4
é JavaOne-

WWWw.jcp.org www.openrules.com

JSR 331

“Constraint Programming API”

CON3255

Jacob Feldman, PhD
JSR331 Specification/Maintenance Lead

OpenRules, Inc., CTO
jacobfeldman@openrules.com

October 1,2012



|

HE

a [ava
=l Community
Process

@ Shock Troops for Business Innovation
“I have concluded that decision making and the
techniques and technologies to support and
automate it will be the next competitive

battleground for organizations.

Those who are using business rules, data mining,
analytics and optimization today are the shock
troops of this next wave of business innovation™

Tom Davenport




é. jlava
=l Community
JECH Process

OPEN
RULES

A e e

Optimization Engines

Optimization usually refers to a mathematical technique

used to calculate the best possible resource utilization to
achieve a desired optimization objective such as:

B minimizing expenses or travel time

B maximizing ROI or service level, etc.

Optimization Engine:

B Determines how to most effectively allocate resources,
automatically balancing trade-offs and business constraints

B Eliminates the need to manually work out plans and schedules, so
your customers can achieve maximum operational efficiency

Leading Optimization Techniques

B LP/MIP — Linear and Mixed Integer Programming

B CP — Constraint Programming



é. jlava
=l Community
JECH Process

OPEN
RULES

Constraint Programming (CP)

Constraint Programming (CP) is a proven optimization

technology supported by many of-the-shelf solvers with
C++ and Java APIs

Constraint Programming has strong roots in Operation
Research and Al:

Handbook of Constraint Programming (Elsevier, 2006)

- Association for Constraint Programming

CP is especially successful dealing with real-world
scheduling, resource allocation, and complex configuration
problems

B CP clearly separates Problem Definition from Problem Resolution
bringing declarative programming to the real-world

B CP makes different optimization techniques handily available to
regular software developers (without PhD in Operation Research)


http://slash.math.unipd.it/acp/
http://slash.math.unipd.it/acp/

fal 1ava

==l Community
I

Process

java

4
z-i- JavaOne-

Typical CP Applications

Scheduling and
Resource
Allocation

Complex
Configuration
Problems

Supply Chain
Management
Staff Rostering

Vehicle Routing

5 Delivery planning

Ele Sobw Loyt Ocbivication  Opbons Helo

LT B e —

l Computation completed

Mo | Geogashicatlocaticns | Stes | Vehicks | Debveses | RostingPian |

fie firosk Schedule

Name|CSP-A19

Start:[22:0114 End{00:01:1 B, start|
Prod{1680 (nb parts)

B. end{
Cons. (3600  (kq)

| Play I|Pause|| Step I| Reset||n|m|

Lo ]

TW|T|F[s[s[v|T[wW|T[F|S

MORMAL Valerie

NEYE Olivier

CAMU Bernard

=[=z[=|=
=[=z|=|+
HEBEBE

CONTENTFrederik

MARELLA Eric

SEMPELS Antonio

JADOUL Juan

YAN DEN HURK Jan

ARCOS Christophe

MOUSSA Simon

LENARD Olivier

PEFN Sandra

olo|o|o|o|o|o|o|o|a|a]w

E S (S (S (S (N (S (S 0 N S




« java
==l Community
java g

rocess

OPEN
RULES

Some Popular CP Tools

Java API
B Choco, Constrainer, JaCoP, JSetL, Cream

C++ API
B IBM/ILOG CP — Commercial (www.ilog.com)

B Gecode — Open Source (www.gecode.org)

CP environments with specialized modeling languages
B OPL from IBM ILOG (www.ilog.com)
B MiniZinc from G12 group,Australia (http://www.gl2.cs.mu.oz.au)

B Comet, Brown University (www.comet-online.org)
B Prolog-based tools (ECLiPSe, SICStus)

20+ other CP Solvers: http://slash.math.unipd.it/cp/

CP Solvers are usually well integrated with other
optimization tools (LP, MIP)

Lack of Standardization



@&d SR 331: Constraint Programming API

JSR 331 became an official standard in
March 2012 and is in 2 maintenance mode

This session describes:
Major Constraint Programming concepts

Practical examples of constraint satisfaction
and optimization problems including
scheduling and resource allocation

How OpenRules uses JSR 331 as an
optimization component of its open source
decision management system

JavaOne-



http://www.jcp.org/

@3 JSR 331:Key Obijectives

Make CP more accessible for business
software developers

Allow a Java business application developer
to easily switch between different CP
solver implementations without any changes
in the application code

Assist CP vendors in creating practical and
efficient JSR 33| implementations

JavaOne-




Procedural vs Declarative
Programming

A Simple example of a constraint
satisfaction problem:

There are three integers x, y, and z defined from 0 to 10,

Our goal is to find the solution that would maximize or minimize the objective function
represented by the following integer expression:
cost=3x*y-4*%z

subjected to:
X<y
X+y=12

A A Pure Java solution

A A CP-based solution

'g JavaOne-




Java solution

public static void main(Stringl[]

for(int = = 0;
for

x <= 10;
0

(int =z =
if

x++) {
v <= 10;

0; z <= 10;
(x < v && (X + v

(int v =
for

unused) |

y++) |

z++) {
z) )

System.out.println("x="+x + " y="+y + "

1

z='|'l

+z);

public static void main(Stringl[]

for(int =z =
for

0; = < 10;

(int v = = + 1;
int z = x + vy;

if (z <= 10)

x++)
¥ <=

{

unused)

10; v++)

{

{

System.cut.println("x="+x +

T

y="4y o+

T

— ]

=

+z);

4
‘E( JavaOne-

10




| CP-based Solution

public class Test {

public static void main(String[] args) {

Problem p = ProblemFactory.newProblem("Test") ;
// ======= Define wvariables

Var x = p.variable ("¥", 1, 10);

Var y = p.variable("¥", 1, 10);

Var z = p.variable("z", 1, 10);

Var cost = x.multiplyv(3) .multiply(y) .minus(z.multiply(4)}):;
// ======= Define and post constraints

p.post(x, "<", y); // ¥ < ¥

p.post(x.plus(y), "=", z); // ® + ¥ = Z

// === PROBLEM RESOLUTION ========s=========—==——==—=—===c==c=
p.log("=== Find Solution:");
Solver solver = p.getSolver():;
Solution scolution = solver.findSolution() ;
if (solution != null)
solution.log();
else
p.log("No Solution™);
p.log("Cost " + cost);

&
=’ JavaOne




ava
community
’rocess

i Constraint Satisfaction Problem - CSP
RULES

HE

Typical CSP structure:

I. Problem Definition (what to do)

Define Constrained Variables with all possible values
Define Constraints on the variables

2. Problem Resolution (how to do it)

Find Solution(s) that defines a value for each variable
such that all constraints are satisfied or

Find an optimal solution that minimizes/maximizes a
certain optimization objective

12



How the constraint “X <Y’ works

Let’s assume X and Y are defined on the domain [0,10]

Initial constraint propagation after posting X<Y
constraint:

X[0;9]

Y[I;10]

Changes in X cause the changes inY
X>3 Y Y>4

Changes inY cause the changes in X
Y<=8 Y X<=7

Bi-Directional constraint propagation




« GG ]
=l Community
|EiCH Process

OPEN
RULES

Constraint Propagation (intuitive view)

User Actions: oSmall o Eng

Automatic Actions-i Bi g Eng

AnSchedul ero, nAConfigur

&
=’ JavaOne

14




(‘ java

=l Community

IECH Process

JSR-331 CP API: Basic Concepts

Problem — the main class that defines constraint
satisfaction problems.A placeholder for all other objects
and methods

B Var — defines constraint integer variables

B VarReal — defines constraint real variables

B VarBool — defines constraint real variables

B VarSet — defines constraint set variables

B Constraint — defines various constraints

Solver — the main class that solves constraint the
problem

B Search Strategy
B Solution

15



‘g JavaOne-

CP API: Examples

Analyse basic JSR-33 1 arithmetic examples:
BTestl —find a solution
BTest2 — find all solutions

BTest3 — find an optimal solution

Let’s analyse and run these problem in Eclipse IDE

16



(il

7 |ava
, P

b Comi

IECH Proce

OPE
RULES

. e m

. CSP Example:“Map Coloring”

A map-coloring problem involves choosing
colors for the countries on a map in such a way
that at most 4 colors are used and no two
neighboring countries have the same color

We will consider six countries: Belgium,

Denmark, France, Germany, Netherlands, and
Luxembourg

The colors:

Bblue, white, red or green

17



Example “Map Coloring”: problem variables

Problem p = ProblemFactory.newProblem("MapColoring");
// Define Variables

Var Belgium = p.variable("Belgium®,0, 3);
Var Denmark = p. variable("Denmark®.0, 3);
Var France = p.variable("France®,0, 3);

Var Germany = p.variable("Germany*,0, 3);
Var Netherlands = p.variable("Netherlands*,0, 3);
Var Luxemburg = p.variable("Luxemburg*,0, 3);

Each country is represented
as a variable that
corresponds to an unknown

color: 0,1,2, or 3
\ J

18



« GG

—=)

=l Community
JICH Process

OPEN
RULES

&«
= JavaOne-

“Map Coloring”: problem constraints

oo T o B o T o B o T o Y o T

.post (France, "!=", Belgium);
.post (France, "!=", Luxemburqg):;
.post (France, "!=", Germany):;
.post (Luxemburg, "!=", Germany):
.post (Luxemburg, "!=", Belgium);
.post (Belgium, "!=", Netherlands):;
.post (Belgium, "!=", Germany):;
.post (Germany, "!=", Netherlands);
.post (Germany, "!=", Denmark):

19



v ‘Map Coloring”: solution search
RULES

if (solution != null
solution.log() ;
for (int 1 = 0; 1 < p.getVars().length; i+4+) {
Var var = p.getVars () [1]:
p.log({var.getName () + " - "
+ coleors[solution.getValue (var.getNams () ) 1) ;

Solution scolution = p.getSolver () .findSoclution():;
)y |

¥

I else
p-log("no solution found");

// Solution:
Belgium — red
Denmark — red
France — green
Germany — blue

Netherlands — green

¢ Luxemburg - yellow
=’ JavaOne- 20




« 1GLE
=l Community
JECHl Process

OPEN
RULES

4
é JavaOne-

Solve Logical Puzzle

SEND + MORE = MONEY

This example shows how to represent and solve a simple puzzle:

SENMD
+MORE

MONEY

where different letters represent different digits.

Eclipse: SendMoreMoney.java

21



« 1GLE
=l Community
JECHl Process

OPEN
RULES

4
é JavaOne-

Logical problem:*“Zebra”

Here are the facts:

(1) There are 5 houses, each painted with a different color,

The house is numbered from 1 to 5, from left to right.

(2) Each house is occupied by only one person; each person has

a different nationality from the others.

(3) Each person drinks a different drink, smokes a different cigarette,
and has a different pet.

Now, here are the known constraints:

(1) The British lives in the red house.

(2) The Spaniard has a dog.

(3) The owner of the green house drinks coffee,

(4) The Ukrainian drinks tea.

(5) The green house is located at the right side of the white house.

(6) The person who smokes OldGolds has a snail.

(7) The owner of the yellow house smokes Kools.

(8) The person, who lives in the house exactly in the middle, drinks milk.

(9) The Norwegian lives in the house numbered one.

(10) The person who smokes Chesterfield lives next to the person who has a fox.
(11) The person who has a horse lives next to the person who smokes Kools.
(12) The person who smokes LuckyStrike drinks juice,

(13) The Japanese smokes Parliament.

(14) The Norwegian lives next to the the blue house.

The guestion is:

Who has a ZEBRA? Eclipse: Zebra.java




Scheduling Problems
RULES I

SchedulingProblem

— / \

Constraints
Activity Resource
Activity I IL_“ Requirement . Resource '
| Activity Ff Constraints ).i Resource __

A special Java package: org.jcp.jsr331.scheduler

&
= JavaOne-




« 1E8& ]
=l Community
JICH Process

OPEN o
- House Construction Problem

&
= JavaOne-

4;"'

Windows

Masonry 7
Carpentry 3 "
\ i
Roofing 1 Plumbing B Ceiling 3
Fagade 2 Garden 1 Painting 2

Moving In 1

Eclipse: ScheduleActivities.java

24



« IGE -
=l Community
ELCH Process

OPEN
RULES

&«
=’ JavaOne

Resource Allocation Problem

The following problem deals with activities that require a common resource. Let's
consider 5 different orders (activities) that fire batches of bricks in an oven (a resource
with a limited capacity). Each order ‘s size and duration, as well as the oven's capacity,
are described in the following figure:

# Batches
A
2
a8 Days
1 : ] R rral T T 3 >
01 2 3 4 5 6 7 8 9 1011
Global capacity of the oven
A| 2 batches, 1 day
B 1 batch, 4 days 5 Activities
C 1 batch, 4 days

D | 1 batch, 2 days

E e e Eclipse: Ovens.java

25




« 1GLE
=l Community
JECHl Process

Oven.java
RULES

4
é JavaOne-

Schedule schedule = ScheduleFactory.newSchedule( h o v e 1) 0

2 batches, 1 day

L batch, 4 days
1 batch, 2 days

Activity A = schedule.addActivity(1, "A");
Activity B = schedule.addActivity(4, "B");
Activity C = schedule.addActivity(4, "C");
Activity D = schedule.addActivity(2, "D");
Activity E = schedule.addActivity(4, "E");
Resource oven = schedule.addResource(3, "oven");
oven.setCapacityMax(0, 2);
oven.setCapacityMax(1, 1);
oven.setCapacityMax(2, 0);
oven.setCapacityMax(3, 1);

E

2 batches, 4 davs

oven.setCapacityMax(4, 1);

Days

oven.setCapacityMax(10, 1); 01 2 3 4 5 6 7 8 9 1011
/[ Resource Constraints

A.requires(oven, 2).post();

B.requires(oven, 1).post();

C.requires(oven, 1).post(); SOLUTION:

D.requires(oven, 1).post();
E.requires(oven, 2).post();

/[ Find Solution
schedule.scheduleActivities();
schedule.displayActivities();

A[5 -- 1 --> 6) requires oven|2]
B[3 -- 4 --> 7) requires oven[1]
C[7 -- 4 --> 11) requires oven[1]
D[O -- 2 --> 2) requires oven[1]
E[6 -- 4 --> 10) requires oven|[2]




OpenRules “Rule Solver”

provides an Excel-based
interface for |SR-33 |

Oriented to business analysts (non-
programmers)

Allows them to model and solve
business decision optimization
problems without learning Java

27


http://openrules.com/rulesolver.htm

Example “Staff Rostering”

As the manager, you are required to hire and set a
weekly schedule for your employees as follows:

BTotal employees required

Mon | Tue | Wed

Thu Fri

Sat Sun

5 8 9

10 16

18 12

A Available employees:

Employee Type

Total

Cost per Day

F/T

14

$100

P/T

4

$150

What is the minimal staffing cost?

MTW T F S S
FT' 5 8 9 10 14 14 12
PTO O OO0 2 4 0

28




Decision “DefineEmployeeSchedule”

Presented in Excel file “Decision.xls”

Decision Variables are defined in the glossary table:

Glossary glossary

Decision Variable LoZ Attribute Domain Unknown
Concept
Mon FT monFT 0-14 TRUE
Mon PT monPT 0-4 TRUE
Tue FT tueFT 0-14 TRUE
Tue PT tuePT 0-4 TRUE
Wed FT wedFT 0-14 TRUE
Wed PT wedPT 0-4 TRUE
ThuFT thuFT 0-14 TRUE
Thu PT Roster thuPT 0-4 TRUE
FriFT fiFT 0-14 TRUE
FriPT friPT 0-4 TRUE
SatFT satFT 0-14 TRUE
Sat PT satPT 0-4 TRUE
sunFT sunFT 0-14 TRUE
Sun PT sunPT 0-4 TRUE
Total Cost totalCost 0-20000 TRUE

29



java

community

Decision “DefineEmployeeSchedule”

Decisions Execute Rules
Define Employee Daily Demand = EmployeeDailyDemand()
Define Total Cost /ﬁﬁneﬂ]tal&]st()

DecisionTable EmployeeDailyDemand
ActionXoperYcompare’Z

e el B Value\
Oper Oper

Mon FT + | MonPT - 5

Tue FT + Tue PT = 8
Wed FT + Wed PT = 9

ThuFT j DecisionTable Define TotalCost

Fri ET 1 ActionScalProd

SatFT 4| Name of the Scalar Numbers Variables

SunFT 4 Product

100.150,100,150,100,150, |Mon FT, Mon PT, Tue FT, Tue PT, Wed FT,
Total Cost 100,150,100,150,100,150, |Wed PT, Thu FT, Thu PT, Fri FT, Fri PT,

100,150 Sat FT, Sat PT, Sun FT, Sun PT

30



« 1GLE
=l Community
JECHl Process

OPEN
RULES

4
é JavaOne-

Run Decision from Java

import com.openrules.ruleengine.Decision;
public class Main {
public static woid main(5tring[] args) {

String fileName = "file:rules/Decision.xls”;
System.setProperty( "OPENRULES MODE", "Solve");

Decision decision = new Decision("DefineEmployeeSchedule” ,fileName);

decision.put("MaxSclutions”™, "38");
decision.put("Minimize","Total Cost");
decision.execute();
decision.execute("PrintScluticon™);

}
h
==== Optimal Solution =====
MTW T F S S
FT' 5 8 9 10 14 14 12
PTO O OO0 2 4 O
Total Cost: 8100

31




« 1G] |
=l Community
ELCH Process

JSR-331 Implementations

Problem
Description
(JSR-331 Standard API) —| LinearSolvers |

CPLEX
GUROBI '
[Fite | i
| ISett ‘ Generated Standard scie

e Problem Representation
1 (MPS/LP Format)

_-{ Constraint Solvers }_

Choco l
Constrainer l

7

(]

JaCoP O GLPK

g i Problem j
. Oscar : Solutions OJALGO

TR : (JSR-331 Standard AP1)




« 1GLE
=l Community
JECHl Process

OPEN
RULES

4
*c.g JavaOne-

Use Case “Cloud Balancing”

You have a number of cloud computers and need to
run a number of processes on those computers

Each process requires certain CPU power, RAM, and
network bandwidth and incurs a certain maintenance
cost (which is fixed per computer)

Obijective: assign process to computers while minimize
the total maintenance cost

33



S

java

=l Community
Process

java

Variable Computer

Input classes: CloudComputer, CloudProcess

Decision variables are in this class:

Ppublic class VarComputer {

CloudComputer computer;

Var[] processVars; // processVars[i] = 1 means this computer is used by the i-th process
public VarComputer (Problem p, CloudComputer computer, CloudProcess[] processes,
int[] requiredMemories, int[] requiredCpuPowers, int[] requiredNetworkBandwidths)
this.computer = computer;
processVars = new Var[processes.lengthl];
for (int i = 0; 1 « processes.length:; i++) |
String name = "P" 4 processes[i].getId() + "C" 4+ computer.getId():;
processVars[i] = p.variable (name,0,1);

}

p-post (requiredMemories, processVars, "<=",computer.getMemocry());
p-post (requiredCpuPowers, processVars, "<=",computer.getCpuPower ()) ;
p-post (requiredNetworkBandwidths, processVars, "<=",computer.getNetworkBandwidth()):

public Var[] getProcessVars() {
return processvVars;

1

4
é JavaOne-

34




Modeling and Search for
an Optimal Solution

A small problem ‘4 x12” with a constraint
solver

4 computers and |2 processes
“Brute force” approach: 650mills

“Sort processes first” approach: 490 mills
A larger problem “10 x 20”

BConstraint solver takes 30 seconds

(50x longer) and only when we set a time limit

BLinear Solver (identical source code, just
different jars in classpath)

Finds an optimal solution in 1,200 milliseconds

35



Modeling and Search for
OPEN . .
an Optimal Solution (2)

A large problem “50 x100”

50 computers and 100 processes
Constraint solver requires special selectors and time
limits

Linear Solver takes 2.5 hours to find an optimal

solution
A huge problem “5,000 x 55,000”
Offered at the recent competition

The winners found the best solution within 5 mins
using a unique selection of subsets of processes and
computers and a specially written solver

3



http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php

JSR 33| Free Downloads

Open Source

Download JSR-331
B

Detailed Documentation

Want to contribute?

BEmail to to get
an SVN access

Rule Solver
B



http://openrules.com/jsr331
mailto:jacobfeldman@openrules.com
http://openrules.com/rulesolver.htm

