folders to simplify future maintenance of

their decision models. OpenRules standard examples usually

place the standard decision model in the so called “Rules

Repository” that in many cases looks like the one in Fig. 1-4.

I’ve already created the folder “DecisionHello” as a placeholder

for our decision model based on the standard project template

provided by OpenRules. It contains folders and files similar to

those described in Fig. 1-4.

READER. OK, I guess we will talk about files “Glossary.xls” and

“Data.xls” later on. For now we will create our decision tables

inside the file “Rules.xls”.

AUTHOR. Right. First, I will show you how to create a very

simple decision table “Define Greeting” in Excel. After a few

regular Excel manipulations, I created the following table (again

utilizing some OpenRules examples):

Dialog-Session 1

DMN in Action with OpenRules 17

Hopefully this decision table is self-explanatory. Could you try to

explain how it is supposed to work?

READER. Yes, it looks quite intuitive to me. There are 4 rules:

1. If Current Hour is between 0 and 11, the Greeting is

“Good Morning”

2. If Current Hour is between 11 and 17, the Greeting is

“Good Afternoon”.

3. If Current Hour is between 17 and 122, the Greeting is

“Good Evening”.

4. If Current Hour is between 22 and 24, the Greeting is

“Good Night”.

AUTHOR. The first column is a condition specified by the

OpenRules keyword “If”, and the second column is a conclusion

specified by the keyword “Then”. Could you tell me what

Greeting will be produced when Current Hour is exactly 11?

READER. “Good Afternoon” because the first interval [0..11)

does not include 11 while the second interval [11..17) does.

Dialog-Session 1

DMN in Action with OpenRules 18

AUTHOR. Good that you remember this basic math convention

from your college years. By the way, instead of [0..11) you also

may write:

< 11

Less than 11

More or equal 0 and less than 11

READER. It’s nice. I noticed that you merged columns in the

very first “black” row. Why was that necessary?

AUTHOR. To help OpenRules to recognize the table bounds. If I

had not merged the columns B and C in the Excel’s row 2,

OpenRules would “think” that this table has only one column

(B). Have you noticed that I also left empty cells around the

table?

READER. Probably you did it for esthetic considerations similar

to your use of different colors.

AUTHOR. Yes and no. This particular table will work fine even if

you don’t surround it with empty cells. However, if we have

several tables inside the same worksheet, these tables should

not touch each other. Even if you want to put some comments

near some rows or columns of the decision table, make sure

they do not touch the table. By the way, you may insert Excel’s

own comments anywhere – OpenRules will ignore them, but it

will help other people who will analyze your decision table.

READER. How about colors and border shapes? I’ve seen how

precise you were making sure that a separator between

columns “If” and “Then” is double-lined.

Dialog-Session 1

DMN in Action with OpenRules 19

AUTHOR. Text and background colors, fonts, borders, and other

visual elements are used just for consistency and

standardization. For example, many OpenRules customers have

for years preferred to use a black background and a white

foreground in the very first “signature” row. However, some

customers prefer other coloring conventions. Contrary to

“merging”, it does not carry any semantic meaning for

OpenRules. Coloring conditions in blue and conclusions in

purple comes from the DMN samples. Do does as a doubled line

used to separate conditions and conclusions. Unfortunately, the

current version of DMN in certain situations gives semantic

meanings to italics and underlining – we, at OpenRules, believe

this is a mistake and do not support such interpretations.

READER. Now it is my turn to create a similar decision table

“DefineSalutation”. I will simply copy/paste your worksheet

“DefineGreeting” and will do some refactoring. OK, here is my

version:

Oops! I need somehow to differentiate between “Mrs.” and

“Ms.” May I add another column with the customer’s Marital

Status?

AUTHOR. Of course, just insert another column before the

column “Then” as you usually do in Excel.

Dialog-Session 1

DMN in Action with OpenRules 20

READER. OK, this is simple… But can I simply use the word

“Marital Status” as a title of my inserted column?

AUTHOR. Why not? We did not ask anybody’s permission when

we used the words “Current Hour” or “Gender”. It will become

another decision variable of our decision model.

READER. Here it goes:

AUTHOR. Very good. This is a well-designed decision table. Can

you explain why you left Marital Status empty for the first rule?

READER. Because whether Marital Status is “Married” or

“Single” the Male’s salutation is always “Mr.”

AUTHOR. That’s right. Just keep in mind that DMN requires in

such cases using a hyphen instead of an empty cell. However,

OpenRules correctly interprets both a hyphen and an empty

cell.

I would like to make a few more comments about the

organization of decision tables in Fig. 1-5 and Fig. 1-7. Instead of

retyping the same values like Male or Female you may take

advantage of Excel’s ranges. For example, you may select 3 cells

Dialog-Session 1

DMN in Action with OpenRules 21

with values Male, Female, Female in the first column on Fig. 1-7,

and then click on the menu-item Data+Data Validation and fill

out the displayed dialog as in Fig. 1-8:

Now you will be able to choose a value from the dropdown list.

It makes sense to similarly define dropdown lists for the Marital

Status, Salutation and Greeting columns.

READER. Of course I know how to use ranges in Excel, but here

it really adds value to the design of our decision tables. It is

probably especially useful when we have much larger lists of

possible values.

AUTHOR. Yes, and later on I will show you how to organize and

reuse standard value lists using OpenRules Data tables. Now I

want to show you another design of the decision table “Define

Salutation”:

Dialog-Session 1

DMN in Action with OpenRules 22

As you can see, I’ve added special sub-columns for operators

“Is” to each table column. I also changed keywords “If” and

“Then” to “Condition” and “Conclusion” (they are placed in the

merged cells now). While this decision table design may look a

little bit more complex, it makes the table more readable when

it utilizes different operators like “Is” or “=”, “Is Not”, “Less”,

“More or Equal”, “Include”, “Exclude”, and many others. This

decision table design was recommended in [7].

READER. I really like this design, even more than the one in Fig.

1-7. Can I use columns of the type “Condition” with two sub-

columns for conditions, and columns of the type “Then” for

conclusions?

AUTHOR. Yes, you can mix them in the way you want. By the

way you can use the keyword “Action” as a synonym for

“Then”. Now it’s time to finalize our decision model.

READER. I thought we had already defined the business logic.

AUTHOR. Yes, but to be able to test (execute) our decision

model, we also need to define a business glossary and test

cases. Let’s start with a glossary that will list all our decision

variables categorized by the business concepts they belong to.

Dialog-Session 1

DMN in Action with OpenRules 23

In our case it is quite simple because we use only the following

decision variables:

• Current Hour

• Greeting

• Gender

• Marital Status

• Salutation.

Obviously, variables Gender and Marital Status belong to a

business concept that we may call “Customer”. Do variables

Current Hour, Greeting and Salutation also belong to a

Customer?

READER. We may assume so… On the other hand, Current Hour

depends on the location from where the customer is calling.

AUTHOR. We will deal with these considerations later on – now

I want us to finalize and to execute our decision model ASAP.

Here is the simplest glossary table for our decision model (I

placed it into the file rules/include/Glossary.xls):

I copied and pasted all 5 decision variables from our decision

tables to the first column. As we agreed, they all belong to the

business concept “Customer” defined in the merged second

column. OpenRules also requires us to provide technical names

Dialog-Session 1

DMN in Action with OpenRules 24

(or attributes) for every decision variable in the third column.

These names do not allow spaces and will be used in the future

to integrate our decision model with an actual IT system.

READER. Should I always start these technical names with a

small letter and then use capital letters for all consecutive

words?

AUTHOR. It’s better to follow this, so-called “Camel” naming

convention as in real-world applications these attributes will

correspond the underlying Java objects – but you do not have to

worry about this.

Now we should define test cases. As we planned (see Fig. 1-4

above), I will place them in the file” rules/include/Data.xls”.

READER. I guess we simply should define several customers with

variables Gender, Marital Status, and Current Hour already

defined. Then during the testing our decision model will

produce the proper values for Greeting and Salutation.

AUTHOR. That’s right. OpenRules offers you a quite powerful,

yet simple mechanism known as “Test Harness”. Everything is

defined in special Excel tables. First we define a so-called

Datatype table for our business concept Customer:

Dialog-Session 1

DMN in Action with OpenRules 25

This table starts with the keyword “Datatype” followed by the

name of the datatype after a space – in this case “Datatype

Customer”. Then we list different attributes. The first column

contains attribute types, e.g. “String” for text variables, “int” for

integer variables, “double” for real variables, “Date” for dates.

The second column contains the names of attributes exactly as

they were defined in our Glossary in Fig. 1-10.

READER. I guest capitalization is important here.

AUTHOR. Yes, very important. If you write “string” instead of

“String” or “Int” instead of “int”, OpenRules will point you to a

syntax error “Unknown type” (indicating the exact cell where

this error occurred). Now let’s create test customers using the

following table of the type “Data”:

This table starts with the keyword “Data” following the

datatype and the name of the array of customers – in this case

“Data Customer customers”. The second row contains the

technical names of Customer’s attributes, and the third column

contains the business names. The business names are usually

the names of variables but you can use any name as the

technical names already provide mapping to the decision

variables from the glossary. Then we may define as many rows

as we want to specify particular customers.

Dialog-Session 1

DMN in Action with OpenRules 26

READER. I got it. Do we always have to put ‘?’ for unknown

variables?

AUTHOR. In this case you may leave these cells empty, but for

integer or double variables you need to put in some initial

values (e.g. -1) to indicate that these variables are not defined

yet.

OpenRules also allows you to define the expected results for

each test case. Then it automatically checks if the actual results

correspond to the expected results and shows mismatches.

Here is the proper table of the type “DecisionTableTest”:

The name “testCases” is the name used by the default test

launcher. Each test has its own ID defined in the first column of

the type “#”. This table can use different business objects

(concepts) defined in the column of the type “ActionUseObject”

– in this case we have only one object “Customer”. We also can

add different expected test results using the columns of the

type “ActionExpect” and the corresponding variable names (like

Greeting and Salutation).

READER. I can see that the first test customer is expected to

generate Greeting “Good Afternoon” and Salutation “Mrs.” But

I am a little bit confused with this strange formula:

:= customers[0]

Dialog-Session 1

DMN in Action with OpenRules 27

AUTHOR. I agree that it may look confusing for a beginner. The

real reason is that this is an example of a Java snippet that

OpenRules allows you to put in any cell of your OpenRules

table. The sign “:=” indicates that this is a Java snippet

(expression) and the index [0] indicates that you want to use

the very first element of the array “customers” defined in Fig. 1-

12. In Java, the array indexation always starts with 0.

READER. But you promised to keep me away from programming

and now we talk about Java…

AUTHOR. Sorry, but this is how the optional (!) Test Harness is

currently implemented. You don’t really have to know that this

is an actual Java snippet -- simply follow this convention when

you define test objects. However, in real-world decision models

sometimes you would like to invoke predefined Java methods,

and it is not so bad to know that OpenRules provides this

capability by using “:=”.

READER. I’d rather not have the expected values at all and not

have to deal with these Java details.

AUTHOR. It may be true for this, very simple decision model.

There is a way to execute all test cases directly from the array

“customers” and then visually compare the results with what

you expected. However, the Test Harness is very important for

real-world decision modeling. We do have customers who

maintain decision models with thousands of decision tables.

Along with a large rule repository, they also maintain a test

repository with thousands of test cases, all of which contain the

expected results. When they make changes to the rule

repository, they always run Test Harness to make sure that new

Dialog-Session 1

DMN in Action with OpenRules 28

changes did not spoil any already tested results. It is simply

impossible to do it manually. This approach is called “Test-

Driven Decision Modeling”!

READER. OK, I got it. The use of “:=” is not a big price to pay for

this functionality. Are we now ready to run these test cases?

AUTHOR. Only one more thing is required. We need to explicitly

tell OpenRules which business objects correspond to business

concepts defined in the Glossary. It can be done using the

following table of type “DecisionObject” (I recommend keeping

it in the file Decision.xls):

Yes, here we are again using a Java snippet

:= decision.get(“Customer”)

However, your IT colleagues would really appreciate this

capability as it dramatically simplifies the future integration of

your tested decision model with their actual business objects

that will be used in the production environment.

And finally, we should specify the names for our main file

Decision.xls (FILE_NAME) and our main decision name from the

table “Decision” (DECISION_NAME). These names are defined in

the file “DecisionHello/define.bat” contains as follows:

Dialog-Session 1

DMN in Action with OpenRules 29

Now you are able to execute your decision model against our

test cases. Simply double-click on the file “run.bat” that is

located in the same folder “DecisionHello”.

READER. Finally! Wow, it ran really fast. Here are the results:

AUTHOR. This is the execution protocol of your testing. It shows

execution steps and results for each Test Run.

Dialog-Session 1

DMN in Action with OpenRules 30

READER. I see that first OpenRules executed our sub-decision

“Define Greeting Word” and our decision table assigned “Good

Evening” to the variable Greeting. Then the second decision

table made a Conclusion: Salutation Is Mrs. This is exactly

what was expected. And we got similar results for the second

test. Can I add another test-customer?

AUTHOR. Be my guest.

READER. OK, I’ve just added the third test customer who is a

single female that calls at 22:00:

 Let me run test-cases again:

Dialog-Session 1

DMN in Action with OpenRules 31

Note that I intentionally made errors in the expected Greeting

and Salutation. As a result, we received two mismatches which I

just highlighted. It seems I really can “touch” our decision

model.

AUTHOR. Congratulations! Now I can say that you have gotten

the first taste of how to build a decision model using

OpenRules-based DMN implementation.

Let’s summarize our major implementation steps:

1. Create DRD (Decision Requirement Diagram) and its

tabular representations of the type “Decision” - Figures

2 and 3

2. Create Decision Tables – Figures 1-6 and 1-9

3. Create Glossary – Fig. 1-10

4. Create Test Cases – Fig. 1-16

5. Executed Test Cases – Figures 1-15 and 1-17.

Dialog-Session 1

DMN in Action with OpenRules 32

While we used these five steps for a simple decision model,

they represent a quite generic implementation schema for

much more complex decision models as well.

Dialog-Session 2

DMN in Action with OpenRules 33

Dialog-Session 2: Enhancing Decision Model

“Determine Customer Greeting”

Discussed Topics:

Adding New Decision Variables

Single-Hit Decision Tables

Comparing Dates

Commenting Out Unused Tables

Importance of Testing

Related OpenRules Project:

DecisionHelloWithDates

AUTHOR. Usually the first working decision model is just a good

starting point and business people continue to enhance their

decisions by adding more concepts and related decision logic.

During this session we also will try to enhance our decision

model “DecisionHello” to show new DMN capabilities while

making it look closer to real-world decision models.

READER. Good, because when I am thinking about decision

models we want to use in my organization, they would have

many more decision variables, and the decision tables would

need to cover many exceptions.

AUTHOR. OK, but we will add some enhancements one by one

making sure that our model keeps working. First, I want our

model to make exceptions for young customers by producing

greetings like “Good Afternoon, Young Robinson!”

READER. While I think it is not right to mess with somebody’s

age, let’s do it as an example. First, we probably need to define

“young customers”.

http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionHelloWithDates/DecisionHelloWithDates.zip

Dialog-Session 2

DMN in Action with OpenRules 34

AUTHOR. Let’s say they should be 7 years old or younger.

READER. In this case we just need to add one more condition to

the decision table “DefineSalutation”. It should check if the

customer’s Age is less than 8.

AUTHOR. Sounds good. Do you want to try to make the proper

changes?

READER. No problem. Assuming that we will define the variable

“Age”, I will simply add one more rule at the end of this table –

see my new table in Fig. 2-1:

AUTHOR. Adding a new column “Age” so quickly, shows you

really have a good grasp of Excel. Now, could you explain how

this decision table will work for a male customer of the age 5?

READER. Easy… Wait a second! Do you want to tell me that the

first rule will be satisfied and the produced Salutation will be

“Mr’” and not “Young”?

AUTHOR. Yes, it will. And the actual reason is that by default our

decision table is single-hit as specified by the keyword

“DecisionTable”.

READER. Single-hit? What does it exactly mean?

Dialog-Session 2

DMN in Action with OpenRules 35

AUTHOR. It means that when the first rule (counting from top-

down) is satisfied, its conclusions will be executed and all

remaining rules will be ignored.

READER. WOW! I could have expected that the decision table

behaves this way. What if I add the condition “Age >= 8” to the

first 3 rules?

AUTHOR. This will fix the problem. Just for your information,

there are other types of decision tables, such as multiple-hit

decision tables. But we will talk about them during the future

sessions. By the way, you may merge the same operations and

values to make your table look better.

READER. OK, here is a new version:

AUTHOR. Looks good. By the way, instead of the operator “<”

you may write “Is Less” and instead of the operator “>=” you

may write “Is More Or Equal”. Now, what we should do to test

your new decision table?

READER. We need to add the variable Age to our glossary. Here

is the modified glossary will look like:

Dialog-Session 2

DMN in Action with OpenRules 36

AUTHOR. How about test cases?

READER. Of course. First I need to add “age” to the Datatype:

And here is the Data table “customers” with an additional

column for “Age”:

AUTHOR. Very good. I noticed that you correctly made sure that

the first “black” row is correctly merged covering a new row as

well.

Dialog-Session 2

DMN in Action with OpenRules 37

READER. I’ve also corrected the expected results in the table

“testCases”:

The third case should produce the salutation “Young”. Correct?

AUTHOR. Double-click on “run.bat” and we will see.

READER. Yes, we got Salutation Young in the third test case, and

the first two cases are also correct:

AUTHOR. Good. What if we want to produce the salutation

“Young” only for boys?

READER. I will simply add a check for Male in the last rule of the

table “DefineSalutation”.

Dialog-Session 2

DMN in Action with OpenRules 38

AUTHOR. In this case what will happen when a customer is a 7

years old female?

READER. You are right -- no rules will be satisfied and the

Salutation will remain undefined. Should I add one more rule

(the default) to explicitly assign ‘?’ to Salutation?

AUTHOR. It certainly will be better than “do nothing”…

READER. OK. Here is my updated decision table:

Let me run it again (just in case). Here we go:

Dialog-Session 2

DMN in Action with OpenRules 39

READER. Oops! What did happen? It says:

MISMATCH: variable 'Salutation' has value '?'
while 'Young' was expected

But why?

AUTHOR. Look at your third customer. This is a 5 years old

female. So, naturally your first 4 rules failed, and then the

default rules assigned ‘?’ to the variable “Salutation” – exactly

as it was supposed to do.

READER. Aha! Let me change the gender to “Male” and run our
decision model again. Finally I got it right:

Conclusion: Salutation Is Young

AUTHOR. As you can see, you cannot overestimate the

importance of testing! Even small changes could lead to results

which are quite different from what you expected. Never

assume that your modified decision model will produce the

correct results – TEST IT!

READER. Now I see how the addition of even one rule can cause

serious trouble. I think this example gives me a better

understanding of how the decision model actually works.

AUTHOR. Good. Let’s move forward with another enhancement.

So far, we used only text variables and integer numbers. In

addition, you may use real variables by defining their type as

“double” instead of “int” in the Datatype tables. However, now I

want to show you how to deal with dates.

READER. That would be great. Our own decision models would

then be able to apply different rules on different dates.

Dialog-Session 2

DMN in Action with OpenRules 40

AUTHOR. Actually DMN allows you to directly compare dates

and to make basic arithmetic operations on them. To enhance

our model with dates, let’s assume that we do not know the

customer’s age but rather his/her Date of Birth. So, we may

replace the condition “Age” in decision table “DefineSalutation”

(see Fig. 2-8) with a condition “Date of Birth”.

Instead of making changes in this table directly, I will first create

a copy of the table in the same worksheet using Excel’s

Copy/Paste. Then I will comment out the previous table by

adding “//” in front of the keyword “//DecisionTable”.

READER. Why do you do that?

AUTHOR. Sometimes you want to try different implementations

of your business logic. Who knows, maybe later on you would

like to get back to the previous table. In general, people use

standard version control systems such as SVN or GIT for their

rule repositories. However, commenting out some decision

constructs in the same Excel files is also a useful practice.

So, our new decision table “DefineSalutation” will look as

follows:

READER. I guess we need to add the new variable “Date of

Birth” to the glossary. Let me make the changes myself.

Dialog-Session 2

DMN in Action with OpenRules 41

AUTHOR. Yes, go ahead.

READER. Here is the modified glossary:

Now, I will add the attribute “dob” to the Datatype table

“Customer”. What type should I use for this attribute?

AUTHOR. You may simply use the type “Date” which is a valid

Java type but you do not really have to know about it.

READER. OK, here is the corrected table:

And now I will add the column “Date of Birth” to the Data table

“customers”. I guess I still may keep the attribute “Age” in it.

Dialog-Session 2

DMN in Action with OpenRules 42

AUTHOR. Correct, even if our new decision table doesn’t use it.

READER. Here is the updated table “customers”:

And, now I believe I can double-click on “run.bat”… YES! The

results are the same as when we used the variable “Age”. I must

say it was quite a natural way to handle dates.

AUTHOR. You also can use predefined functions (or Java

methods) to automatically calculate Age based on the Date of

Birth, but we will talk about that later. See you next time.

Dialog-Session 3

DMN in Action with OpenRules 43

Dialog-Session 3: Integrating Tested

Decision Models with IT

Discussed Topics:

Collaborative Rules and Decision Management

Business Concepts and Java Decision Objects

Request-Response

Concatenating Strings

Invoking Decision Models from Java Applications

OpenRules Decision API

Use of Java Inside Decision Tables

Related OpenRules Project:

DecisionHelloWithRequestResponse

DecisionHelloWithJava

AUTHOR. The DMN standard and supporting tools (such as

OpenRules) are oriented mainly to business analysts or subject

matter experts who are usually not software developers. While

business people create and test their decision models, at some

point of time they still want to transfer already tested models

to their IT department to be integrated with actual business

applications. During this session I will explain you how such

integration can be achieved.

READER. Yes, even if I already understand how to create my

own datatypes and test cases, I know that in our production

environment real data is coming from a database and the

produced results should be saved back to the database.

However, I really have no idea how our IT has organized the

database.

AUTHOR. That’s exactly why we need to address the IT

integration problems ASAP to make sure that decision model

http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionHelloWithRequestResponse/DecisionHelloWithRequestResponse.zip
http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionHello/DecisionHelloWithJava.zip

Dialog-Session 3

DMN in Action with OpenRules 44

development does not become just a theoretical exercise. You,

as a subject matter expert, will continue to stay in charge of the

business logic by doing decision model maintenance and

testing. However, we need to involve your IT for the integration.

So, I suggest the following plan for today:

1) First we will slightly modify our decision model

“Determine Customer Greeting” to make it look more

like a real-world decision service;

2) Second, we will invite a software developer from your IT

(let’s call this person “DEVELOPER”) to join this session

and discuss with us all integration issues using the

already tested decision model “Determine Customer

Greeting”.

READER. Sounds like a good plan. Let me make a quick call, so

the DEVELOPER will join us remotely over the web.

AUTHOR. Please do it. During our webinar with the DEVELOPER,

we may use Google Docs instead of local Excel. It will be an

example of so-called “Collaborative Rules and Decision

Management” – see the corresponding schema at this

OpenRules web page.

OK, let’s start with the first part. In the real-world, application

decision models are usually used as services with clearly

specified Requests (for input) and Responses (for output).

Probably your DEVELOPER expects to see such objects first and

is less interested in your business logic. So, let’s add Request

and Response objects to our decision model “Determine

Customer Greeting”.

https://www.linkedin.com/pulse/collaborative-business-rules-decision-management-jacob-feldman
https://www.linkedin.com/pulse/collaborative-business-rules-decision-management-jacob-feldman
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets

Dialog-Session 3

DMN in Action with OpenRules 45

READER. You keep saying “objects” while so far I only remember

one object “Customer” to whom you referred as a “Business

Concept”.

AUTHOR. You are right – we defined the business concept

“Customer” in our Glossary, then specified a corresponding

Datatype “Customer”, and then defined specific test-customers

in the Data table “customers”.

READER. Probably real customers may be quite different from

our definition of the Customer and contain much more

information.

AUTHOR. Yes, but this is a good thing that we really did not

worry how objects of the type “Customer” are actually

represented in a database or how are they defined in a Java

application that will use our decision model. In a way, our

business concept “Customer” may be considered as our

(decision model’s) view of the actual object “Customer”.

Now, I want to split out business concept “Customer” into 3

business concepts by modifying our Glossary in the following

way:

Dialog-Session 3

DMN in Action with OpenRules 46

READER. I can see that you moved “Current Hour” to the new

business concept “Request” and decision variables “Greeting

and “Salutation” to another business concept “Response”.

AUTHOR. Here is my reasoning for doing that. The “Current

Hour” doesn’t really belongs to the concept “Customer” as we

may receive phone calls from the same customer during

different hours of the day. Greeting and Salutation are also

specific for a particular request, and I placed them in the

separate concept “Response” that contains only output data.

READER. What about new variables “Location” and “Result”?

AUTHOR. We may use “Location” i.e. from where the phone call

was received to define the Current Hour at this location. And I

added “Result” to demonstrate how we can combine the

generated Greeting, Salutation and customer’s Name together.

READER. OK. Should not we modify our Data.xls file now?

AUTHOR. Yes, please do it yourself.

READER. No problem. Here are my new Datatype tables:

Dialog-Session 3

DMN in Action with OpenRules 47

And below are the properly modified Data tables:

Dialog-Session 3

DMN in Action with OpenRules 48

AUTHOR. You didn’t specify any location in the table “requests”

but that is fine as we will not use this attributes in our model at

this time. How about the table “testCases”?

READER. I am not sure how to modify it. We used to have only

one column of the type “ActionUseObject” for the object

“Customer”…

AUTHOR. You can just add two additional columns of the same

type but for the objects Request and Response.

READER. Yes, of course! Here it goes:

Can I run this model now?

AUTHOR. Not yet. Remember we use a special table

“decisionObjects” to map our business concept “Customer” to

decision objects of the type “Customer? We need to modify this

table as follows:

Dialog-Session 3

DMN in Action with OpenRules 49

READER. OK. Now after running “run.bat” I received exactly the

same results.

AUTHOR. Which is good as we didn’t change anything in the

business logic or test-customers. Now we are just better

prepared for the integration with IT. We still have a few minutes

before our web session with your DEVELOPER. Let’s add one

more table to fill out the output variable “Result”.

READER. Let’s do it. You said the Result should look like “Good

Afternoon, Mrs. Robinson!”.

AUTHOR. And here is a decision table “DefineResult” that has

only one Action to define the variable “Result”:

As you can see, here we use a special formula that concatenates

6 different strings:

• ${Greeting} – the generated Greeting

• ”, “ – a comma following by a space

• ${Salutation} – the generated Salutation

• “ “ – a space

• ${Name} – Customer’s name

• “!” – the concluding exclamation sign.

In the actual DMN, you should be able to simply use a so-called

FEEL expression that looks friendlier:

Dialog-Session 3

DMN in Action with OpenRules 50

Greeting + “, “ + Salutation + “ “ + Name + “!”

However, the above formula demonstrates how the current

OpenRules DMN implementation handles the concatenation of

strings (as well as any other Java expression). It will be improved

in future releases.

To make sure that this table will be executed by the decision

model, we should add it to the table “Decision”:

READER. When I tried to run this decision model, it additionally

produced lines like:

Result: Good Afternoon, Ms. Brown!

AUTHOR. Very good. And now it’s time to start our web-session

with your DEVELOPER. Please upload our files Decision.xls,

Glossary.xls and Data.xls to the Google’s server to share them

with the DEVELOPER using Google Docs. Don’t worry, we will

delete them from the server when we are done.

DEVELOPER. Hello!

AUTHOR. Nice to meet you.

READER. Hi. As I told you ahead of time, we’ve completed our

simple decision model called “Determine Customer Greeting”.

Dialog-Session 3

DMN in Action with OpenRules 51

So far we used Excel only to represent our business logic and

created and ran different test cases. So, the model works and is

being tested.

Now we want to integrate this model with a Java application.

My ultimate objective is to make sure that you would be able

to help me to similarly integrate our own decision models in the

future.

DEVELOPER. What information does your model require as an

input and what will it return as an output?

AUTHOR. This is the right question. As a developer, you may

consider the decision model as a “black-box” that takes some

input and produces some output.

READER. We’ve already defined all business concepts in the

Excel file “Glossary.xls” – you can see it in the Google Docs now

(Fig. 3-1).

AUTHOR. The glossary is actually a map between our business

concepts Customer, Request, and Response and Java objects

that should be provided by your Java application. The first

column contains the business names of our decision variables,

and the third column contains their technical counterparts.

Preparing to this discussion, I’ve already opened our

OpenRules’s project “DecisionHelloWithJava” inside Eclipse IDE,

and added 3 Java classes:

• Customer.java

• Request.java

• Response.java

They are basic Java beans and their attributes have exactly the

same names as defined in the file Glossary.xls and the same

Dialog-Session 3

DMN in Action with OpenRules 52

types as defined in the file Data.xls – see the Datatype tables

(Fig. 3-2).

DEVELOPER. OK, this is clear. I can see that you’ve already

added all getters and setters to these Java classes.

AUTHOR. I simply used Eclipse Source +“Generate Getters and

Setters…” to do it. Now I should show you a Java launcher that

will create test-instances of these 3 classes and will pass then to

our decision model using OpenRules Java API. Here is the proper

code from the class Main.java:

AUTHOR. As you can see, first I created an instance of the

OpenRules class Decision:

String fileName = "file:rules/main/Decision.xls";

Dialog-Session 3

DMN in Action with OpenRules 53

String decisionName = "DetermineCustomerGreeting";
Decision decision =
 new Decision(decisionName,fileName);
It refers to the main file “Decision.xls” located in the sub-folder

“rules/main”. Look at this file in Google Docs. The

“decisionName” corresponds to the name of the decision table

on Fig. 3-7.

Then I created test-instances of the classes Customer, Request,

and Response. The class Decision is a HashMap and you should

put these 3 instances into the decision using names specified in

the table “decisionObjects” of the file Decision.xls (Fig. 3-5).

Now we are ready to execute the decision using the method

 decision.execute();

You may print the produced result by displaying any Response’s
attributes, e.g.:

 decision.log(response.getResult());

DEVELOPER. So, let me summarize what you said. I am just

creating an object of the class Decision, adding my input and

output objects using the put-methods, and then calling

Decision’s method execute(). It’s a very straightforward API!

AUTHOR. I am glad you like it. This API is well-documented in

the User Manual, where you will find more specific features. Of

course, you may get your data instances from a database, GUI,

or other sources, convert them to Java objects, pass them to the

decision for processing, and save the decision’s results back to

the original sources.

DEVELOPER. Do you provide any database interface?

http://openrules.com/pdf/OpenRulesUserManual.pdf

Dialog-Session 3

DMN in Action with OpenRules 54

AUTHOR. Yes, OpenRules comes with a simple JDBC interface,

but you may use any 3rd party interface as well.

DEVELOPER. What if my application is not Java-based but rather

.NET?

AUTHOR. No problem. You may deploy your OpenRules decision

project as a web service and the proper WSDL interface for your

.NET application will be automatically generated – read more

here.

DEVELOPER. Can I try your application myself?

AUTHOR. I would recommend that you download the

OpenRules Evaluation Version and open your own Eclipse with

the provided workspace “openrules.dmn”. Then you will be able

to run and debug the discussed decision model from the project

“DecisionHelloWithJava” using Eclipse Run/Debug “As Java

Application”. You will also find many more complex decision

models in this workspace.

READER. It seems you feel comfortable supporting my decision

modeling efforts, don’t you?

DEVELOPER. I think so. Anything else should I know?

AUTHOR. That’s enough to integrate and run decision models.

Also please make sure that your business people (decision

modelers) utilize your standard version control system for

maintenance of their Excel-based rule repositories.

DEVELOPER. Of course, I understand that we should keep all

versions of their Excel files in-tact along with versions of our

software that utilize these decision models.

http://openrules.com/rulesdeployment.htm
http://openrules.com/download_eval.htm

Dialog-Session 3

DMN in Action with OpenRules 55

AUTHOR. And finally, before you go, I want to share a few

general thoughts. A good decision modeling practice frequently

deals with what we, technical people, call “separation of

concerns” or correct distribution of knowledge between

decision model and the code. The DMN standard (and its

OpenRules implementation) allows decision modelers to put a

lot of formulas and even Java code directly into Excel. For

example, the READER and I have already discussed how to add a

customer’s Date of Birth and Age to our model. With

OpenRules, we can define a formula that calculates the current

customer’s Age based on the date of birth. For example,

consider the following decision table:

As you may guess, this decision table directly calls the static

Java method “yearsToday” of the class Dates and passes to it

the value of a Date variable specified by the macro $D{Date of

Birth}. The result will be assigned to the variable “Age”.

DEVELOPER. I guess OpenRules uses “::=” as an indicator of a

Java expression.

AUTHOR. Yes, use “::=” in action-columns and “:=” in condition–

columns.

DEVELOPER. Can they use my own Java methods or 3rd party

Java libraries directly in Excel?

Dialog-Session 3

DMN in Action with OpenRules 56

AUTHOR. Yes. To do that you should make sure that your jar-

files are in the project’s classpath and simply add a statement

“import.java” to the standard Excel table “Environment” as in

this example:

DEVELOPER. Got it.

READER. Why didn’t you tell me about these capabilities? Are

they too technical for me?

AUTHOR. Not only for that reason. The knowledge of how to

calculate a person’s age based on his/her date of birth is not

really business knowledge and does not belong to your business

(!) decision model. Your developers can (and should!) guarantee

that the object Customer already comes with the attributes

Date of Birth and Age being synchronized. That’s why the best

decision models I’ve seen in my multi-year consulting practice

were created by companies in which business specialists and

software developers work in concert. These considerations

complete our session today. Thank you to both of you and good

luck developing and integrating good decision models together!

Suggested Exercises.

1. Consider a more complex decision model when various

customer attributes including gender and marital status

Dialog-Session 3

DMN in Action with OpenRules 57

are missing or unknown – see e.g. this DMCommunity’s

Challenge "Greeting a Customer with Unknown Data"

2. Exercise for DEVELOPER. Analyze and execute the

decision model “DecisionInsurancePremium” that will

be discussed in the Dialog-Session 7. Instead of the

business concepts Driver, Car, and Client defined in

Excel, you should use the corresponding Java classes

with the same names. Execute Main.java directly from

Eclipse – it uses the same decision model but with a

different main decision described in the file

“DecisionJava.xls”

https://dmcommunity.org/challenge/challenge-aug-2016/
http://openjvm.jvmhost.net/WhyAnalyzer/DecisionModels/DecisionInsurancePremium/DecisionInsurancePremium.zip

DMN in Action with OpenRules 58

References

1. Standard “Decision Model and Notation (DMN)”, Object
Management Group

2. Real-World Decision Modeling with DMN by James
Taylor and Jan Purchase, 2016

3. DMN Method and Style: The Practitioner’s Guide to
Decision Modeling with Business Rules by Bruce Silver,
2016

4. Knowledge Automation: How to Implement Decision
Management in Business Processes by Alan N. Fish,
2012

5. OpenRules, Open Source Business Rules and Decision
Management System, http://openrules.com

6. Catalog of DMN Supporting Tools
http://openjvm.jvmhost.net/DMNtools/

7. The Decision Model by Barbara von Halle, Larry
Goldberg, 2010

8. The History of Modeling Decisions using Tables by Jan
Vanthienen, 2012

Get the entire book from Amazon for just $9.95

http://www.omg.org/spec/DMN/Current/
https://www.amazon.com/Real-World-Decision-Modeling-James-Taylor/dp/0929652592/ref=sr_1_1?ie=UTF8&qid=1479926614&sr=8-1&keywords=Real-World+Decision+Modeling+with+Dmn
https://t.co/hPwsqPWI68
https://t.co/hPwsqPWI68
http://www.amazon.com/Knowledge-Automation-Implement-Management-Processes/dp/111809476X/ref=pd_bxgy_b_img_y
http://www.amazon.com/Knowledge-Automation-Implement-Management-Processes/dp/111809476X/ref=pd_bxgy_b_img_y
http://www.openrules.com/
http://openrules.com/
http://openjvm.jvmhost.net/DMNtools/
http://www.amazon.com/Decision-Model-Framework-Technology-Management-ebook/dp/B009STI2IQ/ref=sr_1_1?s=books&ie=UTF8&qid=1400933629&sr=1-1&keywords=The+Decision+Model
http://www.brcommunity.com/a2012/b637.html
https://www.amazon.com/dp/B06W579JYM

