
Java Community Process

www.jcp.org

August-2011

JSR-331
Java Constraint Programming API

SPECIFICATION

Version:

0.8.1

Status:

Final Draft

Specification Lead:

Jacob Feldman, OpenRules, Inc.

JSR-331: Constraint Programming API

2

Table of Contents

Introduction .. 5

Rationale ... 5

Objective .. 5

Target Audience .. 6

Scope .. 6

Compliance .. 7

Document Conventions .. 7

Architecture .. 9

Specification .. 10

JSR-331 Implementations ... 11

Technology Compatibility Kit .. 12

Deployment Model .. 13

Constraint Satisfaction Problem (CSP) .. 13

Formal Definition ... 13

Major JSR-331 Concepts .. 14

Introductory Example .. 14

Problem Definition Concepts ... 16

Interface “Problem” .. 16

Creating Variables .. 17

Creating and Posting Constraints ... 17

Common Methods ... 18

Common Interface “ConstrainedVariable” ... 19

Constrained Integer Variables “Var” .. 20

Creating Integer Variables... 21

JSR-331: Constraint Programming API

3

Manipulating Integer Variables .. 23

Arithmetic Operations with Integer Variables ... 23

Constrained Boolean Variables .. 25

Constrained Real Variables ... 26

Constrained Set Variables ... 26

Defining Constraints .. 28

Common Interface “Constraint” ... 29

Problem Methods for Constraints .. 30

Posting Constraints .. 31

Example of a Problem with Various Constraints ... 32

Linear Constraints .. 33

All Different Constraint ... 35

Element Constraints ... 35

Cardinality Constraints.. 36

Global Cardinality Constraints .. 37

Min/Max Constraints .. 38

More Constraints .. 39

User-Defined Constraints... 39

Problem Resolution Concepts .. 41

Interface “Solver” .. 41

Example of Constraint Relaxation Problem ... 45

Interface “SearchStrategy” .. 46

Strategy Execution List ... 47

Adding Non-Search Strategies .. 48

Variable Selectors ... 49

Value Selectors ... 51

More Search Strategies .. 53

JSR-331: Constraint Programming API

4

Interface “Solution” .. 54

Solution Iterator ... 55

More Implementation Examples ... 57

Simple Arithmetic Problem ... 57

Queens Problem .. 59

JSR-331: Constraint Programming API

5

INTRODUCTION
This JSR-331 is a Java Specification Request being developed under the Java

Community Process rules. This specification defines a Java runtime API for Constraint

Programming.

Rationale

Constraint Programming (CP) is a programming paradigm which provides useful tools to

model and efficiently solve constraint satisfaction and optimization problems. Today CP

is a proven optimization technique and many CP solvers empower real-world business

applications in such areas as scheduling, planning, configuration, resource allocation,

and real-time decision support. However, the absence of standards still limits the

acceptance of CP by the business world.

This specification addresses the need to reduce the cost associated with incorporating

constraint-based engines within business applications and the need to reduce the cost

associated with implementing platform-level optimization tools and services. A number

of vendor-specific CP APIs do exist. However, the differences between these specifications

are significant enough to cause costly difficulties for application developers, platform

vendors, researchers, and software architects.

Objective

The standardization of Constraint Programming aims to make CP technology more

accessible for business software developers. Having a unified Java interface will allow

commercial Java application developers to model their problems in such a way that the

same model can be tried with different CP solvers. This will minimize vendor dependence

without limiting vendor's innovation. At the same time, the standardized API will help to

bring the latest research results to real-world business applications.

The objectives of the specification are to:

- Facilitate adding constraint-based decision support technology to Java applications

- Increase communication and standardization between CP vendors.

- Encourage the creation of a market for vertical constraint-based application and tool

vendors through a standard CP API

- Facilitate embedding constraint-based techniques in other JSRs to support

declarative programming models

- Make Java applications more portable from one constraint solver vendor to another.

- Provide implementation patterns and supporting libraries of constraints and search

strategies for different constraint-based applications

JSR-331: Constraint Programming API

6

- Support CP vendors by offering a harmonized API that meets the needs of their

existing customers and is easily implemented.

Target Audience
The specification is aimed at three major audiences:

1) Business application developers who will use the CP API to develop real-world

decision support application using the standard, vendor-neutral, Java interface

2) Constraint solver vendors who will develop and maintain their own

implementations of the CP API compliant with the specification

3) CP Researchers, who will provide and enrich libraries of the standard

constraints, search algorithms, and concrete problems that will be maintained by

the CP Community.

Scope
The scope of the specification is to define an easy-to-use, lightweight-programming

interface that constitutes a standard API for acquiring and using a constraint solver.

The specification targets the Java-based platforms and is compatible with JDK1.5 or

higher.

The scope of the specification follows a minimalistic approach with emphasis on ease to

use. It covers commonly accepted CP concepts and their representations that have been

already de-facto standardized in various CP solvers and scientific articles. At the same

time, the scope of the specification is broad enough to allow business application

developers to use the standardized CP interfaces to model and solve typical constraint

satisfaction problems in the most popular business domains such as scheduling, resource

allocation, and configuration.

The following concepts and items are in the initial scope of the specification:

- Constrained variables of major types Integer, Boolean, Real, and Set

- Unary and binary constraints and constrained expressions defined on

constrained variables

- The most popular global constraints

- An ability to find a solution, all solutions, and optimal solutions under

certain, user-defined, limits.

The CP API is expected to be extended and thus it also specifies how to add new CP

concepts, features, and strategies as they become commonly accepted.

The JSR-331 concentrates only on the CP interface for application developers and does

not assume any particular implementation approach. The following concepts and items

JSR-331: Constraint Programming API

7

are outside the scope of the specification and remain a prerogative of different CP solvers

and specialized CP tools:

- Domain implementation mechanisms for different domain types

- Implementations of major binary and global constraints

- Constraint propagation mechanisms

- Backtracking and reversibility mechanisms.

Compliance
Compliance is of interest to the following audiences:

- Those designing, implementing, or maintaining JSR-331 implementations

- Governmental or commercial entities wishing to procure JSR-331

implementations

- Testing organizations wishing to provide a JSR-331 compliance test suite

- Software developers wishing to use the same code for problem definition and

problem resolution when they decide to switch between different but compliant

JSR-331 implementations

- Researchers wishing to demonstrate, and make freely available for testing and

actual use the results of their research

- Educators wishing to teach JSR-331 compliant constraint programming courses

- Authors wanting to write about JSR-331 compliant CP solvers.

The text in this specification that specifies requirements is considered normative. All

other text in this specification is informative, that is, for information purposes only.

Normative text is further broken into required and conditional categories. Conditionally

normative text specifies requirements for a feature such that if that feature is provided,

its syntax and semantics must be exactly as specified. If any requirement of the

specification is violated, the behavior is undefined.

Document Conventions
The regular Century Schoolbook font is used for information that is prescriptive by this

specification.

The italic Century Schoolbook font is used for paragraphs that contain descriptive

information, such as notes describing typical use, or notes clarifying the text with

prescriptive specification.

[While the document is under review, we will use italic blue font to write notes and

questions for reviewers that should not be considered as a part of the specification. The

reviewer notes will be taken in brackets]

The Courier New font is used for code examples.

JSR-331: Constraint Programming API

8

Within this specification the words “should” and “must” mean that compliant

implementations are required to behave as described.

All examples in this specification are for illustrative purposes and are non-normative. If

an example conflicts with the normative prose the prose always takes precedence. A

significant portion of the specification resides in the documentation of the API (javadoc).

The javadoc is normative.

JSR-331: Constraint Programming API

9

ARCHITECTURE
The JSR-331 prescribes a set of fundamental operations used to define and solve

constraint satisfaction and optimization problems. The JSR-331 consists of three major

components:

- Specification (CP API)

- JSR-331 Implementations based on different CP solvers

- Technology Compatibility Kit (TCK) - a suite of tests, tools, and documentation

that will be used to test implementations for compliance with the specification.

Architecturally the JSR-331 can be viewed as:

Figure 1. JSR-331 Architecture

Every JSR-331 Implementation may implement the CP Interface directly or by extending

the Common Implementation classes. The Common Implementation may essentially

simplify JSR-331 implementation efforts. As the standard becomes more mature and

many implementations have more common constraints and search strategies, they will

be gradually added to the Common Implementation libraries.

JSR-331: Constraint Programming API

10

Specification
The JSR-331 specification consists of:

- Pure CP Interface (javax.constraints)

- Common Implementation (javax.constraints.impl).

The specification is completely independent of its implementations and defines a

standardized CP API using the following packages:

Java Package Description

javax.constraints Pure Java interfaces such as

Problem and Solver that specify

major concepts and methods to define

and solve constraint satisfaction and

optimization problems. It also

specifies needed enum’s. The only

class included in this package is

ProblemFactory that allows a user

to create instances of Problem that

correspond to a selected JSR-331

implementation.

javax.constraints.impl Java classes such as

AbstractProblem and

AbstractSolver that implement

(partially or completely) problem

definition and resolution concepts

and methods that do not depend on

concrete CP solvers

javax.constraints.impl.constraint This is a “Library of Constraints”

that contains implementations of

commonly used constraints which are

not aware of the specifics of concrete

implementations (CP solvers)

javax.constraints.impl.search This is a “Library of Search

Strategies” that contains

implementations of commonly used

search strategies which are not

aware of the specifics of concrete

JSR-331 implementations

javax.constraints.impl.search.selector Implementations of commonly used

selectors for variables inside an array

of variables (e.g.

VarSelectorMinDomain) and

values inside variable domains (e.g.

ValueSelectorMaxDegree). These

implementations are not aware of the

specifics of concrete JSR-311

JSR-331: Constraint Programming API

11

implementations and can be used by

different search strategies

JSR-331 Implementations
Any implementation of the JSR-331 specification is based on a concrete CP solver and

provides implementation classes for all interfaces defined in the package

“javax.constraints”. Some implementation classes can directly implement the

standard interfaces and others can be inherited from common implementations provided

in the specification package “javax.constraints.impl”. The JSR-331 requires any

implementation to provide as a minimum a strictly defined list of implementation classes

within the following Java packages:

Java Package Description

javax.constraints.impl Java classes such as Problem and Solver

that provide final implementations for

problem definition and resolution concepts

and methods. These implementation classes

can be inherited from the common (usually

abstract) classes defined in the package with

the same name but on the specification level,

e.g. class
javax.constraints.impl.Problem

extends
javax.constraints.impl.AbstractProb

lem that implements
javax.constraints.Problem

javax.constraints.impl.constrai

nt
This is a “Library of Constraints” that

contains implementations of basic and global

constraints which are based on concrete CP

solvers

javax.constraints.impl.search This is a “Library of Search Strategies” that

contains implementations of search strategies

which are based on concrete CP solvers.

Additionally every implementation may also provide its own (“native”) constraints and

search strategies assuming that they follow the standardized interfaces

javax.constraints.Constraint and javax.constraints.SearchStrategy.

The fact that all JSR-331 implementations will use the same names for packages, major

classes and methods will allow business application developers to easily switch between

different implementations without any changes in the application code. They can write

JSR-331: Constraint Programming API

12

application-specific constraint-based engines once using only common CP API and use

different CP solvers by changing only implementation-specific jar-files in their classpath.

Note. An ability to switch between underlying solvers with “no changes in the application

code” comes with a price: the fixed naming convention for implementation packages means

that JSR-331 based applications cannot mix two different implementations at the same

application code. The choice of an underlying implementation is defined only by a jar file

in the application classpath.

Technology Compatibility Kit
The Technology Compatibility Kit (TCK) is a suite of tests, tools, and documentation that

will be used to test implementations for compliance with the JSR-331 specification. The

TCK is based on the JUnit framework and includes JUnit tests that cover all mandatory

features included into the latest release of the JSR-331.

The JSR-331 TCK consists of two packages:

Java Package Description

org.jcp.jsr331.tests

This package contains JUnit modules that allow a

user to automatically validate if a concrete

implementation is compliant with the JSR-331

(i.e. produces expected results for major

functional tests)

org.jcp.jsr331.samples

This package contains CSP samples that provide

integrated tests for major CP constraints and

search strategies included in the JSR-331 and

demonstrates the use of CP for real-world

problems

Not all concepts introduced in the package “javax.constraints” are required to be

implemented by a CP solver to be compliant with the JSR-331. The package

“org.jcp.jsr331.tests” includes only those tests that are normative (must be

satisfied by any implementation for compliance purposes). The module

“AllTests.java” inside this package lists all normative tests.

The package “javax.constraints.impl” provides default implementations for some

optional interfaces and methods. There are two types of the optional implementations:

1. Actual default implementations (not always the most efficient) that can be

overridden by a particular JSR-331 implementation

2. Simple stubs that throw runtime exceptions informing a user that these methods

are not implemented by a particular implementation.

JSR-331: Constraint Programming API

13

Note. The package “org.jcp.jsr331.samples” is for demonstration purposes only and

not all included samples have to be supported by all implementations.

Deployment Model
The deployed business applications that utilize the JSR-331 API will require the

following jar-files in its classpath:

- jsr331.jar: includes all standard specification interfaces and classes

- jsr331.<solver>.jar: includes all implementation specific classes

- <solver>.jar: include all classes for the CP solver based on which this

implementation was created.

For example, a Choco-based deployment will need the following jars:

- jsr331.jar

- jsr331.choco.jar

- choco.jar

Note. The JSR-331 does not depend on a particular implementation of logging

mechanisms and does not need logging jars. However, all JSR-331 implementations must

provide their own logging by implementing only basic methods log(string),

debug(string), and error(string) inside the class Problem.

CONSTRAINT SATISFACTION PROBLEM (CSP)
Many real-life problems that deal with multiple alternatives can be presented as

constraint satisfaction problems (CSP) and can be successfully solved by applying

different Constraint Programming tools.

Formal Definition
Formally a Constraint Satisfaction Problem is defined by

a set of variables V1, V2, … Vn, and

a set of constraints, C1, C2, … Cm.

Each variable Vi has a non-empty domain Di of possible values. Each constraint Cj

involves some subset of the variables and specifies the allowable combinations of values

for that subset. A state of the problem is defined by an assignment of values to some or

all of the variables. A solution to a CSP is an assignment that satisfies all the

constraints. If a CSP requires a solution that maximizes or minimizes an objective

function it is called “constraint optimization problem”. We will use an abbreviation CSP

for both types of problems.

The main CSP search technique interleaves various forms of search with constraint

propagation, in which infeasible values are removed from the domains of the variables

JSR-331: Constraint Programming API

14

through reasoning about the constraints.

Major JSR-331 Concepts
JSR-331 defines all necessary Java concepts to allow a user to represent and solve

different Constraint Satisfaction Problems. JSR-331 supports a clear demarcation

between two different CSP parts:

1) Problem Definition represented by the interface Problem

2) Problem Resolution represented by the interface Solver.

Correspondingly, all major CP concepts belong to one of these two categories. At the very

high level a business user is presented with only 6 major concepts:

Problem

Constrained Variable

Constraint

Solver

Search Strategy

Solution

While different CP solvers use different names and representations for these major

concepts, semantically these 6 concepts are invariants for the most of them. JSR-331

provides a unified naming convention and detailed specifications for these concepts.

The Problem Definition does not “know anything” about the Problem Resolution. An

instance of the class Problem may exists without any Solver being created. Contrary, an

instance of the class Solver may be created only base on a particular problem. During

solution search, a solver can change a problem state (such as domains of constrained

variables). It is the responsibility of a particular solver to keep (or not) different problem

states based on the selected search strategy it defines.

Introductory Example
The following example demonstrates how a problem definition and a problem resolution

are presented using JSR-331 API for a very simple arithmetic problem:

import javax.constraints.*;

public class Test {

 Problem p = ProblemFactory.newProblem("Test");

 public void define() { // PROBLEM DEFINITION

 //======= Define variables

 Var x = p.variable("X",1,10);

 Var y = p.variable("Y",1,10);

 Var z = p.variable("Z",1,10);

 Var r = p.variable("R",1,10);

JSR-331: Constraint Programming API

15

 Var[] vars = { x, y, z, r };

 //======= Define and post constraints

 try {

 p.post(x,"<",y); // X < Y

p.post(z,">",4); // Z > 4

p.post(x.plus(y),"=",z); // X + Y = Z

 p.postAllDifferent(vars);

 int[] coef1 = { 3, 4, -5, 2 };

p.post(coef1,vars,">",0); // 3x + 4y -5z + 2r > 0

 p.post(vars,">=",15); // x + y + z + r >= 15

 int[] coef2 = { 2, -4, 5, -1 };

p.post(coef2,vars,">",x.multiply(y));// 2x-4y+5z-r > x*y

 } catch (Exception e) {

 p.log("Error posting constraints: " + e);

 System.exit(-1);

 }

 }

 public void solve() { // PROBLEM RESOLUTION

 p.log("=== Find Solution:");

 Solver solver = p.getSolver();

 Solution solution = solver.findSolution();

 if (solution != null)

 solution.log();

 else

 p.log("No Solution");

 solver.logStats();

 }

 public static void main(String[] args) {

 Test t = new Test();

 t.define();

 t.solve();

 }

}

This code will produce the results that may look like below:

=== Find Solution:

Solution #1:

 X[1] Y[4] Z[5] R[6]

*** Execution Profile ***

Number of Choice Points: 3

Number of Failures: 1

Occupied memory: 4503712

Execution time: 15 msec

Instead of finding one solution of the problem we may try to find an optimal solution. For

example, we may find a solution that maximizes the sum of all 4 variables in the array

“vars”. To do this it is enough to replace the line

Solution solution = solver.findSolution();

JSR-331: Constraint Programming API

16

with

Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, p.sum(vars));

The modified code will produce the results that may look like below:

Solution #8:

 X[4] Y[6] Z[10] R[9] sum[29]

PROBLEM DEFINITION CONCEPTS
In the JSR-331 Problem Definition uses the following interfaces to represent a CSP with

different constrained variables and constraints:

- Problem

- Var

- VarBool

- VarReal

- VarSet

- Constraint.

Below we describe major methods of the CP interfaces and provide examples of their use.

The descriptions will include the column “Implementation Level” that states on which

level (Common or CP solver) these methods should be implemented. The methods that

are not normative are marked as “optional”.

Interface “Problem”
The JSR-331 provides a generic interface Problem for any constraint satisfaction or

optimization problem that allows a user to create and access major problem’ objects.

There is only one class ProblemFactory in the package javax.constraints that

defines a factory that creates instance of the class Problem using the method

newProblem(problemName). The Problem itself serves as a factory for creation of

constrained variables and constraints. Every variable and every constraint belongs to

one and only one problem. For example, the code snippet

Problem p = ProblemFactory.newProblem("Test");

 Var x = p.variable("X",1,10);

creates an instance “p” of the class javax.constraints.Problem (defined by a

particular JSR-331 implementation using an associated jar-file). Then the problem p

creates a new constrained integer variable x with the domain [1,10] known under the

name “X”. Here the domain [1,10] is a set of integers from 1 to 10 without omissions.

The variable x is automatically added to the problem.

The JSR-331 uses the Problem interface as a factory to standardize the signatures of the

main methods that allow an end user to create constrained variables and constraints.

JSR-331: Constraint Programming API

17

Creating Variables

All factory methods for constrained variables start with the word “variable” and newly

created variables are always added to the problem. It means that you always may find

the added variable using the method like p.getVar(“X”) and this variable will be

automatically added to the default decision variables and future solutions (if any).

Here is an example:

Var x = p.variable("X",1,10);

The list of the main Problem’s methods for creation of constrained integer variables is

presented in the section “Creating Constrained Variables”.

Creating and Posting Constraints

All factory methods for creating and posting constraints start with the word “post”.

Here is the current list of the method names used to create and post constraints:

 constraintLinear or simply constraint

 constraintAllDiff

 constraintElement

 constraintCardinality

 constraintGlobalCardinality

 constraintIfThen

 constraintMax

 constraintMin

Here are examples for creating and posting constraints:

p.post(x,"<",y); // the same as p.postLinear(x,"<",y);
 p.post(x.plus(y),"=",z);

p.postAllDifferent(vars);

p.postElement(vars,indexVar, "=", 5);

p.postCardinality(vars,3, ">", 0);

Thus, for the most popular linear constraints the suffix “Linear” in the method name

“postLinear” may be omitted.

The interface Problem also includes convenience methods called “linear” that allow a

user to create linear constraints without posting them. For example, the above example

can be also presented as follows:

// red bin contains at most 1 wood component

Constraint c1 = linear(type,"=",red);

Constraint c2 = linear(counts[wood],"<=",1);

postIfThen(c1,c2);

The standard specifies only commonly used forms of variable and constraint constructors,

while an implementation may use other forms too. However, a user who decides to use

non-standard constructors should be aware that s/he potentially makes a commitment to

JSR-331: Constraint Programming API

18

a selected implementation.

[Note for Reviewers. The initial standard version covers only the most popular constraints

and more constraint creation methods will be added as the standard evolves.]

The lists of the main Problem’s methods for constraint creation are presented in the

section “Defining Constraints”.

Common Methods

The Problem interface also specifies general methods for logging, versioning, creating a

solver, and additional convenience methods – see the JSR-331 javadoc. Here are some of

such methods:

Methods of the interface Problem Impl.

Level

public String getAPIVersion();

This method returns the current version of the JSR-331 API

Common

public String getImplVersion();

This method returns the current version of the concrete JSR-331

implementation

CP

solver

public Solver getSolver()

This method returns an instance of a Solver associated with this problem

and that will be used to solve the problem. If a Solver’s instance is not

defined yet, this method creates a new Solver (lazy instantiation) and

associates it with the problem.

Common

public void log(String text)

This method logs (displays) the “text” to the default log (as defined by a

selected implementation).

CP

solver

public void log(Var[] vars)

This method logs (displays) all variables from the array vars” to the default

log.

CP

solver

public Var min(Var var1, Var var2)

This method returns a new variable constrained to be the minimum of

variables var1 and var2

Common

public Var max(Var var1, Var var2)

This method returns a new variable constrained to be the maximum of

variables var1 and var2

Common

JSR-331: Constraint Programming API

19

public Var min(Var[] vars);

This method creates a new Var constrained to be the minimum of all

variables in the array “vars”

Common

public Var max(Var[] vars);

This method creates a new Var constrained to be the maximum of all

variables in the array “vars”

Common

public Var sum(Var[] vars);

This method creates a new Var constrained to be the sum of all variables

in the array “vars”

Common

public Var scalProd(int[] values, Var[] vars);

This method creates a new Var constrained to be the scalar product of the

array of values and the array of variables “vars”

Common

public Var element(int[] values, Var indexVar);

This method creates a new constrained variable that is an element of the

integer array “values” with an index defined by another constrained

variable “indexVar”

Common

public Var element(Var[] vars, Var indexVar);

This method creates a new constrained variable that is an element of the

array of constrained variables “vars” with an index defined by another

constrained variable “indexVar”

Common

[Notes for Reviewers. When the proper standard for the CP XML is defined, the Problem interface

will be expanded with two more methods that will allow a user to store/load a problem instance

to/from am XML format:

public void storeToXML(OutputStream os, String comment) throws Exception;

public void loadFromXML(InputStream os) throws Exception;

At this stage of standardization, concrete implementations may implement these optional

methods using its own preferred XML format.

Question: do you think these two methods should be added to the interface with a stub

that throws a runtime error defined in the common implementation?]

Common Interface “ConstrainedVariable”
The interface “ConstrainedVariable” defines common methods for all types of

constrained variables. Here is a summary of these methods:

Method of the interface

ConstrainedVariable

Comment Impl.

Level

public void

setName(String name)
Defines the name of this variable Common

public String

getName()
Returns the name of this variable Common

http://4c110.ucc.ie/cpstandards/index.php/en/standards/xml
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)

JSR-331: Constraint Programming API

20

public void

setImpl(Object impl)

This method defines a concrete

implementation of this variable provided

by a specific CP solver

Common

public

Object getImpl()

This method returns a concrete

implementation of this variable provided

by a specific CP solver

Common

public void setObject

(Object obj)
This method is used to attach a Business

Object to this variable

Common

public Object

getObject()
This methods returns a Business Object

associated with this variable

Common

The methods setObject and getObject provide an ability to associate any application

objects with constrained variables. These objects may be effectively used by application

developers to define custom constraints and variable/value selectors.

The method setImpl is used by an underlying JSR-331 implementation to associate an

implementation object with an instance of a standard constrained variable. It is used

internally by JSR-331 implementations but also provides a user an ability to switch to an

implementation level by using the method getImpl(). While it violates a solver

independence principle, in certain situations a user still may want to take an advantage

of a selected CP solver by casting implementation objects to solver specific classes and

using them directly with additional methods provided by this particular solver.

The standard interface defines the following sub-interfaces of the common interface

“ConstrainedVariable”:

- Var (integer)

- VarBool (boolean)

- VarReal (floating-point)

- VarSet (set).

Note. At this early stage of the JSR-331 development, the sections below will mainly

concentrate on constrained integer variables. However, other types of constrained

variables will be described in the next releases of this document.

Constrained Integer Variables “Var”

Constrained integer variables are the most popular type of the constrained variable (the

reason why the name of this type “Var” does not have an additional identifier like

“VarInt”). Each variable of the type Var has a finite domain of integer values.

The JSR-331 includes a common implementation of the major Var methods in the class

 javax.constraints.impl.constraint.AbstractVar

Each implementation must create its own class

 javax.constraints.impl.constraint.Var

which should be inherited from the class AbstractVar and that should be used to define

constrained integer variables on the CP solver level.

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setBusinessObject(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getBusinessObject()

JSR-331: Constraint Programming API

21

Creating Integer Variables

The standard interface Problem provides multiple methods for creating new variables of

the type Var. For example, a user may write:

Var digitVar = problem.variable(”A”, 0, 9);

A new constrained integer variable with an initial domain [0;9] will be created and added

to the problem under the name “A”. Here is the list of the major methods from the

interface Problem that deal with creation and accessing constrained integer variables:

Methods of the interface Problem Impl.

Level

public Var variable(String name, int min, int max)

This method creates a new Var with the name “name” and a domain

[min;max]. It also adds a newly created variable to the problem, so later on

you may find this variable by name using the Problem’s method

getVar(name). There is a similar method without “name”.

CP

solver

public Var variable(String name, int[] domain)

This method creates a new Var with the name “name” and a given

“domain” (an array of regular integers). It also adds a newly created

variable to the problem. There is a similar method without “name”.

Common

or CP

solver

public Var[] variableArray(String name, int min, int max,

int size)

This method creates an array of constrained integer variable with the

name like “name[i]” and a domain [min;max]. The total number of

variables in the array is equal to “size”. It also adds this array to the

problem, so later on a user may find this array by name using the

Problem’s method getVarArray(name).

Common

public Var variable(String name, int min, int max,

DomainType type)

This method creates a new Var with the name “name” and a domain

[min;max]. The domain type of this variable is defined by the parameter

“type” – see below. It also adds a newly created variable to the problem.

public void setDomainType(DomainType type)

This method sets a domain type (DOMAIN_SMALL, DOMAIN_MIN_MAX,

DOMAIN_SPARSE, or DOMAIN_OTHER) that will be used as the default for

subsequent creation of variables using var(…) and varArray(…) methods

Common

public Var add(Var var)

This method adds already created variable of the type Var to the problem

making its available for the for the proper method getVar(“name”). All

added variables will also be included in the future solutions of the problem.

Common

JSR-331: Constraint Programming API

22

public Var getVar(String name)

This method returns a Var that previously was added to the problem under

the name “name”

Common

public Var[] getVars()

This method returns all variables of the type Var that were previously

added to the problem

Common

Domain Types

While the standard Var interface does not impose a particular organization of the Var’s

domain, it specifies different domain types using the following enum:

public enum DomainType {

 DOMAIN_SMALL,

 DOMAIN_MIN_MAX,

 DOMAIN_SPARSE,

 DOMAIN_OTHER

}

This classification assumes the following domain types:

DOMAIN_SMALL used for relatively small domains

DOMAIN_MIN_MAX used for large domains that mainly keep track of minimal and

maximal values inside domains

DOMAIN_SPARSE used for domains with a lot of missing values between minimal and

maximal values

DOMAIN_OTHER used for domains that may have a special meaning in any particular

implementation.

A user may specify a certain domain type when creating a variable as follows:

Var var = p.variable(”A”,0,9,DomainType.DOMAIN_SMALL);

The common default domain type is DOMAIN_SMALL but an implementation may use a

different default. A user may redefine a default domain type by using the following

Problem’s method:

public void setDomainType(DomainType type);

For example, if a user writes

setDomainType(DomainType.DOMAIN_SPARSE);

then all variables created after (!) this statement by default will have the domain type

DOMAIN_SPARSE. After creating a few “sparse” variables, a user may switch to different

domain type.

A user may also create constrained integers variables by listing all possible domain

values like in this example:

JSR-331: Constraint Programming API

23

int[] domain = new int[] {1,2,4,7,9};

Var var = p.variable(”A”, domain);

To create an array of 100 constrained integers variables with the domain [0;10], a user

may write:

Var[] vars = p.variableArray(”A”, 0, 10, 100);

Note. Any JSR-331 implementation may provide other Var constructors that may take

advantage of its specific features. At the same time a user should be warned that the use

of CP solver specific constructors renders the application code dependent on that

particular implementation. As more Var constructors become commonly acceptable for

different implementations, they will be added to the standard Problem interface.

Manipulating Integer Variables

The Var interface provides the following methods that allow a user to evaluate the state

of constrained integer variables:

- int getDomainSize() returns the current number of elements in the domain

- DomainType getDomainType() returns the domain type

- boolean isBound() returns true if the variable is already instantiated with a

single value (domain’s size is 1)

- int getValue()returns a value with which the variable was instantiated. If this

variable is not bound, this method throws a runtime exception

- int getMin() returns the minimal value from the current domain

- int getMax() returns the maximal value from the current domain.

The JSR-331 does not allow a user to modify variables directly, e.g. using setters like

“setMin” or “setMax” – they are simply not defined. Instead a user may only post the

proper linear constraints:

p.post(var,">=",min); - to set the minimal value for the current domain

p.post(var,"<=",max); - to set the maximal value for the current domain

p.post(var,"=",value); - to instantiate the variable “var” with the “value”

p.post(var,"!=",value); - to remove a value from the variable domain.

Arithmetic Operations with Integer Variables

If a user wants to impose the constraint “x + y < 10”, s/he can do it by posting this linear

constraint

p.post(x.plus(y), "<", 10);

Here is the list of the arithmetic operations defined by the interface Var that create new

constrained variables:

JSR-331: Constraint Programming API

24

Methods of the interface Var Impl.

Level

public Var plus(int value); // this + value

This method creates a new Var constrained to be the sum of this variable

and the given “value”

CP

solver

public Var plus(Var var); // this + var

This method creates a new Var constrained to be the sum of this variable

and the given variable “var”

CP

solver

public Var minus(int value); // this - value

This method creates a new Var constrained to be the difference between

this variable and the given “value”

Common

public Var minus(Var var); // this - var

This method creates a new Var constrained to be the difference between

this variable and the given variable “var”

Common

public Var multiply(int value); // this * value

This method creates a new Var constrained to be the product of this

variable and the given “value”

CP

solver

public Var multiply(Var var); // this * var

This method creates a new Var constrained to be the product of this

variable and the given variable “var”

CP

solver

public Var divide(int value); // this / value

This method creates a new Var constrained to be the quotient of this

variable and the given “value”. It throws a Runtime Exception if value = 0

Common

or CP

solver

public Var divide(Var var) throws Exception; // this /
var

This method creates a new Var constrained to be quotient of this variable

and the given variable “var”

Common

or CP

solver

public Var mod(int value); // this % value

This method creates a new Var constrained to be the remainder after

performing integer division of this variable by the given “value”. It throws

a Runtime Exception if value = 0

Common

public Var sqr(); // this * this

This method creates a new Var constrained to be the product of this

variable and itself

Common

public Var power(int value); // this ** value

This optional method creates a new Var constrained to be this variable

raised to the power of the given “value”

Common

or CP

solver

public Var abs(); // abs(this)

This method creates a new Var constrained to be the absolute value of

this variable

CP

solver

optional

Note that all these methods only create new constrained variables but do not add them to

the problem. If necessary, it should be done explicitly with the Problem’s method

add(var).

JSR-331: Constraint Programming API

25

An end user should be warned that while the above operations could be convenient to

create arithmetic expressions and then post constraints on them, these operations may

create internally a lot of intermediate variables and constraints. For example, a user may

represent constraint 3x + 4y -7z > 10 as

Var exp = x.multiply(3).plus(y.multiply(4)).minus(z.multiple(7));

p.post(exp, ">", 10);

However, it may be more efficient to use this constraint instead:

int[] coef1 = { 3, 4, -7 };

Var[] vars = { x, y, z };

p.post(coef1,vars, ">", 10);

Note. The names of the above operations correspond to the default names used by such

dynamic languages as Groovy to allow operator overloading. So, for example the above

constraint in Groovy may simply look as follows:

post(x*3+y*4-z*7, ">", 10);

Constrained Boolean Variables

Boolean variables of the standard type VarBool may be considered as integer variables

with domain [0;1] where 0 stand for “false” and 1 stands for “true”. The specification

defines the interface VarBool as

public interface VarBool extends Var {

}

The interface Problem include two methods for creation of Boolean constrained

variables:

public VarBool variableBool(String name);

Creates a boolean constrained variable with the given “name” and adds it to

the problem.

public VarBool variableBool();

Creates a boolean constrained variable with no name and without adding it

to the problem.

public VarBool[]getVarBools ();

Returns an array of boolean constrained variables previously added to

problem.

public Var add(VarBool var);

Adds a boolean constrained variable to the problem.

JSR-331 provides a basic implementation of constrained boolean variables as a subclass

of Var. However, each JSR-331 implementation may provide its own more efficient

implementation by overriding the common one. It means that currently a compliant

implementation does not have to implement constrained boolean variables by itself.

JSR-331: Constraint Programming API

26

Constrained Real Variables

Constrained real variables are similar to constrained integer variable but defined on real

numbers represented by the basic Java type double. Major creation and manipulation

methods are similar to constrained integer variables. For example, the interface Problem

include the method

public VarReal variableReal(String name, double min, double max);

that creates a variable of type VarReal. It also includes two methods

public void setRealPrecision(double value);

public double getRealPrecision();

that allow to set and use a precision when comparing two real variables. The detailed

description of all methods related to the constrained real variables can be found at the

Javadoc.

Each JSR-331 implementation may provide its own implementation of these methods;

however they are not included in the current JSR-331 TCK. It means that currently a

compliant implementation does not have to implement constrained real variables.

Constrained Set Variables

The JSR-331 specifies a basic interface for constrained set variables. Contrary to a

constrained integer variable that, when bound, is equal to an integer value, a constrained

set variable, when bound, is equal to a set of integer values.

The domain of a constrained set variable defines two sets:

- Required Set: a set of integers that belongs to all possible values of the variable (the

lower bound);

- Possible Set: a set of integers that belongs to at least one of the possible values of the

variable (the upper bound);

The required set is always a subset of the possible set. For example, if a constrained set

variable represents weekdays of a nurse, then the possible set is {1,2,3,4,5,6,7} that

correspond {Mon, Tue, .., Sun }. The required set may include a subset of the cardinality

5, e.g {1,2,3,4,5}. One may only remove elements from the possible sets and only add

elements to the required set. The cardinality of a set constrained variable is a

constrained integer variable. It is possible to define intersections and unions of

constrained set variables.

The interface VarSet extends the interface ConstrainedVariable and additionally

defines the following methods:

public boolean isBound();

Returns true when all elements in the domain are required (the

possible set is equal to the required set)

JSR-331: Constraint Programming API

27

public Set<Integer> getValue() throws Exception;

Returns a set of integers in the required set. Throws an

exception when this set variable is not bound.

public void setValue(Set<Integer> set) throws Exception;

Instantiates this set variable with the constant “set”. Throws an

exception if some values in the “set” are not possible.

public Set<Integer> getRequiredSet();

Returns the required set.

public Set<Integer> getPossibleSet();

Returns the possible set.

public boolean isPossible(int value);

Returns true if the “value” belongs to the possible set.

public boolean isRequired(int value);

Returns true if the “value” belongs to the required set.

public void remove(int value) throws Exception;

Removes the “value” from the possible set. Throws an exception if the “value” does

not belong to the possible set.

public void require(int value) throws Exception;

Adds the “value” to the require set. Throws an exception if the “value” does not

belong to the possible set.

public boolean contains(Set<Integer> setOfValues);

Returns true if the possible set contains the “setOfValues”.

public VarSet intersection(VarSet varSet) throws Exception;

Returns a new set variable that is an intersection of this set variable and the

“varSet” variable.

public void setEmpty(boolean flag);

Sets the cardinality of this set variable to be equal to 0 if the flag if true, and to be

more or equal to 1 if the flag is false.

public VarSet union(VarSet varSet) throws Exception;

Returns a new set variable that is a union of this set variable and the “varSet”

variable.

public Var getCardinality();

Returns a constrained integer variable that represents a number of elements in the

domain of this constrained set variable when it is bound.

JSR-331 provides a basic implementation of constrained set variables on the common

level javax.constraint.impl. However, each JSR-331 implementation may provide

its own more efficient implementation by overriding the common one. It means that

currently a compliant implementation does not have to implement constrained set

variables by itself.

JSR-331: Constraint Programming API

28

Defining Constraints

The JSR-331 specifies many major constraints that define relationships between

constrained variables. These constraints are available through the generic Problem

interface. Here are examples of predefined constraints.

1. A constraint x < y between two constrained variables may be expressed as

post(x, "<", y);

2. To express the fact a sum of all variables from the array “vars” of the type Var[]

should be less than 20, a user may write:

post(vars, "<", 20);

3. To express the fact that four variables x, y, z, and t are subject to the constraint

3*x + 4y – 5*z + 2*t > x*y

a user may create and post the following constraint:

Var xy = x.multiply(y); // non-linear

int[] coefs = { 3, 4, -5, 2 };

Var[] vars = { x, y, z, t };

post(coefs, vars, ">", xy);

4. If a user has an array of constrained variables “vars” and wants to state that all

variables inside this array are different, s/he may write:

postAllDifferent(vars);

All above examples use Problem’s factory methods starting with the word “post” to

create and post(!) constraints. Posting a constraint means that this constraint will

control the domain of all involved variables. Every time when constrained variables are

modified the posted constraints defined on these variables will try to remove inconsistent

values from their domains. This process is known as constraint propagation. If some

domains become empty constraints throw exceptions. If an exception happens during the

search then a search strategy will catch such exceptions and will react according to its

own logic (e.g. continue to explore alternatives).

Depending on implementation, constraints may throw (or not) runtime exceptions during

posting. In this case a user may put all constraint postings into a try-catch block to catch

contradictory constraints – see below. However, constraint posting by itself does not

guarantee that all conflicts will be caught and it may require a search to find a solution

or prove that all posted constraints actually cannot be satisfied.

5. To express the fact that three variables x, y, and z are subject to this constraint

if (x > y) then z <= 5

a user may write:

Constraint c1 = p.linear(x, ">", y);

Constraint c2 = p.linear(z, "<=", 5);

JSR-331: Constraint Programming API

29

p.postIfThen(c1,c2);

Please note that contrary to Constraint c1 = p.post(x, ">", y) method “linear”

only creates a constraint but does not post it.

Common Interface “Constraint”

The interface “Constraint” defines common methods for all types of constraints. Here is

a summary of these methods:

Method of the interface

Constraint

Comment Impl.

Level

void setName(String name) Defines the name of this constraint Common

String getName() Returns the name of this constraint Common

void setImpl(Object impl)

This method defines a concrete

implementation of this constraint

provided by a specific CP solver

Common

Object getImpl()

This method returns a concrete

implementation of this constraint

provided by a specific CP solver

Common

void setObject

(Object obj)

This method is used to attach any

business object to this constraint

Common

Object getObject() This methods returns a business

object associated with this constraint

Common

void post()

This method is used to post the

constraint. If the posting was

unsuccessful, this method throws a

runtime exception.

CP

solver

void

post(ConsistencyLevel

consistencyLevel)

This method is used to post the

constraint and also specifies a

consistency level that controls the

propagation strength of this

constraint (see below). If the posting

was unsuccessful, this method

throws a runtime exception.

CP

solver

optional

Constraint

and(Constraint c)
This method creates a new

constraint “and” that is satisfied only

when “this” constraint and the

parameter-constraint “c” are both

satisfied

CP

solver

Constraint

or(Constraint c)
This method creates a new

constraint “and” that is satisfied only

when at least one of two constraints

“this” or the parameter-constraint “c”

is satisfied

CP

solver

Constraint

implies(Constraint c)
This method creates a new

constraint that states:

if this constraint is satisfied then

parameter-constraint “c” should also

CP

solver

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setBusinessObject(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getBusinessObject()

JSR-331: Constraint Programming API

30

be satisfied

Constraint negation() This method creates a new

constraint that is satisfied if and

only if this constraint is not satisfied

Common

or CP

solver

VarBool asBool() This optional method returns a new

constrained boolean variable that is

equal 1 (true) if the constraint is

satisfied and equals 0 (false) if it is

violated.

CP

solver

optional

The methods setObject and getObject provide an ability to associate and use any

application objects with a constraint..

The method setImpl is used by an underlying JSR-331 implementation to associate an

implementation object with an instance of a standard constraint. It is used internally by

JSR-331 implementations but also gives a user an ability to switch to an implementation

level by using the method getImpl(). While it violates a solver independence principle,

in certain situations a user still may want to take an advantage of a selected CP solver

by casting implementation objects to solver specific constraint classes and using them

directly with additional methods provided by this particular solver.

A user may create new constraints as combinations of the predefined constraints using

the logical operations and, or, implies, and negation. While constraints can be

either satisfied or not they may be considered as constrained Boolean variables and the

method asBool allows a user to treat it as such. In particular, constraints as boolean

variables be used may be used to define relative measures for different constraint

violations (if any) and try to minimize the total violations – see an example below.

Note. Not all constraints must have implementations for the method asBool(). If a

user will try to access a non-existing asBool method a runtime exception will be thrown.

This behavior is defined in the common JSR-331 implementation and could be overridden

by a concrete implementation.

Problem Methods for Constraints

There are several generic methods for creating and accessing constraints defined by the

standardized Problem interface:

Methods of the interface Problem Impl.

Level

Constraint add(Constraint constraint)

This method adds already created constraint to the problem making its

available for the for the proper method getConstraint(“name”).

Common

JSR-331: Constraint Programming API

31

Constraint getConstraint(String name)

This method returns a Constraint that previously was added to the

problem under the name “name”

Common

Constraint[] getConstraints()

This method returns all constraints that were previously added to the

problem

Common

Constraint post(String name, String symbolicExpression)

This optional method creates a new constraint based on the

“symbolicExpression” such as "x*y - z < 3*r". It is assumed that all

variables in the expression were previously created under names used

within this expression. The method adds this constraint to the problem

and returns the newly added Constraint. This method throws a

RuntimeException if there is either an error inside the

“symbolicExpression” or there is no implementation for this method.

Common

or CP

solver

optional

The Problem methods that create concrete constraints such as “Linear”, “Element”,

“AllDifferent”, “Cardinality”, and “GlobalCardinality” are described below.

Posting Constraints

A constraint has no effect until it is posted. The constraint posting is implementation

specific but usually it executes the following actions:

1) Initial constraint propagation (if any as defined by the common or solver specific

implementation);

2) Associating constraints (or their propagators, listeners, observers – different

implementations use different terms) with the involved constrained variables and

events. When such events occur the proper propagators will be woke up and

executed to remove inconsistent values from the variable domains.

The actual posting logic depends on an underlying CP solver. If the posting was

unsuccessful, the method post throws a runtime exception. So, it should be a regular

practice to put constraint posting into a try-catch block, e.g.:
try {

p.post(x,"<",y); // X < Y

p.post(x.plus(y),"=",z); // X + Y = Z

 p.postAllDifferent(vars);

 int[] coef1 = { 3, 4, -7, 2 };

p.post(coef1,vars,">",0); // 3x + 4y -7z + 2r > 0

 } catch (Exception e) {

 p.log("Error posting constraint: " + e);

 System.exit(-1);

 }

The standard allows a user to control the propagation strength of different constraints

using an additional posting parameter in this method:

JSR-331: Constraint Programming API

32

void post(ConsistencyLevel consistencyLevel)

Here the ConsistencyLevel is defined as the following standard enum:

public enum ConsistencyLevel {

 BOUND, // bound consistency

 DOMAIN, // domain consistency

 VALUE, // value consistency

 OTHER // implementation-specific consistency

}

The JSR-331 does not enforce any particular consistency level leaving this decision to

implementers of different constraints. Note, that the common implementation simply

ignores the consistency level, resulting in this method being equivalent to the regular

post().

Example of a Problem with Various Constraints

Usually application developers incorporate constrained variables in their own business

objects and post constraints between them to express business relationships between yet

unknown entities. Let’s consider a popular problem: given a supply of different

components and bins of given types, determine all assignments of components to bins

satisfying specified assignment constraints subject to an optimization criterion. Here is a

fragment of the business object Bin (a constructor only - the complete implementation is

included in the standard package org.jcp.jsr331.samples):

static final int red = 0, blue = 1, green = 2;

static final int glass = 0, plastic = 1, steel = 2, wood = 3, copper = 4;

class Bin {

 public int id;

 public Var type;

 public Var capacity;

 public Var[] counts; // per component

 public Bin(Problem p, int binId) {

 id = binId;

 type = p.variable("Bin" + id + "Type", 0, binTypes.length - 1);

 p.log("Capacity constraints");

 int capacityMax = 0;

 for (int i = 0; i < binCapacities.length; i++) {

 if (binCapacities[i] > capacityMax)

 capacityMax = binCapacities[i];

 }

 capacity = p.variable("capacity", 0, capacityMax);

 p.postElement(binCapacities,type, ”=”, capacity);

 counts = new Var[components.length];

 for (int i = 0; i < components.length; i++)

 counts[i] = p.variable(countName(i), 0, capacityMax);

// Sum of counts <= capacity

 p.post(counts, ”<=”, capacity);

 p.log("Containment constraints");

 Constraint c1, c2, c3;

JSR-331: Constraint Programming API

33

 // red contains at most 1 of wood

 c1 = p.linear(type,”=”,red);

 c2 = p.linear(counts[wood], ”<=”,1);

 c1.implies(c2).post();

 // green contains at most 2 of wood

 c1 = p.linear(type,”=”,green);

 c2 = p.linear(counts[wood], ”<=”,2);

 c1.implies(c2).post();

 // red can contain glass, wood, copper

 c1 = p.linear(type,”=”,red);

 c2 = p.linear(counts[plastic],”=”,0);

 c3 = p.linear(counts[steel],”=”,0);

 c1.implies(c2.and(c3)).post();

 // blue can contain glass, steel, copper

 c1 = p.linear(type,”=”,blue);

 c2 = p.linear(counts[plastic],”=”,0);

 c3 = p.linear(counts[wood],”=”,0);

 c1.implies(c2.and(c3)).post();

 // green can contain plastic, wood, copper

 c1 = p.linear(type,”=”,green);

 c2 = p.linear(counts[glass],”=”,0);

 c3 = p.linear(counts[steel],”=”,0);

 c1.implies(c2.and(c3)).post();

 // wood requires plastic

 c1 = p.linear(counts[wood],”=”,0);

 c2 = p.linear(counts[plastic],”=”,0);

 c1.implies(c2).post();

 // glass exclusive copper

 c1 = p.linear(counts[glass],”=”,0);

 c2 = p.linear(counts[copper],”=”,0);

 c1.or(c2).post();

 // copper exclusive plastic

 c1 = p.linear(counts[copper],”=”,0);

 c2 = p.linear(counts[plastic],”=”,0);

 c1.or(c2).post();

 }

Linear Constraints

All constraints that deal with a comparison of constrained expressions use the

standardized comparison operators expressed as strings:

”<” // Less Than

”<=” // Less than or Equal to

”=” // Equal to

”>=” // Greater than or Equal to

”>” // Greater Than

”!=” // Not Equal

Here is the list of linear constraints limited to constrained integer variables:

Methods of the interface Problem Impl.

Level

JSR-331: Constraint Programming API

34

Constraint linear(Var, String oper, int value)

This method creates and returns a new constraint such as “var < = value”.

For example, if “oper” is “<=” it means that variable "var" must be less or

equal to the “value”.

CP

solver

Constraint linear(Var var1, String oper, Var var2)

This method creates and returns a new constraint such as “var1 < var2”.

For example, if “oper” is ”<” it means that the variable “var1” must be less

than the variable “var2”.

CP

solver

Constraint linear(Var[] vars, String oper, int value)

This method creates and returns a new linear constraint such as

“sum(vars) < = value”. For example, if “oper” is ”<=” it means that a sum

of all of the variables from the array "vars" must be less or equal to the

“value”.

CP

solver

Constraint linear(Var[] vars, String oper, Var var)

This method creates and returns a new linear constraint such as

“sum(vars) < var”. For example, if “oper” is “<” it means that a sum of all

of the variables from the array "vars" must be less than the variable “var”.

CP

solver

Constraint linear(int[] values, Var[] vars, String oper,

int value)

This method creates and returns a new linear constraint such as

“values*vars < value”. For example, if “oper” is “<” it means that a

scalar product of all “values” and all variables "vars" must be less than the

“value”. The arrays “values” and “vars” must have the same size otherwise

a runtime exception will be thrown.

CP

solver

Constraint linear(int[] values, Var[] vars, String oper,

Var var)

This method creates and returns a new linear constraint such as

“values*vars < var”. For example, if “oper” is “<” it means that a scalar

product of all “values” and all variables "vars" must be less than the

variable “var”. The arrays “values” and “vars” must have the same size

otherwise a runtime exception will be thrown.

CP

solver

Instead of the methods with name “linear” a user may use the method “constraint”

with the same parameters. In this case a constraint not only will be created but also

posted.

When a user post the constraint “sum(vars) < 20” in this way:

p.post(vars, ”<”, 20);

there is no assumption that an intermediate variable for the “sum(vars)” will be created

(it depends on a concrete constraint implementation). If a user actually needs this sum-

variable, s/he may write a code similar to this one:

Var sumVar = p.variable(“sum”,min,max);

p.linear(vars, ”=”, sumVar).post();

p.post(sumVar, ”<”, 20);

or even easier:

JSR-331: Constraint Programming API

35

p.post(sum(vars), ”<”, 20);

All Different Constraint

The JSR-331 interface Problem defines a simple way to create and post the most popular

constraint commonly known as “allDifferent”:

public Constraint postAllDifferent(Var[] vars);

There is also a more compact synonym:

public Constraint postAllDiff(Var[] vars);

These methods create, post, and return a new constraint stating that all constrained

integer variables of the array "vars" must take different values from each other. There

are similar methods for other types of variables. Another way to create and post “AllDiff”

constraint is to use directly a constructor:

Constraint allDiff = p.allDiff(vars);

allDiff.post();

or

allDiff.post(ConsistencyLevel.BOUND);

The latest example also allows posting with different consistency levels.

Element Constraints

The Problem interface also specifies convenience methods for creating constraints that

deal with elements of the arrays of constrained variables. If a constrained integer

variable “indexVar” serves as an index within an array “values”, then the result of the

operation “values[indexVar]” will be another constrained variable. While Java does not

allow us to overload the operator “[]” the standard interface uses the Problem methods

to create element constraints. Here is the list of such methods limited to integer

variables (for now):

Methods of the interface Problem Impl.

Level

Constraint postElement(int[] values, Var indexVar, String

oper, int value)

This method creates, posts, and returns a new linear constraint such as

“values[indexVar] < value”. Here "values[indexVar]" denotes a constrained

integer variable whose domain consists of integer values[i] where i is within

the domain of the "indexVar". For example, if “oper” is “<” it means that a

variable “values[indexVar]” must be less than the “value”.

CP

solver

JSR-331: Constraint Programming API

36

Constraint postElement(int[] values, Var indexVar, String

oper, Var var)

This method creates, posts, and returns a new linear constraint such as

“values[indexVar] < value”. Here "values[indexVar]" denotes a constrained

integer variable whose domain consists of integer values[i] where i is within

the domain of the "indexVar". For example, if “oper” is “<” it means that a

variable “values[indexVar]” must be less than the variable “var”.

CP

solver

Constraint postElement(Var[] vars, Var indexVar, String

oper, int value)

This method creates, posts, and returns a new linear constraint such as

“vars[indexVar] < value”. Here "vars[indexVar]" denotes a constrained

integer variable whose domain consists of integer values from the domain of

the vars[i] where i is within the domain of the "indexVar". For example, if

“oper” is “<” it means that a variable “vars[indexVar]” must be less than the

“value”.

CP

solver

Constraint postElement(Var[] vars, Var indexVar, String

oper, Var var)

This method creates, posts, and returns a new linear constraint such as

“vars[indexVar] < value”. Here "vars[indexVar]" denotes a constrained

integer variable whose domain consists of integer values from the domain of

the vars[i] where i is within the domain of the "indexVar". For example, if

“oper” is “<” it means that a variable “vars[indexVar]” must be less than the

variable “var”.

CP

solver

All possible comparison operators have been described above.

These constraints do NOT assume a creation of intermediate variables for

"values[indexVar]" – the fact that may allow more efficient implementations.

Cardinality Constraints

The Problem interface specifies convenience methods for creating constraints that deal

with cardinalities of the arrays of constrained variables. These constraints count how

often certain values are taken by an array of constrained variables. The “cardinality

variable” is a constrained variable that is equal to the number of those elements in the

array "vars" that are bound to the value "cardValue". Here is the list of such methods

limited to integer variables (for now):

Methods of the interface Problem Impl.

Level

JSR-331: Constraint Programming API

37

Constraint postCardinality(Var[] vars, int cardValue, String

oper, int value)

This method creates, posts, and returns a new cardinality constraint such as

“cardinality(vars,cardValue) < value”. Here “cardinality(vars,cardValue)”

denotes a constrained integer variable that is equal to the number of those

elements in the array "vars" that are bound to the "cardValue". For example,

if “oper” is ”<” it means that the variable “cardinality(vars,cardValue)” must

be less than the “value”.

CP

solver

Constraint postCardinality(Var[] vars, int cardValue, String

oper, Var var)

This method is similar to the one above but instead of “value” the

“cardinality(vars,cardValue)” is being constrained by “var”.

CP

solver

Constraint postCardinality(Var[] vars, Var cardVar,

String oper, int value)

This method creates, posts, and returns a new cardinality constraint such as

“cardinality(vars,cardVar) < value”. Here “cardinality(vars,cardVar)”

denotes a constrained integer variable that is equal to the number of those

elements in the array "vars" that are equal to "cardVar". For example, if

“oper” is ”<” it means that the variable “cardinality(vars,cardValue)” must

be less than the “value”.

CP

solver

Constraint postCardinality(Var[] vars, Var cardVar,

String oper, Var var)

This method is similar to the one above but instead of “value” the

“cardinality(vars,cardVar)” is being constrained by “var”.

CP

solver

All possible comparison operators have been described above.

These constraints do NOT assume a creation of intermediate “cardinality” variables – the

fact that may allow more efficient implementations.

Global Cardinality Constraints

The Problem interface also specifies convenience methods for creating global cardinality

constraints (known as “gcc”) that represent not one but multiple cardinalities at the same

time. Here is the list of such methods limited to integer variables (for now):

Methods of the interface Problem Impl.

Level

JSR-331: Constraint Programming API

38

Constraint postGlobalCardinality(Var[] vars, int[] values,

Var[] cardinalityVars)

This method creates and posts a new constraint that states:

“For each index i the number of times the value values[i] occurs in

the array vars is exactly cardinalityVars[i]”

The arrays cardinalityVars and values should have the same size –

otherwise a RuntimeException will be thrown. A newly created constraint

is posted.

Common

or CP

solver

Constraint postGlobalCardinality (Var[] vars, int[]

values, int[] cardMin, int[] cardMax)

This method creates and posts a new constraint that states:

“For each index i the number of times the value values[i] occurs in

the array vars should be between cardMin[i] and cardMax[i]

(inclusive)”

The arrays values, cardMin and cardMax should have the same size –

otherwise a RuntimeException will be thrown. A newly created constraint

is posted.

Common

or CP

solver

The common JSR-331 implementation provides the default implementations of both

these constraints using simple decompositions. Concrete implementation may (or may

not) provide their own implementation class GlobalCardinality that supports both

variants of this popular constraint with different consistency levels.

Min/Max Constraints

The Problem interface also specifies convenience methods for creating and posting

constraints for constrained variables that are equal to a minimum and a maximum of

other variables.

Methods of the interface Problem Impl.

Level

Constraint postMin(Var[] vars,String oper,int value)

This method creates and posts a new constraint that states:

“The minimal variable in the array vars should be less that value”

if the oper is “<”. Replace the word “less” for the proper words for all

other comparison operators. A newly created constraint is posted.

Common

Constraint postMin(Var[] vars, String oper, Var var)

This method creates and posts a new constraint that states:

“The minimal variable in the array vars should be less that var”

if the oper is “<”. Replace the word “less” for the proper words for

all other comparison operators. A newly created constraint is

posted.

Common

There are similar constraints postMax defined for maximal variables in the array vars.

JSR-331: Constraint Programming API

39

 More Constraints

Any JSR-331 implementation is expected to provide its own implementations of major

constraints specified in the standard interface Problem. The JSR-331 TCK (Technology

Compatibility Kit) will check that a compliant implementation supports at least the basic

forms of the constraints described above.

At the same time as the standard evolves, JSR-331 implementations may provide other

constructors for already defined constraints and for other constraints they have

implemented. The only requirement is that constraints not included in the standard

should still implement the interface javax.constraints.Constraint. This approach

will allow a user to take advantage of the implementation-specific features. At the same

time a user should be warned that the use of implementation specific constructors

renders the application code dependent on that particular implementation.

The common JSR-331 implementation javax.constraints.impl.constraint

already provides several additional constraints that do not depend on a particular CP

solver. Among them:

 ConstraintTrue: always successful

 ConstraintFalse: always fails when posted

 ConstraintTraceVar: used by the common Solver to implement methods

trace(..)

 ConstraintMax: provides a constraint for a maximum of an array of constrained

variables

 ConstraintMin: provides a constraint for a minimum of an array of constrained

variables

 ConstraintNotAllEqual: provides a constraint that states that not all

elements inside an array of constrained variables are the same or all equal to the

values from a given array of integers.

More similar constraints will be added to the common JSR-331 implementation as the

standard evolves.

[Notes for Reviewers. There are more than 300 constraints described at the Global

Constraint Catalog. As more constraints become commonly acceptable for different

implementations, they will be moved to the common JSR-331 level. The constraints

“regular”, “diffn”, and “cumulative” are among the next to be considered. Which

constraints and in which form will you recommend to add to the standard first?]

User-Defined Constraints

A user can define problem-specific constraints by combining the existing constraints

using Constraint logical operations “and”, “or”, “negation”, and “implies” defined in

the interface Problem.

JSR-331 users also may create a subclass of the common predefined class

javax.constraints.impl.constraint.AbstractConstraint to define their own

constraints. For example, here is an example of the constraint

http://www.emn.fr/x-info/sdemasse/gccat/
http://www.emn.fr/x-info/sdemasse/gccat/

JSR-331: Constraint Programming API

40

ConstraintNotAllEqual that actually defines two constraints:

1) not all elements inside an array of constrained variables are the same

2) not all elements inside an array of constrained variables are equal to the values from

a given array of integers.

//===

// J A V A C O M M U N I T Y P R O C E S S

//

// J S R 3 3 1

//

// Common Implementation

//

//===

package javax.constraints.impl.constraint;

import javax.constraints.Constraint;

import javax.constraints.Oper;

import javax.constraints.Var;

import javax.constraints.VarBool;

import javax.constraints.impl.AbstractConstraint;

public class ConstraintNotAllEqual extends AbstractConstraint {

 Constraint constraint;

 public ConstraintNotAllEqual(Var[] vars) {

 super(vars[0].getProblem());

 Problem p = getProblem();

 int n = vars.length-1;

 VarBool[] equalities = new VarBool[n];

 for (int i = 0; i < n; i++) {

 equalities[i] = p.linear(vars[i],”=”,vars[i+1]).asBool();

 }

 constraint = p.linear(equalities, ”<”, n);

 }

 public ConstraintNotAllEqual(Var[] vars, int[] values) {

 super(vars[0].getProblem());

 Problem p = getProblem();

 if (values.length != vars.length)

 throw new RuntimeException(

 "ConstraintNotAllEqual requires arrays of the same length");

 int n = vars.length;

 VarBool[] equalities = new VarBool[n];

 for (int i = 0; i < n; i++)

 equalities[i]=p.linear(vars[i],”=”,values[i+1]).asBool();

 constraint = p.linear(equalities, ”<”, n);

 }

 public void post() {

 constraint.post();

 }

}

JSR-331: Constraint Programming API

41

[Question for Reviewers. Should the standard give a user an access to more advanced

concepts such as Propagators and Propagation Events to create new custom constraints as

the JSR-331 evolves?]

PROBLEM RESOLUTION CONCEPTS
To represent the Problem Resolution part of any CSP, the JSR-331 uses the interface

"Solver". The solver allows a user to solve the problem by finding feasible or optimal

Solutions. Here is an example of a simple problem resolution:

 problem.log("=== Find One solution:");

 Solver solver = problem.getSolver();

 Solution solution = solver.findSolution();

 if (solution != null)

 solution.log();

 else

 problem.log("No Solutions");

In this simple case, the default solver (defined as an instance of the class

javax.constraints.Solver) is trying to find one solution using the default search

strategy that enumerates all variables previously added to the problem. The JSR-331

explicitly defines the interface “SearchStrategy” that can be adjusted by a user and

used by the solver to find solutions of the problem.

Interface “Solver”
The JSR-331 provides interface “java.constraints.Solver” (and its common

implementation “java.constraints.impl.search.AbstractSolver”) that specifies

different problem resolution concepts and methods. It is possible to create multiple

solvers for the same problem. These solvers may produce different solutions pursuing

different objectives. During the execution of Solver’s methods the state of the Problem

can be changed. The interface Solver provides the following enum to control a problem’

state after the solver execution:

public enum ProblemState {

 RESTORE,

 DO_NOT_RESTORE

}

Another enum “Objective” provided by the interface Solver is

public enum Objective {

 MINIMIZE,

 MAXIMIZE

}

It allows a user to specify the optimization objective within the method

“findOptimalSolution”.

Below is the list of the major methods from the interface Solver:

JSR-331: Constraint Programming API

42

Method of the interface Solver Impl.

Level

public Solution findSolution();

This method attempts to find a solution of the problem, for which the

solver was defined. It uses the default search strategy or the strategy

defined by the latest method setSearchStrategy(). It returns the found

solution (if any) or null. If a solution is found, all decision variables will

remain instantiated with the solution values after the execution of this

method. If a solution was not found, the problem state will be restored.

Common

public Solution findSolution(ProblemState restoreOrNot);

This method attempts to find a feasible solution of the problem, for which

the solver was defined. It uses the default search strategy or the strategy

defined by the latest method setSearchStrategy (). It returns the found

solution (if any) or null.

If a solution is not found, the problem state is restored. If a solution is

found, the problem state will be restored only if the parameter

"restoreOrNot" is RESTORE. If the parameter "restoreOrNot" is

DO_NOT_RESTORE, after a solution is found all decision variables will be

instantiated with the solution values.

CP

solver

public Solution findOptimalSolution(Objective objective,

Var objectiveVar);

This method attempts to find the solution that minimizes/maximizes the

objective variable “objectiveVar”. The first parameter could have one of two

values: Objective.MINIMIZE or Objective.MAXIMIZE.

To find solutions this method uses the default search strategy or the

strategy defined by the latest method setSearchStrategy(). The

optimization process can be controlled by:

- OptimizationTolerance that is a difference between solution objectives

during two consecutive process iterations - see the method

setOptimizationTolerance()

- MaxNumberOfSolutions that is the total number of considered solutions -

may be limited by the method setMaxNumberOfSolutions()

- TimeLimit that is the total number of milliseconds allocated for the entire

optimization process as it can be set by the method setTimeLimit().

The problem state after the execution of this method is always restored.

The produced optimal solution (if any) will contain found values for all

variables that were added to the problem (including the objectiveVar).

Common

or CP

solver

public Solution findOptimalSolution(Var objectiveVar);

This method is an equivalent of

findOptimalSolution(Objective.MINIMIZE,objectiveVar)

Common

JSR-331: Constraint Programming API

43

public Solution[] findAllSolutions();

This method attempts to find all solutions for the Problem. It uses the

default search strategy or the strategy defined by the latest method

setSearchStrategy(). It returns an array of found solutions or null if there

are no solutions. A user has to be careful not to overload the available

memory because the number of found solutions could be huge. The process

of finding all solutions can be also controlled by:

- OptimizationTolerance that is a difference between solution objectives

during two consecutive process iterations - see the method

setOptimizationTolerance()

- MaxNumberOfSolutions that is the total number of considered solutions -

may be limited by the method setMaxNumberOfSolutions()

- TimeLimit that is the total number of milliseconds allocated for the entire

optimization process as it can be set by the method setTimeLimit().

The common implementation is based on the SolutionIterator (see below).

Common

or CP

solver

public SolutionIterator solutionIterator();

This method creates and returns a solution iterator that allows a user to

find and navigate through multiple solutions (if any) using the current

search strategy.

Common

or CP

solver

public void setSearchStrategy(SearchStrategy strategy);

This method sets a search strategy defined as a parameter as a new

default search strategy to be used by methods findSolution(),

findOptimalSolution(..), findAllSolutions(..), and by solution iterators. At

least one search strategy should be defined by every implementation as the

default search strategy.

Common

public SearchStrategy getSearchStrategy();

This method returns the current search strategy that was set by an

implementation as the default search strategy or by the latest call of the

method setSearchStrategy(). A user may adjust the search strategy by

changing its default decision variables, its variable selector, and/or its

value selector. Search strategy are used by methods findSolution(),

findOptimalSolution(..), findAllSolutions(..), and by solution iterators.

Common

public SearchStrategy newSearchStrategy();

This method returns a new instance of the search strategy that is set by an

implementation as the default search strategy. A user may adjust this

search strategy by changing its default decision variables, its variable

selector, and/or its value selector. This new strategy may be added to the

strategy execution list using the Solver’s method “addStrategy”

CP

solver

public void addSearchStrategy(SearchStrategy strategy);

This method adds the strategy to the end of the strategy execution list.
CP

solver

JSR-331: Constraint Programming API

44

public void setMaxNumberOfSolutions(int number);

This method sets a limit for a number of solutions that can be found by the

method “findAllSolutions” or can be considered during execution of the

method “findOptimalSolution”. The default value is -1 that means

there are no limits for a number of considered solutions.

Common

public int getMaxNumberOfSolutions();

This method returns a number that was set by the method

setMaxNumberOfSolutions(…)

Common

public void setOptimizationTolerance(int tolerance);

This method specifies a tolerance for the method

“findOptimalSolution”. If the difference between newly found solution

and a previous one is less or equal to the "tolerance" then the last solution

is considered to be the optimal one. By default, the optimization tolerance

is 0.

Common

public int getOptimizationTolerance();

This method returns a tolerance that was set by the method

setOptimizationTolerance(…)

Common

public void setTimeLimit(int milliseconds);

This method specifies a time limit in milliseconds for the total execution of

different find-methods. By default, there is no time limit.

Common

public int getTimeLimit();

This method returns a time limit in milliseconds for the total execution of

different find-methods. By default, it returns -1 that means there is no

time limit.

Common

public void logStats();

This method logs the solver execution statistics such as a number of choice

points, number of failures, used memory, etc. This method is expected to

be specific for different implementations. By default only time information

will be logged out.

Common

or CP

solver

optional

The Solver interface also defines several other convenience methods such as tracing

methods:

- trace(Var var)

- trace(Var[] vars)

- traceFailures(boolean yesno)

- traceExecution(boolean yesno).

[Question to Reviewers. Currently the standard limits only a maximal number of considered

solutions and allows a user to set time limits. Should a user be able to set limits for a number

of choice points, failures, and other search characteristics? Concrete suggestions?]

JSR-331: Constraint Programming API

45

Example of Constraint Relaxation Problem
The following example demonstrates how to deal with real-world situations when some

constraints should be relaxed to make the problem solvable. It also demonstrates how to

find an optimal solution of the problem that in this case is a solution that minimizes the

total constraint violation.

Consider a map coloring problem that involves choosing colors for the countries on a map

in such a way that no two neighboring countries have the same colors. When there are

not enough colors some of these constraints have to be violated based of their relative

importance. Below is a solution of this problem as it is presented in the JSR-331 TCK.

package org.jcp.jsr331.samples;

import javax.constraints.*;

public class MapColoringWithViolations {

 Problem p = ProblemFactory.newProblem("MapColoring");

 static final String[] colors = { "red", "green", "blue" };

 public MapColoringWithViolations() {

 try {

 // Variables

 int n = colors.length-1;

 Var Belgium = p.variable("Belgium",0, n);

 Var Denmark = p.variable("Denmark",0, n);

 Var France = p.variable("France",0, n);

 Var Germany = p.variable("Germany",0, n);

 Var Netherlands = p.variable("Netherland",0, n);

 Var Luxemburg = p.variable("Luxemburg",0, n);

 Var[] vars =

 {Belgium,Denmark,France,Germany,Netherlands,Luxemburg};

 // Hard Constraints

 p.post(France, "!=",Belgium);

 p.post(France, "!=",Germany);

 p.post(Belgium,"!=",Netherlands);

 p.post(Belgium,"!=",Germany);

 p.post(Germany,"!=",Netherlands);

 p.post(Germany,"!=",Denmark);

 // Soft Constraints

 Var[] weightVars = {

 p.linear(France, "=",Luxemburg).asBool().multiply(257),

 p.linear(Luxemburg,"=",Germany).asBool().multiply(9043),

 p.linear(Luxemburg,"=",Belgium).asBool().multiply(568)

 };

 // Optimization objective

 Var weightedSum = p.sum(weightVars);

weightedSum.setName("Total Constraint Violations");

 Solution solution =

 p.getSolver().findOptimalSolution(weightedSum);

 if (solution != null) {

 solution.log();

 for (int i = 0; i < vars.length; i++) {

JSR-331: Constraint Programming API

46

 String name = vars[i].getName();

 p.log(name+" - "+colors[solution.getValue(name)]);

 }

 }

 else

 p.log("no solution found");

 } catch (Exception ex)

 ex.printStackTrace();

 }

 }

This problem may produce the results that may look like below;

Solution #1:

Belgium[0] Denmark[0] France[1] Germany[2] Netherland[1]

Luxemburg[1] Total Constraint Violations[257]

Belgium - red

Denmark - red

France - green

Germany - blue

Netherland - green

Luxemburg - green

Interface “SearchStrategy”
The JSR-331 utilizes the concept “SearchStrategy” to allow a user to choose between

different search algorithms provided by different implementations. Search strategies are

used by those Solver’s methods that find a solution, find all solutions, find an optimal

solution, and by solution iterators. A search strategy should know all decision variables

it will try to instantiate during the search, and may need external selectors for variables

and values. At least one decision strategy should be provided by any implementation to

serve as the default strategy created in the implementation specific Solver constructor.

The common interface “SearchStrategy” defines the following methods:

Methods of the interface “SearchStrategy”
Impl.

Level

public void setName(String name)

public String getName()

Define a setter and a getter for the name of this strategy

Common

public Solver getSolver()

Returns a solver with which this strategy is associated.

Common

public void setType(SearchStrategyType type)

Sets a type for this strategy. The specification currently defined two type:

SearchStrategyType.DEFAULT and SearchStrategyType.CUSTOM

Common

public Var[] getVars();

This method returns an array of integer variables that are used by the

strategy.

Common

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getName()
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)

JSR-331: Constraint Programming API

47

public void setVars(Var[] vars);

This method sets an array of integer variables that will be used by the

strategy.

Common

public void setVarSelector(VarSelector selector);

This method sets a variable selector that will be used by the strategy

during the search.

Common

public void setVarSelectorType(VarSelectorType type);

This method sets a variable selector of the standard type specified as a

parameter.

Common

public void setValueSelector(ValueSelector selector);

This method sets a value selector that will be used by the strategy during

the search.

Common

public void setValueSelectorType(ValueSelectorType type);

This method sets a value selector of the standard type specified as a

parameter.

Common

public VarReal[] getVarReals();

This method returns an array of real variables that are used by the

strategy.

Common

public void setVarReals(VarReal[] vars);

This method sets an array of real variables that will be used by the

strategy.

Common

public VarSet[] getVarSets();

This method returns an array of set variables that are used by the

strategy.

Common

public void setVarSets(VarSet[] vars);

This method sets an array of set variables that will be used by the

strategy.

Common

public void trace();

This method forces the strategy to trace itself during the execution.

CP

solver

All implementation specific search strategies should be implemented as subclasses of the

common base class “javax.constraints.impl.search.AbastractSeachStrategy”.

The only requirement to all search strategies is the following: when they are invoked by

an implementation specific Solver method findSolution(ProblemState state) they

are expected to either produce a solution of the problem within the current time limit or

to report that a solution cannot be found. How they do it and how the internal

interaction between Solver method “findSolution” and its search strategy is organized

remains a prerogative of a concrete JSR-331 implementation.

Strategy Execution List
The search strategy execution list allows a user to mix strategies for different types of

decision variables and to control their execution order. For example, for scheduling and

resource allocation problems a user may decide first to schedule all activities and then

assign resources to already scheduled activities. But a user may also decide first to

assign resources and only then to schedule activities based on resource availability.

The Solver method

JSR-331: Constraint Programming API

48

SearchStrategy getSearchStrategy()

returns the first search strategy specific for this particular JSR-331 implementation. A

user may specify decision variables and set different variable selectors and value

selectors for the default strategy. The Solver method

SearchStrategy newSearchStrategy()

returns a new instance of the default search strategy specific for this particular JSR-331

implementation. A user may specify decision variables and selectors for this strategy

and then add it to the end of the “search strategy execution list”. The Solver executes all

strategies from this list in the order they were added, and the execution succeeds only

when all strategies from the list are successfully executed.

Let’s assume that a user has two arrays of decision variables “types” and “counts” and

wants Solver first instantiate all types and only then all counts (possibly using different

selectors). Here is how it can be done:

Solver solver = problem.getSolver();

SearchStrategy typeStrategy = solver.getSearchStrategy();

 typeStrategy.setVars(types);

SearchStrategy countStrategy = solver.newSearchStrategy();

countStrategy.setVars(counts);

countStrategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN);

solver.addSearchStrategy(countStrategy);

 solution = solver.findSolution();

There are several convenience methods that allow a user to add additional strategies to

the execution list without explicitly creating new search strategies. The method

“addSearchStrategy” also supports different combinations of parameters Var[],

VarSelector, and ValueSelector. The above code may be written more compactly as:

Solver solver = problem.getSolver();

 solver.getSearchStrategy().setVars(types);

 solver.addSearchStrategy(counts, VarSelectorType.MIN_DOMAIN);

 solution = solver.findSolution();

Adding Non-Search Strategies
The JSR-331 allows a user to add a non-search strategies to the search strategy

execution list. The common JSR-331 implementation provides an example of such non-

search strategy called StrategyLogVariables. A user may use this strategy to display

a state of problem variables after different search iterations like in this example:

Solver solver = getSolver();

solver.addSearchStrategy(new StrategyLogVariables(solver));

Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, getVar("cost"));

if (solution != null)

 solution.log();

else

 log("No Solutions");

In this case every time when the default search strategy finds a solution the

StrategyLogVariables will show the state of all problem variables until an optimal

JSR-331: Constraint Programming API

49

solution will be found. Here is the implementation code from the file

StrategyLogVariables.java:

package javax.constraints.impl.search;

import javax.constraints.Solver;

import javax.constraints.Var;

public class StrategyLogVariables extends AbstractSearchStrategy {

 Var[] vars;

 public StrategyLogVariables(Var[] vars) {

 super(vars[0].getProblem().getSolver());

 this.vars = vars;

 setType(SearchStrategyType.CUSTOM);

 }

 public StrategyLogVariables(Solver solver) {

 super(solver);

 vars = getProblem().getVars();

 setType(SearchStrategyType.CUSTOM);

 }

 public boolean run() {

 getProblem().log("=== StrategyLogVariables:");

 getProblem().log(vars);

 return true;

 }

}

A user may write in a similar way his/her own non-search strategy for displaying or

saving intermediate search results including application specific objects. It is important

to define a strategy type as SearchStrategyType.CUSTOM .

Variable Selectors
The JSR-331 specifies a set of standard variable selectors that can be used by an end

user to customize the standard search strategy. These variable selectors are defined by

the standard interface “VariableSelector” using the following enum:

static public enum VarSelectorType {

 /**

 * selection of variables in order of definition

 */

 INPUT_ORDER,

 /**

 * smallest lower bound

 */

 MIN_VALUE,

 /**

 * largest upper bound

 */

 MAX_VALUE,

 /**

JSR-331: Constraint Programming API

50

 * min size of domain, tie break undefined

 */

 MIN_DOMAIN,

 /**

 * min size of domain, smallest lower bound tie break

 */

 MIN_DOMAIN_MIN_VALUE,

 /**

 * min size of domain, random tie break

 */

 MIN_DOMAIN_RANDOM,

 /**

 * random selection of variables

 */

 RANDOM,

 /**

 * min size of domain as first criteria, tie break by degree

 * that is the number of attached constraints

 */

 MIN_DOMAIN_MAX_DEGREE,

 /**

 * min value of fraction of domain size and degree

 */

 MIN_DOMAIN_OVER_DEGREE,

 /**

 * min value of domain size over weighted degree

 */

 MIN_DOMAIN_OVER_WEIGHTED_DEGREE,

 /**

 * largest number of recorded failures in attached constraints

 */

 MAX_WEIGHTED_DEGREE,

 /**

 * largest impact, select variable which when assigned restricts

 * the domains of all other variables by the largest amount

 */

 MAX_IMPACT,

 /**

 * largest number of attached constraints

 */

 MAX_DEGREE,

 /**

 * largest difference between smallest

 * and second smallest value in domain

 */

 MAX_REGRET,

JSR-331: Constraint Programming API

51

 /**

 * custom variable selector

 */

 CUSTOM

}

Not all these selectors have to be implemented by every JSR-331 implementation. Most

of variable selectors have been already included in the common implementation in the

package “javax.constraints.impl.search.selectors”. However, the variable

selectors MIN_DOMAIN_OVER_WEIGHTED_DEGREE, and MAX_WEIGHTED_DEGREE are

optional and may be implemented by a particular implementation only.

To set a new variable selector such as MIN_DOMAIN, a user may write:

SearchStrategy strategy = solver.setSearchStrategy();

strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN);

A user can easily implement her own variable selector as a subclass of the standard class

“javax.constraints.impl.search.selectors.VarSelectorI” by overloading only

this abstract method:

/**

* Returns the index of the selected variable in the array

* of constrained variables passed to the selector as a

* constructor’ parameter.

* If no variables to select, it returns -1;

*/

abstract public int select();

Such custom selector can take into consideration the business objects potentially

attached to every constrained variable.

Similar selectors for other types of constrained variables will be added later on.

Value Selectors
The JSR-331 specifies a set of standard value selectors that can be used by an end user to

customize the standard search strategy. These value selectors are defined by the

standard interface “ValueSelector” using the following enum:

static public enum ValueSelectorType {

 /**

 * try values in increasing order one at a time

 * without removing failed values on backtracking

 */

 IN_DOMAIN,

 /**

 * try values in increasing order, remove value on backtracking

 */

 MIN,

 /**

JSR-331: Constraint Programming API

52

 * try values in decreasing order, remove value on backtracking

 */

 MAX,

 /**

 * try to alternate minimal and maximal values

 */

 MIN_MAX_ALTERNATE,

 /**

 * try values in the middle of domain,

 * the closest to (min+max)/2

 */

 MIDDLE,

 /**

 * try the median values first,

 * e.g if domain has 5 values, try the third value first

 */

 MEDIAN,

 /**

 * try a random value

 */

 RANDOM,

 /**

 * try a value which causes the smallest domain reduction

 * in all other variables

 */

 MIN_IMPACT,

 /**

 * custom value selector

 */

 CUSTOM

}

Not all these selectors have to be implemented by every JSR-331 implementation. Most

of the value selectors are already included in the common implementation in the package

“javax.constraints.impl.search.selectors”. However, the value selectors

IN_DOMAIN and MIN_IMPACT are optional and may be implemented by a particular

implementation only.

To set a new variable selector such as MEDIAN, a user may write:

SearchStrategy strategy = solver.getSearchStrategy();

strategy.setValueSelectorType(ValueSelectorType.MEDIAN);

A user can easily create her own value selector by implementing the standard interface

“javax.constraints.ValueSelector” with only two methods:

/**

JSR-331: Constraint Programming API

53

 * Returns a value from the domain of constrained variable “var”

 */

public int select(Var var);

/**

 * Returns a type of this value selector

 */

public ValueSelectorType getType() {

 return ValueSelectorType.CUSTOM;

}

Such custom selectors can take into consideration the business objects potentially

attached to every constrained variable.

Similar selectors for other types of constrained variables will be added later on.

More Search Strategies

At this stage of the JSR-331 development, the only way for a user to utilize search

strategies different from the default one is to become implementation dependent. For

example, if an implementation provides a BoundBacktrackingSearchStrategy as a

subclass of “javax.constraints.impl.search.AbstractSearchStrategy”, then to

use this strategy a user may write:

SearchStrategy strategy =

 new BoundBacktrackingSearchStrategy(100); // steps

solver.setSearchStrategy(strategy);

[Notes for Reviewers. As the standard evolves and more implementations offer more

common search strategies, they will be added to the standard Solver interface (it is similar

to addition of more global constraints to the Problem interface). The following search

strategies are considered as optional strategy-candidates to be added to the standard

down on the road:

 RestartSearchStrategy(RestartFunction): for every run, the RestartFunction

method tells how many choices to explore. If no solution is found, the

RestartFunction method is called again to find how many choices should be

allowed in the next run.

 BoundedBacktrackingSearchStrategy(Steps): search for a limited number of

steps, which is given as a parameter; if no solution is found the strategy fails.

 LimitedDiscrepancySearchStrategy(Disc): search all possible assignments

which differ in exactly Disc choices from the heuristic choice; typically used

repeatedly with increasing discrepancy for values 0,1,2 and sometimes 3

 CreditBasedSearchStrategy(InitialCredit,CreditFunction,Steps): at the top of

the tree, explore nodes by distributing credit from parent to children (not always

equal split between them) using the CreditFunction method. When the credit runs

out, allow a bounded backtracking search of Steps failures before giving up on this

JSR-331: Constraint Programming API

54

branch and returning to the credit part

 DepthBoundedSearchStrategy(Level,Steps): explore the top Level levels of the

search tree completely, below allow a bounded backtracking search with Steps

failures.

This list is provided to initiate a constructive discussion among experts. Even when more

strategies are added to the standard, not all of them will have to be supported by every

implementation to be JSR-331 compliant.]

Interface “Solution”
The standard interface “Solution” specifies solutions can be generated by such

Solver’ methods as “findSolution”, “findOptimalSolution”, and by solution

iterators. This interface is completely implemented on the common level in the class

“javax.constraints.impl.search.BasicSolution” but any JSR-331

implementation may extend it with its own subclass

“javax.constraints.impl.search.Solution”.

A solution instance contains copies of all decision variables that were used by a search

strategy that created this solution. These copies are in the state, in which original

variable would be left after the solution search is completed but before a possible state

restoration. There are no requirements that all decision variables should be instantiated

– it depends on the used search strategy.

Here are main Solution’s methods:

Method of the interface Solution
Impl.

Level

public Var[] getVars();

This method returns an array of variables with the same names as all

variables that were added to the problem. These variables keep a current

state of the initial variables when the solution was found.

Common

public Var getVar(String name);

This method returns the variable with the name “name” saved within this

solution. It throws a runtime exception if the proper variable does not

exist. It is a copy of the actual problem’s variable with the name “name”

but it is in the state in which original variable would be left after the

solution search is completed before a possible state restoration.

Common

public int getValue(String name);

This method returns the found value of the variable with the name “name”

saved within this solution. It throws a runtime exception if the proper

variable does not exist or was not instantiated during the solution search.

Common

JSR-331: Constraint Programming API

55

public boolean isBound();

This method returns true only if all solution variables are instantiated

(bound).

Common

public boolean isBound(String name);

This method returns true only if a solution’ variable with the given name is

bound.

Common

public int getSolutionNumber();

This method returns a number associated with this solution. Solution

numbers start with 1.

Common

public void setSolutionNumber(int number);

This method sets a solution number. This method is to be used by a

solution strategy that creates this solution.

Common

public void log();

This method logs all Solution’s variables to the Problem’s log. These

variables have shown in the state as there were when the solution was

found (some variables could remain non-instantiated).

Common

public Solver getSolver();

This method returns a solver which generated this solution.

Common

There are similar methods for other types of variables.

Solution Iterator
The standard interface SolutionIterator allows a user to find and iterate through

multiple solutions and execute different application specific actions with each found

solution. The intended use of a solution iterator is presented by the following code:

 SolutionIterator iter = solver.solutionIterator();

 while(iter.hasNext()) {

Solution solution = iter.next();

...

 }

For example, a solution iterator may be uses to provide a very simple implementation of

the Solver’s method “findAllSolutions”:

public Solution[] findAllSolutions() {

 SolutionIterator iter = solutionIterator();

 ArrayList<Solution> solutions = new ArrayList<Solution>();

 while(iter.hasNext()) {

 Solution solution = iter.next();

 solutions.add(solution);

 }

 Solution[] array = new Solution[solutions.size()];

JSR-331: Constraint Programming API

56

 for (int i = 0; i < array.length; i++) {

 array[i] = solutions.get(i);

 }

 return array;

}

The common implementation also takes into consideration the current limits for a

maximal number of solutions and for the total available time. This code provides an

example of how a user may navigate through different solutions. A user may add its own

code to decide which solutions to save and when to stop the search.

In a similar way, we a user may implement its own search for an optimal solution:

public Solution findOptimalSolution(Var objectiveVar) {

SolutionIterator iter = solutionIterator();

int bestValue = Integer.MAX_VALUE;

Solution solution = null;

while(iter.hasNext()) {

 solution = iter.next();

 try {

 int newValue = solution.getValue(objectiveVar.getName());

 if (bestValue > newValue)

 bestValue = newValue;

 getProblem().post(obj,”<”,newValue); // may fail

 } catch (Exception e) {

 break;

 }

}

objectiveVar.setName(oldName);

return solution;

}

The common implementation of this method in the package
“javax.constraints.impl.search.AbstractSolver” also takes into consideration

the current limits for a maximal number of solutions and for the total available time.

The Objective.MAXIMIZE can be replaced by Objective.MINIMIZE for the

objectiveVar that is opposite to the original objective.

These implementations are given only as examples for end users who may organize their

own solution iteration cycles. For example, a user may decide to find 3 best solutions

within 10 seconds. It becomes a matter of setting the proper filters inside the above main

loop right after iter.next(). A user may also utilize business objects associated with

decision variables to compare different solutions.

Note that the described implementations can be used with any search strategy.

Below is in a very simplified (and inefficient but working) implementation of the

interface SolutionIterator:

public class BasicSolutionIterator implements SolutionIterator {

 Solver solver;

 Solution solution;

 int solutionNumber;

 boolean noSolutions;

JSR-331: Constraint Programming API

57

 public BasicSolutionIterator(Solver solver) {

 this.solver = solver;

 solution = null;

 noSolutions = false;

 solutionNumber = 0;

 }

 public boolean hasNext() {

 if (noSolutions)

 return false;

 solution = solver.findSolution(ProblemState.RESTORE);

 if (solution == null)

 return false;

 else

 return true;

 }

 public Solution next() {

 solution.setSolutionNumber(++solutionNumber);

 Var[] vars = solver.getSearchStrategy().getVars();

 int[] values = new int[vars.length];

 for (int i = 0; i < values.length; i++) {

 values[i] = solution.getValue(vars[i].getName());

 }

 try {

 new ConstraintNotAllEqual(vars, values).post();

 } catch (Exception e) {

 noSolutions = true;

 }

 return solution;

 }

}

Thus, any JSR-331 implementation may reuse common implementations or overload

these methods for a better performance. However, if a JSR-331 implementation provides

at least one search strategy, all other problem resolution methods can be taken from the

common implementation.

MORE IMPLEMENTATION EXAMPLES
The following examples demonstrate how to apply the described Problem and Solver

methods to:

- find one solution, all solutions, and an optimal solution of a simple arithmetic

problem

- apply an efficient search strategy to solve the notorious Queens problem.

These problems are included in the JSR-331 Test Compatibility Kit (TCK) in the package
org.jcp.jsr331.tests.

Simple Arithmetic Problem
This problem shares the same problem definition for different problem resolution cases.
//===

// J A V A C O M M U N I T Y P R O C E S S

//

// J S R 3 3 1

//

JSR-331: Constraint Programming API

58

// Test Compatibility Kit

//

//==

package org.jcp.jsr331.tests;

import javax.constraints.Solver.Objective;

import javax.constraints.impl.Problem;

import javax.constraints.SolutionIterator;

import javax.constraints.Solver;

import javax.constraints.Var;

import javax.constraints.Solution;

import junit.framework.*;

import junit.textui.TestRunner;

public class TestSolutions extends TestCase {

 public static void main(String[] args) {

 TestRunner.run(new TestSuite(TestSolutions.class));

 }

 public Problem defineCsp() {

 Problem problem = new Problem("Test");

 //======= Define variables

 Var x = problem.variable("X", 0, 10);

 Var y = problem.variable("Y", 0, 10);

 Var z = problem.variable("Z", 0, 10);

 //======= Define constraints

problem.post(x,"<",y);

problem.post(y,">",5);

problem.post(x.plus(y),"=",z);

// Cost = 3XY - 4Z

 Var cost = x.multiply(y).multiply(3).minus(z.multiply(4));

cost.setName("Cost");

problem.post(cost,">=",2);

problem.post(cost,"<=",25);

return problem;

 }

 public void testOneSolution() {

 Problem problem = defineCsp();

 problem.log("=== One solution:");

 Solver solver = problem.getSolver();

 Solution solution = solver.findSolution();

 if (solution == null)

 problem.log("No Solutions");

 else

 solution.log();

 problem.log("After Search",problem.getVars());

 assertTrue(solution.getValue("X") == 2);

 assertTrue(solution.getValue("Y") == 6);

 assertTrue(solution.getValue("Z") == 8);

 assertTrue("testOneSolution: Invalid Cost",

 solution.getValue("Cost") == 4);

 }

 public void testAllSolutions() {

 Problem problem = defineCsp();

 problem.log("=== All solutions:");

 Solver solver = problem.getSolver();

 solver.setMaxNumberOfSolutions(4);

 Solution[] solutions = solver.findAllSolutions();

 for(Solution sol : solutions) {

 sol.log();

JSR-331: Constraint Programming API

59

 }

 assertTrue(solutions.length == 4);

 }

 public void testSolutionIterator() {

 Problem problem = defineCsp();

 problem.log("=== Solution Iterator:");

 Solver solver = problem.getSolver();

 SolutionIterator iter = solver.solutionIterator();

 int n = 0;

 while(iter.hasNext()) {

 Solution solution = iter.next();

 solution.log();

 n++;

 }

 assertTrue(n == 5);

 }

 public void testOptimalSolution() {

 Problem problem = defineCsp();

 problem.log("=== Optimal Solution:");

 Solver solver = problem.getSolver();

 Var costVar = problem.getVar("Cost");

 Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, costVar);

 if (solution == null)

 problem.log("No Solutions");

 else

 solution.log();

 problem.log("Cost=" + solution.getValue("Cost"));

 assertTrue(solution.getValue("Cost") == 23);

 }

}

Queens Problem
The eight-queens problem is a well known problem that involves placing eight queens on

a chess board in such a way that none of them can capture any other using the

conventional moves allowed to a queen.

package org.jcp.jsr331.samples;

import javax.constraints.*;

public class Queens {

 Problem p = ProblemFactory.newProblem("Queens");

 int size;

 Var[] x;

 public Queens(int size) {

 this.size = size;

 }

 public void define() {

 p.log("Queens " + size + ". ");

 // create 3 arrays of variables

 x = p.variableArray("x",0, size-1, size);

 Var[] x1 = new Var[size];

 Var[] x2 = new Var[size];

JSR-331: Constraint Programming API

60

 for (int i = 0; i < size; i++) {

 x1[i] = x[i].plus(i);

 x2[i] = x[i].minus(i);

 }

 // post "all different" constraints

 p.postAllDifferent(x);

 p.postAllDifferent(x1);

 p.postAllDifferent(x2);

 }

 public void solve() {

 //========= Problem Resolution ==================

 // Find a solution

 Solver solver = p.getSolver();

 solver.setTimeLimit(600000); // milliseconds

 SearchStrategy strategy = solver.getSearchStrategy();

 strategy.setVars(x);

 strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_MIN_VALUE);

 strategy.setValueSelectorType(ValueSelectorType.MIN);

 Solution solution = solver.findSolution();

 if(solution == null)

 p.log("no solutions found");

 else{

 solution.log();

 }

 solver.logStats();

 }

 public static void main(String[] args) {

 String arg = (args.length == 0) ? "1000" : args[0];

 int n = Integer.parseInt(arg);

 Queens q = new Queens(n);

 q.define();

 q.solve();

 }

}

A JSR-331 test implementation produced the following results:

Queens 1000

Solution #1: x-0[0] x-1[555] x-2[1] x-3[502] x-4[2] x-5[507] …

*** Execution Profile ***

Number of Choice Points: 996

Number of Failures: 8

Execution time: 1093 msec

